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I Want to learn a task for which labelled data is scarce, but
have abundant data for another related task

I Transferring representations between tasks is empirically
successful [DJV+14, HGT+14, GDDM14, BGL14]

I Natural language processing example: word embeddings
outperform unigram features [QFZ+15]

I Computer vision example: pre-trained neural network with fine
tuning outperforms random initialization [YCBL14]

I When and why does this procedure work? 2 / 16
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Notation

I F is a class of representations, f : X → Z for f ∈ F

I G is a class of specialized classifiers, g : Z → Y for g ∈ G

I H := {h : ∃f ∈ F , g ∈ G s.t. h = g ◦ f }, VC dimension dH
I Source task S and target task T have labeling functions

hS , hT : X → Y and input distributions PS ,PT

I mS labelled points for S and mT labelled points for T

I RS(h) := Ex∼PS
[hS(x) 6= h(x)], R̂S(h) is empirical risk on S

I RT (h) := Ex∼PS
[hT (x) 6= h(x)], R̂T (h) is empirical risk on T
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High-level idea
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I Learn f̂ : X → Z from source task S

I Can we restrict the representation class F when learning
target task T?

I Use statistical learning theory to provide tighter risk upper
bounds for T , inspired by [BDBCP07, Bax00, MPRP16]
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Representation fixed by source task
I Learn ĝS ◦ f̂ ∈ H on S , extract f̂ ∈ F
I Then conduct empirical risk minimization over

G ◦ f̂ := {g ◦ f̂ : g ∈ G} on T , yield ĝT := arg min
g∈G

R̂T (g ◦ f̂ )

Theorem 1 (Risk upper bound for fixed representation)

Let ω : R→ R be non-decreasing and PS ,PT , hS , hT , f̂ ,G satisfy
∀ĝS ∈ G, min

g∈G
RT (g ◦ f̂ ) ≤ ω(RS(ĝS ◦ f̂ )). Then with probability at

least 1− δ over pairs of training sets for tasks S and T ,

RT (ĝT ◦ f̂ ) ≤ ω(R̂S(ĝS ◦ f̂ ) + 2
√

2dH log(2emS/dH)+2 log(8/δ)
mS

) +

4
√

2dG log(2emT /dG )+2 log(8/δ)
mT

.

I If ω(R) = O(R), R̂S(ĝS ◦ f̂ ) is a small constant, mS � mT

and dH � dG , bound inTheorem 1 is tighter than learning T
from scratch and using VC dimension-based risk bound 5 / 16
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Neural network example with fixed representation

Learn T
from scratch

Learn ĝS ◦ f̂
on S

f̂

ĝS

Fix f̂ ,
learn ĝT on T

f̂

ĝT

I Transfer lower-level weights learned on S , corresponding to f̂
I Only the upper-level weights have to be learned on T
I Under network architecture and distributional assumptions,

can define ω parameterized by constants c and ε
I RS(ĝS ◦ f̂ ) reliably indicates usefulness of f̂ if ‘defects’ of f̂

cannot be hidden either through either low PS or low
magnitude upper-level weights 6 / 16
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Neural network example with fixed representation

I X = Rn and Z = Rk , where 2k ≤ n

I F is the function class s.t. f (x) = [a(w1 · x), . . . , a(wk · x)],
wi ∈ Rn, a : R→ R odd, f̂ (x) := [a(ŵ1 · x), . . . , a(ŵk · x)]

I G is the function class s.t. g(z) = sign(v · z), v ∈ {−1, 1}k
I ∃f ∈ F , gS , gT ∈ G s.t. max[RS(gS ◦ f ),RT (gT ◦ f )] ≤ ε
I Suppose ||wi || = ||αi ŵi − βiwi || and wi · (αi ŵi − βiwi ) = 0

I M is a full rank 2k × n matrix with rows wi , αi ŵi − βiwi

I Let PS ,PT be distributions on X with the property ∀x , x ′ s.t.
||Mx || = ||Mx ′||, PT (x) ≤ cPS(x ′) for some c ≥ 1

Theorem 2 (ω for neural network, fixed representation)

ω(R) := cR + ε(1 + c). ∀ĝS ∈ G, min
g∈G

RT (g ◦ f̂ ) ≤ ω(RS(ĝS ◦ f̂ )).
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Neural network example with fixed representation

I Compare learning over G ◦ f̂ to from scratch over H on T
I Set δ = 0.05, n = 10, k = 5. Consider the limit
ε→ 0, R̂S(ĝS ◦ f̂ )→ 0, mS →∞, and hence ω(·)→ 0.

I We use dH = |nk + k| log |nk + k | and dG ≤ k

8 / 16



Performance guarantees for transferring representations

Representation fine-tuned using target task

Representation fine-tuned using target task
I G ◦ F̂ := {h : ∃f ∈ F̂ , g ∈ G s.t. h = g ◦ f }, often dG◦F̂ = dH
I h̃g◦f is a distribution on H (i.e. a stochastic hypothesis)

corresponding to g ◦ f (e.g. g ◦ f plus noise)
I RT (h̃) := Ex∼PT ,h∼h̃[hT (x) 6= h(x)], R̂T (h̃) is empirical risk

I Could learn T from scratch with fixed prior h̃0 and stochastic
hypothesis class H̃ := {h̃g◦f : f ∈ F , g ∈ G}

I Alternatively, use ĝS ◦ f̂ to construct prior h̃ĝS◦f̂ and

stochastic hypothesis class H̃G◦F̂ := {h̃g◦f : f ∈ F̂ , g ∈ G}
I PAC-Bayes result bounds generalization error using KL

divergence between prior and posterior hypotheses
I Want F̂ ‘small enough’ s.t. KL(h̃||h̃ĝS◦f̂ ) ≤ ω(RS(ĝS ◦ f̂ ))

∀h̃ ∈ H̃G◦F̂ for some transferrability function ω

I Also want F̂ ‘large enough’ s.t. ∃h̃gT ◦f ∈ H̃G◦F̂ s.t.

RT (h̃gT ◦f ) ≤ ε 9 / 16
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Risk bound

Theorem 3 (Risk upper bound with fine-tuning)

Suppose it is possible to construct H̃G◦F̂ with the property

∀h̃ ∈ H̃G◦F̂ , KL(h̃||h̃ĝS◦f̂ ) ≤ ω(RS(ĝS ◦ f̂ )). Then with probability

at least 1− δ over pairs of training sets for S and T , ∀h̃ ∈ H̃G◦F̂ ,

RT (h̃) ≤ R̂T (h̃) +

√
ω(R̂S (ĝS◦f̂ )+2

√
2dH log(2emS/dH )+2 log(8/δ)

mS
)+log 2mT /δ

2(mT−1) .

I If ω(R) = O(R), R̂S(ĝS ◦ f̂ ) is a small constant, and
mS � mT , improve on the PAC-Bayes bound for H̃ and h̃0

I Neural network with similar assumptions to previous example
allows us to define ω and F̂
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Modified regularization penalty

m∑
i=1

[−yi log ŷi − (1− yi ) log(1− ŷi )] +
l∑

j=1

[
λ1(j)

2
||W (j) − Ŵ (j)||22 +

λ2(j)

2
||W (j)||22]

I Relax hard constraint on F̂ by using a modified loss function

I Let y and ŷ be labels and predictions over m points

I Neural network with l layers of weights, let W (j) be the jth
weight matrix and Ŵ (j) be its estimate from S

I Assuming lower level features are more transferrable, λ1 is a
decreasing function
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Experiments

I Experiments on MNIST and 20 Newsgroups datasets

I Randomly partition label classes into S+ and S−, |S+| = |S−|
I Construct T+ randomly picking from S+ up to γ := |S+∩T+|

|S+| ,

then randomly picking from S− such that |T+| = |T−|
I Let S be the task of distinguishing between S+ and S− and T

be that of distinguishing T+ and T−
I λ1(1) = λ2(2) = λ := 1 and λ1(2) = λ2(1) = 0

I mT = 500, l = 2, sigmoid activation, average over 10 runs

I MNIST: pixel features, 784× 50× 1 network, mS = 50000

I 20 Newsgroups: TF-IDF weighted word frequency features,
2000× 50× 1 network, mS = 15000
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Results

Technique MNIST, γ = Newsgroups, γ =
0.6 0.8 1 0.6 0.8 1

Base 88.4 87.9 87.9 62.6 63.2 66.1

Fine-tune f̂ 91.9 93.9 95.4 62.3 72.3 83.3

Fix f̂ 87.5 92.3 97.3 52.2 69.6 83.3

Fix ĝS ◦ f̂ 67.4 85.6 98.1 55.5 70.7 83.6

I Learn T from scratch (Base)

I Transfer f̂ from S , tune f and train g on T (Fine-tune f̂ )

I Transfer f̂ from S and fix, train g on T (Fix f̂ )

I Transfer ĝS ◦ f̂ from S and fix (Fix ĝS ◦ f̂ )
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Conclusion

I Step towards theoretical foundation for transferring
representations, both with and without fine tuning

I Theory motivates transfer regularization penalty to prevent
target task overfitting
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