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Graphical Models

¢ Represent conditional independence relationships
between a set of random variables

» No edge between X; and X; <= X is independent of X
conditional on all other variables

 Typically, estimated from n iid observations on p variables
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Example: Senate votes
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Gaussian Graphical Models

o Xi,...,X, jointly follow .4, (u, Q")
e Partial correlations p;; are proportional to the entries of Q
e Estimating the graph <= estimating the zeros of Q
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Fitting Gaussian Graphical Models

Equivalent to estimating a sparse inverse covariance matrix

¢ Element-wise selection (Dempster, 1972; Drton & Perlman,
2004)

¢ Neighborhood selection: lasso regression of each node on
its neighbors (Meinshausen & Bulhmann (2006) )

e /;-penalized maximum likelihood and extensions: Yuan &
Lin (2007), Banerjee et al. (2008), Rothman et al. (2008),
Friedman et al (2008), Lam & Fan (2009), Ravikumar et al
(2009), Zhou et al (2009), Rocha et al. (2008); Peng et al.
(2009); Yuan (2010); Cai et al. (2011); for example

log(det(Q)) — trace(£Q) 2 ¥ |o
max log(det(Q)) - trace( J;l )7

where ¥ is the sample covariance matrix
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Binary Markov networks (aka Ising models)

e The graphical model for binary and discrete data

f(X,....X,) = Z(g)exp(ZGJ]X+ Y 0XX).

1<j<j'<p

e The dependence structure is determined by the interaction
effects 6;

e Higher-order interaction terms are typically omitted (in
principle, they can be turned into order-2 interactions by
adding more variables)
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Fitting Ising models

e Likelihood is computationally intractable because of the
normalizing constant

e Various approximations have been proposed — surrogate
likelihood, pseudo-likelihood, etc (Banerjee et al 2008,
Hoefling & Tibshirani 2009, Ravikumar et al 2009, Guo et al
2010)

e One approach is to run penalized logistic regression of
each node on all others (analog of neighborhood selection)

¢ Alternatively can maximize penalized pseudo-likelihood
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Covariate dependent graphical models

Motivation

e Standard assumption: the data {y’}/_, are i.i.d, from the
same underlying graphical model.

« Data are often available in form of {(y',x")}"_,, where x' are
additional covariates; the relationships between y’s may
depend on x.

A breast cancer study: y' is the indicator of deletion event
for various genes of a cancer patient and x' is the patient’s
clinical phenotypes (tumor category, mutation status of
TP53, estrogen receptors status).
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Goals

A graphical model for y’ which depends on x'

Focus on Ising models for P(y|x) due to the motivating
application; other cases can be developed similarly

Subject-specific graphical models with interpretability and
“continuity”

Computational feasibility
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Recent related work

e Yin & Li (2011), Cai, Li, Liu, Xie (2011): model the means in
the Gaussian graphical model as covariate-dependent, but
not the precision matrices

e Liu, Chen, Lafferty, Wasserman (2010): graph-valued
regression partitions the covariate space
non-parametrically and fits different graphical models to
each part

e Guo, Levina, Michailidis, Zhu (2010): jointly fit graphical
models in several categories (conditional on a single
categorical covariate)
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Covariate Dependent Ising Model

e Given covariate vector x, assume

P(Y|X) = Z(GI(X)) exp <Z 9// yJ+ Z ejk )yjyk>

1<k<j<q

e Parametrize 6 j(x) as linear functions of x

w(x) = 9jk0+9JT-kx, where GJT-k:(ijl,...,ijp)
w(x) = Bk(x), Vj#k

o Benefits of linear parametrization:
interpretability, continuity, convexity.

0
0
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Optimization Criterion

e Loss function:

¢ Directly maximizing the likelihood is computationally
intractable due to the normalizing constant.
¢ Focus on optimizing conditional likelihood

£;(6;x,y) ffZIOgPy Xy ))

e Regularization: use ¢; penalty to select only the important
covariates and edges.
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Fitting the model

e Separate approach: estimate each 6;,j=1,...,q

separately by
min  £;(0;,%2,)+ A0l

0 feR(pH)q

Followed by ad hoc symmetrization (min or max of 8, and
6,

e Joint approach: estimate the entire vector 6

simultaneously by

q
min ij(G,@n)Jernl

0cR(r+1alg+1)/2 =

e Optimization is done by a coordinate descent type

algorithm (Fu, 1998).
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Tumor suppressor genes and breast cancer study

e Deletion of tumor suppressor genes plays an important
role in tumor initiation and development

e Goals of study:

1. Characterize the conditional associations among deletion
events of various genes

2. Investigate how these association patterns vary across
different types of patients
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Data Description

Data consists of n = 143 tumor samples, all from breast
cancer patients at various stages before start of therapy.

39,632 DNA copy number profiles — 620 cytobands

y' is a 620-dimensional binary vector; y; = 1 if the "
cytoband has been deleted in the i tumor sample.

x' contains 3 clinical phenotypes:

e TP53 mutation status (0/1)

o Estrogen Receptor status (0/1): 1 means the sample is ER
positive.

e Tumor category (1, 2, 3, 4): ordinal variable, larger values
indicate more advanced tumors.
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Covariate dependent inter-chromosome interactions

ranked by selection frequency

Gene1 Gene2 Freq Genet Gene2 Freq
Main Effect (649) TP53 Mutation (6 1)

4313 18923 0.95 | 3p222 22q13.1 0.79
2p25.2 15G26.2 0.87 | 3p12.3 12p13.1 0.72
2936.3 3p26.1 0.84 12022 15q14 0.7

7921.13 8921.13 0.84 2p12 Xp22.33 0.69
6p21.32 16q12.2 0.83 6p21.32 8p11.22 0.68
3p21.1 17p13.2 0.81 1p34.2 3p24.1 0.67
4924 12921.1 0.81 2p21 Xp11.22 0.67
2923.3 6p12.1 0.79 2p12 7p21.1 0.66
8p21.3 21g21.1 0.79 12915 13q12.12 0.63
2934 3q13.31 0.78 4925 8p11.22 0.62
6p21.32 9931.3 0.78 8p11.22 Xq23 0.62
6p21.32 13g21.1 0.78 9p21.2 16g22.1 0.61

ER Status (62) Tumor stage (63)

3926.1 11p14.3 0.69 16023.3 17p13.1 0.61
4934.3 5932 0.64 12p11.23 16q12.2 0.59
8p11.22 11p14.2 0.63 3q13.13 Xq23 0.57
3024 22q11.23 0.57 7p21.3 12p11.23 0.56
4p14 11p15.3 0.55 9934.13 15921.1 0.55
1g31.1 Xq27.3 0.54 11924.2 13g32.3 0.55
13g33.2 22q11.23 0.54 8g21.13 13g33.1 0.54
21g21.1 22q11.21 0.54 2p21 12p13.31 0.53
5q33.1 17921.31  0.53 | 10026.3 17p11.2 0.53
12g21.32 18g22.3 0.51 7p21.3 12p12.1 0.51
8p11.22 22q11.21 0.5 3q13.13 7p21.3 0.5

8921.13 Xp22.11 0.5 9q34.13 15q22.1 0.5
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Asymptotic behavior

Focus on the separate approach

Need standard assumptions on the design matrix, which
now includes both x and y terms

An exponential decay assumption on the tails of x
Get standard results on parameter estimation and model
selection consistency

Roughly, the rate is governed by \/dlog(pq)/n, where d is
the max # non-zero parameters per edge
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Assumptions

e x;®@y_;: alltermsin the j’s
logistic regression

e 0;: true coefficients of the j-th
logistic regression

e §;: the set of non-zero elements
of 67

o I} = Eg(V21og Py (y)[x,y)):
information matrix

o Ui =Eq ((x0y_;)(x2y_;))

A1 There exists a € (0,1], s. t.
* * -1
IGes, (Ts,) e < (1-@)
A2 There exist Apin, Amax > 0, S. 1.

Amin (Igjsj) > Amin
Amax (Uj) Amax

N

A3 V6 >0, VM > My,

P(|[x]le > M) < exp(—M°)
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Let d = max;|S;|, C >0, y € (0,1) constants. If A1, A2, A3 hold
and M, > (CAZn) ™5, A, > CM,\/ 220y > cM2dP log(pq),
then with probability at least 1 —exp=C*")" for any j € {1,...,4}
the following holds:
1. Uniqueness: 8; is the unique optimal solution.
2. Norm consistency: [|6; — 6%l2 < 5A,v/d / Amin.
3. Sign consistency: éj correctly identifies all zeros in 67, and
the sign of non-zeros in 6 whose absolute value is at least
10A,v/d / Apin.-
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Simulation: Effect of Sparsity

Sparsity can mean:
e Small number of edges in the graph
e Small number of non-zero parameters per edge
Simulation settings:
e p =20 covariates, ¢ = 10 binary variables, n = 200
e Proportion of non-zeros per edge p = {0.2,0.5,0.8}
 Total number of edges ng = {10, 20, 30}.

e Results summarized in the form of ROC curves
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Simulation results: Effect of Sparsity

Joint Approach, nE:ZLO Joint Approach, nEZZO Joint Approach, nE:3O
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Mixed graphical models

Motivation: In practice, many datasets contain both continuous
and discrete variables!

o LetX =(Z,Y),where Zc {0,1}9 and Y € R?

e Suppose X has the conditional Gaussian distribution
(CGD) (Lauritzen and Wermuth, 1989):

f(x) = f(z,y) = exp <gz +hly— ;yTsz> ,

where {(g:,h:,K;) : g. € R,h, e R? K, € R, .z € {0,1}9} are
the canonical parameters of the distribution.
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Markovian conditional Gaussian distributions

Let Aindex Z, T index Y. The canonical parameters can be
written as

8z = Z Ai(z), hy= Z Na(z), K= Z D,(z) ,

d:dCA d:dCA d:dCA

where functions indexed by d only depend on z through z,.

Theorem (Lauritzen 1996): a CGD is Markovian with respect to
a graph ¢ iff the density has an expansion that satisfies

Ai(z) = 0 unless d is complete in ¢,
niz = 0 unless dU{y} is complete in ¢,
®M(z) = 0  unlessdU{y,u}is complete in ¥.
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A simplified CGD

The full model has 0(24p?) parameters — impossible to fit
to high-dimensional data

Consider instead a simplified model, with log f(z,y) =

MO+ X m@Ty-g Y ey=

d:dCA,|d|<2 d:dCA|d|<1 d:dCA|d|<1
1 q
(Ao + Z?szj + Z lijjZk) +yT(TI0 + ZT]]'ZJ') — EyT(q)o + Z CDij)y
J j>k j i=1

O(max(g*, p>q)) parameters
Still includes all possible graphs
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Model parameters and conditional independence

With the loglikelihood given by

1 q
log f(,2) = (Ao+ Y Ajzj+ Y Azjzi) 3" (Mo+ 1 Mjzj) = 53" (Po+ ) ®jzj)y
' 7 =

J j>k

the conditional independencies are determined as follows:

Z; L7 | X\{Z;,Z} = Ap=0,
Zi LY, | X\ZpYy) = 0= (n] {00 :u#7}) =0,

Y, LY, | X\{Y,.V,} < 0, = (¢g“,{<1>,y~“:j€A}) =0.
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Related recent work

e Lee and Hastie (2012): a special case of our model with
covariance of Y independent of Z (all ®/ = 0).

e Fellinghauer et al (2011): neighborhood selection using
random forests (no generative model)
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Model fitting

Likelihood involves intractable normalizing constant

Instead look at conditional log-likelihood (neighborhood
selection)

Continuous variables = linear regression:

E(YYy.Z)=ng+Y.n/Zi— ), <q>gu +Zq>jwzj> Y
J

uFY Jj

Binary variables = logistic regression:

P(Z;=1|Z_;)Y)

1
Pz =01Z_;.Y)

=Ai+ Y AiZi+ Z nyY,— Z DYy,
k#j r=1 %M 1
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Penalty

Need a sparse estimate = regularize
Complication: parameters are in overlapping groups
Regular lasso penalty: ||6| =Y. |6i|

Group lasso penalty: |0, = /¥, 67 - computationally
difficult, especially with overlaps
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“Approximate” the group penalty by an upper bound:
1612 < (|61l

Green (outside): {6 : \/612+922+\/922+63 =1}
Blue (inside): {6 : |6;| +2|6,| + (63| =1}
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Simulated example: varying max node degree

Parameter (Rate)

Parameter (Count)
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Max node degree varies in
{2,6,10}

80 edges total (fixed)

p =90 (continuous),
q = 10 (categorical)

Sample size n =100

ROC curves averaged over
20 replications.
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Asymptotic behavior

We fit regular or logistic regressions with weighted L,
penalties

The weights are either 1 or 2, do not depend on data

Standard results establish consistency of parameter
estimation and model selection

Only need to assume that the standard assumptions (such
as irrepresentable condition) hold on a rescaled version of
the design matrix
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Example: music annotation dataset

e CAL500 data set: n = 502 observations, ¢ = 128 discrete
variables, and p = 16 continuous variables.

e The 128 discrete variables come from six categories:
emotions, genres, instruments, song characteristics,
usages, and vocal types; manually labelled by human
experts.

e The continuous features are extracted from the time series
of the audio signal and represent “brightness” of the music,
noisiness, amplitude, etc.
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Fitted edges for music data

Showing edges with stability selection frequency of at least 0.9

emotions
genre
instrument
song

usage

vocals
mean_timbre
std_timbre
mean_std_timbre
std_std_timbre

o

o
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Some interesting findings

e Amplitude « “alternative rock”

¢ Noisiness < “negative feelings”

e Short period amplitude variation «» popular likable songs
e Songs with positive feelings <> piano

e Songs with high energy «» optimistic emotions, dancable
songs

e Fast tempo music «> classic rock
e Likable or popular songs <« driving, reading
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Summary

e Graphical models are a popular exploratory tool but they
need more flexibility

¢ Conditioning on covariates allows subject-specific models;
linear models provide interpretation

e Mixed graphical models allow exploring relationships
between continuous and categorical variables

e Other questions of interest: mixtures of graphical models
(unsupervised learning), more complex covariate
relationships, combining graphical models with network
models

Cheng, J., Levina, E., and Zhu, J. (2013). Joint graphical models for discrete
and continuous variables.

Cheng, J., Levina, E., Wang, P. and Zhu, J. Sparse Ising models with
covariates. (2012).
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Thank you
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