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The Contextual Bandit Setting

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner chooses an action a ∈ A

3 The world reacts with reward ra ∈ [0, 1]

Goal: Learn a good policy for choosing actions
given context.



Reduction Results

Algo ε-greedy Bagg LinUCB Online C. Super.
Loss 0.095 0.059 0.128 0.053 0.051
Time 22 339 212× 103 17 6.9

Progressive validation loss on RCV1.



The Offline Contextual Bandit Setting

Given exploration data (x , a, r , p)∗

Learn a good policy for choosing actions given
context.



Offline Reduction Results
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Agnostic Active Learning

For t = 1, . . . ,T :

1 The world produces some context x ∈ X

2 The learner predicts a label ŷ ∈ Y

3 The learner chooses to request a label or not. If
label requested:

1 observe y
2 update learning algorithm

Goal: Compete with supervised learning using all
labels while requesting as few as possible.



AAL Reduction Results
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Logarithmic Time Prediction

Repeatedly
1 See x
2 Predict ŷ ∈ {1, ...,K}
3 See y

Goal: Find h(x) minimizing error rate:

Pr
(x ,y)∼D

(h(x) 6= y)

with h(x) in time O(logK ).
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Log-time prediction results
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Summary

Problem Learning Reductions OCO PAC
CB Explore Yes Sorta? No
CB Learn Yes Sorta? No

Agnostic Active Yes Sorta? No
Log-time Yes No No



Outline

1 Why Reductions
2 What is a learning reduction?
3 Exponential Improvements



Learning Reduction Basics

Goal: minimize ` on D

`′ optimizer

Transform D into DR

Transform h with small `′(h,DR) into Rh with small
`(Rh,D)...

h

such that if h does well on (DR , `
′), Rh is guaranteed

to do well on (D, `).
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Error Reductions: the simplest possible

Prove: Small `′ error ⇒ small ` error.

An issue: If R introduces noise, small `′ not possible.

⇒ Must prove small `′ possible for nonvacuous
statement.
⇒ Error reductions weak for noisy problems.
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Regret Reductions: Dealing with noise

Let reg`,D = `(h,D)−minh′ `(h′,D)

Prove: Small reg`′,D ′ ⇒ small reg`,D .

Note: minh′ is over all functions.
⇒ User is responsible for choosing right hypothesis
space.
⇒ Unable to address information gathering
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Oracle Reductions: Information gathering

Assume an oracle which given samples S returns
arg minh∈H `′(h, S)

Prove: Oracle (approximately) works ⇒
Computationally efficient small online regret on
original problem.
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Programming

Reductions ⇒ modularity, code reuse ⇒ good news
for programming!

Vowpal Wabbit (http://hunch.net/ vw ) uses this
systematically.



An Open Problem: $1K reward!

Conditional Probability Estimation
Distribution D over X × Y , where Y = {1, . . . , k}.
Find a Probability estimator h : X × Y → [0, 1]
minimizing squared loss

`(h,D) = E(x ,y)∼D [(h(y |x)− y)2]

The problem: How can you do this in time O(log(k))
with a constant regret ratio?
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More Details

Beygelzimer, Langford, Daume, Mineiro, “Learning
Reductions that Realy Work”, IEEE 104(1), 2016
https://arxiv.org/abs/1502.02704


