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What is a theorist to do?



The Bandit Setting

Fort=1,...,T:

© The world produces some context x € X
© The learner chooses an action a € A

© The world reacts with reward r, € [0, 1]

Goal: Learn a good policy for choosing actions
given context.



Reduction Results

Algo | e-greedy | Bagg | LinUCB | Online C. || Super.
Loss | 0.095 |0.059| 0.128 0.053 0.051
Time 22 339 | 212 x 103 17 6.9

Progressive validation loss on RCV1.




Contextual Bandit Setting

Given exploration data (x, a, r, p)*
Learn a good policy for choosing actions given
context.
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Agnostic Active Learning

Fort=1,...,T:
© The world produces some context x € X

© The learner predicts a label y € Y

© The learner chooses to request a label or not. If
label requested:

© observe y
@ update learning algorithm

Goal:  Compete with supervised learning using all
labels while requesting as few as possible.



AAL Reduction Results
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Logarithmic Time Prediction

Repeatedly
Q See x
@ Predict y € {1,.... K}
Q Seey



Logarithmic Time Prediction

Repeatedly
Q See x
@ Predict y € {1,.... K}
Q Seey
Goal: Find h(x) minimizing error rate:

Pr(h(x) # y)

(x,y)~D

with h(x) in time O(log K).



Log-time prediction results

Statistical Performance
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Problem Learning Reductions | OCO | PAC

CB Explore Yes Sorta? | No
CB Learn Yes Sorta? | No
Agnostic Active Yes Sorta? | No

Log-time Yes No No




@ Why Reductions
@ What is a learning reduction?
© Exponential Improvements
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Learning Reduction Basics

Goal: minimize ¢ on D

Transform D into Dg

[\l (' optimizer

[R] h

Transform h with small ¢/(h, Dg) into Ry with small
((Rp,D)...

such that if h does well on (Dg, ¢'), Ry is guaranteed
to do well on (D, ¢).
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Error Reductions: the simplest possible

Prove: Small ¢ error = small ¢ error.
An issue: If R introduces noise, small ¢’ not possible.

= Must prove small ¢/ possible for nonvacuous

statement.
= Error reductions weak for noisy problems.
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Regret Reductions: Dealing with noise

Let reg, p = £(h, D) — miny ((h', D)
Prove: Small regy p = small reg, .

Note: miny is over all functions.

= User is responsible for choosing right hypothesis
space.

= Unable to address information gathering



Oracle Reductions: Information gathering

Assume an oracle which given samples S returns
arg minpep U'(h, S)



Oracle Reductions: Information gathering

Assume an oracle which given samples S returns
arg minpep U'(h, S)

Prove: Oracle (approximately) works =
Computationally efficient small online regret on
original problem.



Regret Transform Reductions
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Reductions = modularity, code reuse = good news
for programming!

Vowpal Wabbit (http://hunch.net/ vw ) uses this
systematically.



An Open Problem: $1K reward!

Conditional Probability Estimation
Distribution D over X x Y, where Y = {1,... k}.

Find a Probability estimator h: X x Y — [0, 1]
minimizing squared loss

((h, D) = Eppypl(h(y|x) — y)]



An Open Problem: $1K reward!

Conditional Probability Estimation
Distribution D over X x Y, where Y = {1,... k}.

Find a Probability estimator h: X x Y — [0, 1]
minimizing squared loss

((h, D) = Eppypl(h(y|x) — y)]

The problem: How can you do this in time O(log(k))
with a constant regret ratio?



More Details

Beygelzimer, Langford, Daume, Mineiro, “Learning
Reductions that Realy Work", IEEE 104(1), 2016
https://arxiv.org/abs/1502.02704



