Exponential Computational Improvement by Reduction

《曰》 《聞》 《臣》 《臣》 臣

John Langford @ Microsoft Research

Computational Challenges Workshop, May 2

The Empirical Age

Speech Recognition

Speech Recognition ImageNet

Speech Recognition ImageNet Deep Learning

Speech Recognition ImageNet Deep Learning Neural Machine Translation

Speech Recognition ImageNet Deep Learning Neural Machine Translation

What is a theorist to do?

《曰》 《聞》 《臣》 《臣》 臣

The Contextual Bandit Setting

For t = 1, ..., T:

- The world produces some context $x \in X$
- 2 The learner chooses an action $a \in A$
- The world reacts with reward $r_a \in [0, 1]$

Goal: Learn a good policy for choosing actions given context.

< □ > < (四 >) < (回 >) < (u >) < (u

Algo	ϵ -greedy	Bagg	LinUCB	Online C.	Super.
Loss	0.095	0.059	0.128	0.053	0.051
Time	22	339	212×10^{3}	17	6.9

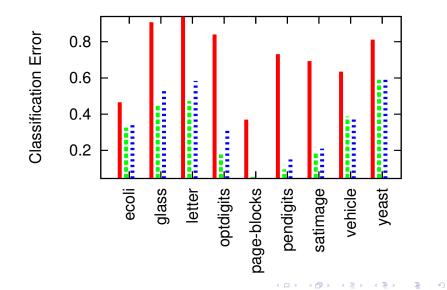
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Progressive validation loss on RCV1.

The Offline Contextual Bandit Setting

Given exploration data $(x, a, r, p)^*$ Learn a good policy for choosing actions given context.

《曰》 《聞》 《臣》 《臣》 臣

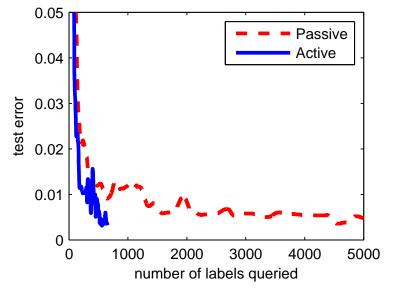


For t = 1, ..., T:

- The world produces some context $x \in X$
- 2 The learner predicts a label $\hat{y} \in Y$
- The learner chooses to request a label or not. If label requested:
 - observe y
 - o update learning algorithm

Goal: Compete with supervised learning using all labels while requesting as few as possible.

AAL Reduction Results



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Logarithmic Time Prediction

Repeatedly

- See x
- **2** Predict $\hat{y} \in \{1, ..., K\}$

(日) (四) (문) (문) (문) (문)

See y

Logarithmic Time Prediction

Repeatedly

- See x
- **2** Predict $\hat{y} \in \{1, ..., K\}$
- See y

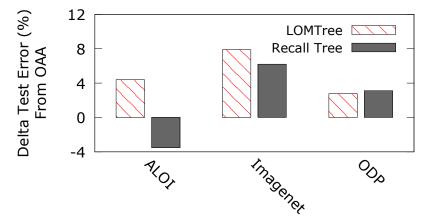
Goal: Find h(x) minimizing error rate:

 $\Pr_{(x,y)\sim D}(h(x)\neq y)$

(日) (四) (문) (문) (문) (문)

with h(x) in time $O(\log K)$.

Log-time prediction results



Problem	Learning Reductions	OCO	PAC
CB Explore	Yes	Sorta?	No
CB Learn	Yes	Sorta?	No
Agnostic Active	Yes	Sorta?	No
Log-time	Yes	No	No

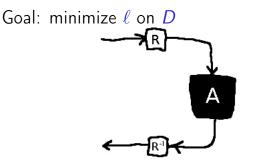
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline

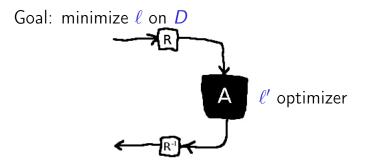
- Why Reductions
- What is a learning reduction?

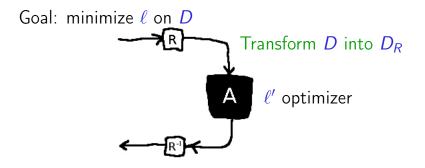
◆□▶ → 御▶ → 注計 → 注目 → 三 注

Exponential Improvements

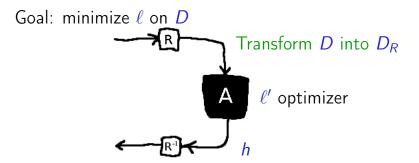


◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶



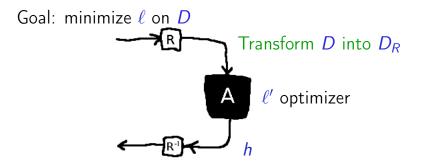


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



Transform *h* with small $\ell'(h, D_R)$ into R_h with small $\ell(R_h, D)$...

《曰》 《聞》 《臣》 《臣》 臣



Transform *h* with small $\ell'(h, D_R)$ into R_h with small $\ell(R_h, D)$...

such that if h does well on (D_R, ℓ') , R_h is guaranteed to do well on (D, ℓ) .

Error Reductions: the simplest possible

Prove: Small ℓ' error \Rightarrow small ℓ error.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Error Reductions: the simplest possible

Prove: Small ℓ' error \Rightarrow small ℓ error.

An issue: If R introduces noise, small ℓ' not possible.

▲ロト ▲御ト ▲ヨト ▲ヨト ヨー のへで

Error Reductions: the simplest possible

Prove: Small ℓ' error \Rightarrow small ℓ error.

An issue: If *R* introduces noise, small ℓ' not possible.

《曰》 《聞》 《臣》 《臣》 臣

 \Rightarrow Must prove small ℓ' possible for nonvacuous statement.

Prove: Small ℓ' error \Rightarrow small ℓ error.

An issue: If *R* introduces noise, small ℓ' not possible.

《曰》 《聞》 《臣》 《臣》 臣

 \Rightarrow Must prove small ℓ' possible for nonvacuous statement.

 \Rightarrow Error reductions weak for noisy problems.

Let $\operatorname{reg}_{\ell,D} = \ell(h,D) - \min_{h'} \ell(h',D)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Let $\operatorname{reg}_{\ell,D} = \ell(h,D) - \min_{h'} \ell(h',D)$

Prove: Small $\operatorname{reg}_{\ell',D'} \Rightarrow \operatorname{small } \operatorname{reg}_{\ell,D}$.

Let $\operatorname{reg}_{\ell,D} = \ell(h,D) - \min_{h'} \ell(h',D)$

Prove: Small $\operatorname{reg}_{\ell',D'} \Rightarrow \operatorname{small } \operatorname{reg}_{\ell,D}$.

Note: $\min_{h'}$ is over all functions.

Let $\operatorname{reg}_{\ell,D} = \ell(h, D) - \min_{h'} \ell(h', D)$

Prove: Small $\operatorname{reg}_{\ell',D'} \Rightarrow \operatorname{small } \operatorname{reg}_{\ell,D}$.

Note: $\min_{h'}$ is over <u>all</u> functions. \Rightarrow User is responsible for choosing right hypothesis space.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

Let $\operatorname{reg}_{\ell,D} = \ell(h,D) - \min_{h'} \ell(h',D)$

Prove: Small $\operatorname{reg}_{\ell',D'} \Rightarrow \operatorname{small } \operatorname{reg}_{\ell,D}$.

Note: $\min_{h'}$ is over all functions.

 \Rightarrow User is responsible for choosing right hypothesis space.

 \Rightarrow Unable to address information gathering

Oracle Reductions: Information gathering

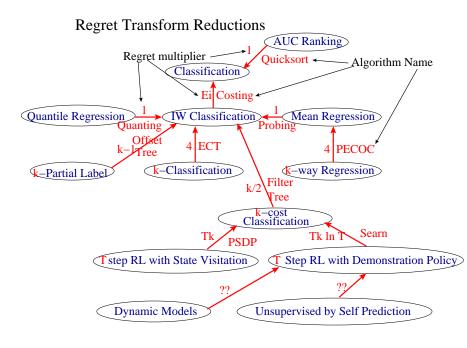
Assume an oracle which given samples S returns $\arg \min_{h \in H} \ell'(h, S)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

Assume an oracle which given samples S returns $\arg\min_{h\in H}\ell'(h,S)$

Prove: Oracle (approximately) works \Rightarrow Computationally efficient small online regret on original problem.

《曰》 《聞》 《臣》 《臣》 臣



Reductions \Rightarrow modularity, code reuse \Rightarrow good news for programming!

Vowpal Wabbit (http://hunch.net/ vw) uses this systematically.

《曰》 《聞》 《臣》 《臣》 臣

An Open Problem: \$1K reward!

Conditional Probability Estimation Distribution *D* over $X \times Y$, where $Y = \{1, ..., k\}$. Find a Probability estimator $h: X \times Y \rightarrow [0, 1]$ minimizing squared loss

$$\ell(h, D) = E_{(x,y) \sim D}[(h(y|x) - y)^2]$$

《曰》 《聞》 《臣》 《臣》 三臣

An Open Problem: \$1K reward!

Conditional Probability Estimation Distribution *D* over $X \times Y$, where $Y = \{1, ..., k\}$. Find a Probability estimator $h: X \times Y \rightarrow [0, 1]$ minimizing squared loss

$$\ell(h, D) = E_{(x,y) \sim D}[(h(y|x) - y)^2]$$

The problem: How can you do this in time $O(\log(k))$ with a constant regret ratio?

Beygelzimer, Langford, Daume, Mineiro, "Learning Reductions that Realy Work", IEEE 104(1), 2016 https://arxiv.org/abs/1502.02704

(日) (四) (문) (문) (문) (문)