How to Escape Saddle Points Efficiently

Chi Jin*, Rong Ge¶, Praneeth Netrapalli‡, Sham M. Kakade*, Michael I. Jordan*
Non-convex optimization

Problem: \(\min_x f(x) \quad f(\cdot): \text{non-convex function} \)

Applications: Matrix/tensor factorization, Distribution learning, neural networks,...
Gradient descent (GD)

Problem: \(\min_x f(x) \)

Gradient descent: \(x_{t+1} = x_t - \eta \cdot \nabla f(x_t) \)
GD for smooth non-convex functions

- Smoothness: $\|\nabla f(x) - \nabla f(y)\| \leq \ell \|x - y\|

- Global optimum may not be achievable in general

\[||\nabla f(x_t)|| < \epsilon \] in \[t = O \left(\frac{\ell(f(x_0)-f^*)}{\epsilon^2} \right) \] (Nesterov 1998)

\[f^* \triangleq \min_x f(x) \]
First-order stationary points

Local minima

Saddle points/local maxima
First-order stationary points

In many applications such as PCA, matrix completion, dictionary learning etc.

<table>
<thead>
<tr>
<th>Local minima</th>
<th>Saddle points</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Either all local minima are global minima</td>
<td>• Very poor compared to global minima</td>
</tr>
<tr>
<td>• Or all local minima as good as global minima</td>
<td>• Several such points</td>
</tr>
</tbody>
</table>
First-order stationary points

In many applications such as PCA, matrix completion, dictionary learning etc.

Bottomline: Local minima much more desirable than saddle points

However, gradient descent can indeed converge to saddle points.

Can gradient descent escape saddle points?
 • By adding noise -- best known results $\text{poly}(d)$ (Ge et al. 2015)

Question: How to escape saddle points efficiently?
Second-order stationary points

• Smoothness: $\|\nabla f(x) - \nabla f(y)\| \leq \ell \|x - y\|

• Hessian Lipschitz: $\|\nabla^2 f(x) - \nabla^2 f(y)\| \leq \rho \|x - y\|

• x an ϵ-second order stationary point if (Nesterov and Polyak 2006)

$$\|\nabla f(x)\| \leq \epsilon \quad \text{and} \quad \lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho \epsilon}$$
Our result

Perturbed gradient descent finds ϵ-second order stationary point in $t = \tilde{O}\left(\frac{\ell(f(x_0) - f^*)}{\epsilon^2}\right)$

- Second order stationary point instead of first order stationary point
- In essentially the same amount of time as gradient descent finds first order stationary point
Perturbed gradient descent

1. For $t = 0, 1, \ldots$ do
2. if perturbation_condition_holds then
3. $x_t \leftarrow x_t + \xi_t$ where $\xi_t \sim Unif \left(B_0(\epsilon/\ell) \right)$
4. $x_{t+1} \leftarrow x_t - \eta \nabla f(x_t)$

1. $\nabla f(x_t)$ is small
2. No perturbation in last several iterations
Proof idea

Recall second order stationary point
\[\|\nabla f(x)\| \leq \epsilon \]
\[\lambda_{\text{min}}(\nabla^2 f(x)) \geq -\sqrt{\rho \epsilon} \]

- **Case I:** \(\|\nabla f(x_t)\| > \epsilon \)

 Smoothness

 Step size: \(\eta = \frac{1}{\ell} \)

 \[\Rightarrow f(x_{t+1}) \leq f(x_t) - \frac{1}{2\ell} \|\nabla f(x_t)\|^2 \]

 \[\leq f(x_t) - \frac{1}{2\ell} \epsilon^2 \]

- **Case II:** \(\|\nabla f(x_t)\| \leq \epsilon \) and \(x_t \sim \text{saddle point} \)

 \[\lambda_{\text{min}}(\nabla^2 f(x_t)) < -\sqrt{\rho \epsilon} \]

How do we escape from here?
Geometry around saddle points

\(S \triangleq \text{set of points around saddle point from where gradient descent does not escape saddle point.} \)

Key technical result

\(\text{Vol}(S) \) is small
Geometry around saddle points

$S \overset{\text{def}}{=} \text{set of points around saddle point from where gradient descent does not escape saddle point.}$

Key technical result

$\text{Vol}(S)$ is small
Recap

• Gradient descent converges to first order stationary points

• Perturbed gradient descent converges to second order stationary points

• Depends only logarithmically on dimension

• Key idea: understand structure around saddle points
Further results using local structure

• Strict saddle property: Every saddle point has a strictly negative eigenvalue
 • PCA, CCA, matrix sensing/completion, dictionary learning, orthogonal tensor decomposition etc.
 • Converge to local minima

• Local strong convexity
 • PCA, CCA, matrix factorization
 • Local geometric convergence
Conclusions

• (Gradient descent + a little randomness) can escape saddle points

• In fact, efficiently. Only \(\text{polylog}(d) \) dependence.

• **Key ingredient**: understand geometry around saddle points

Some open directions

• Is randomness in the beginning sufficient?

• Do momentum methods help accelerate for non-convex problems?

• Extensions to the stochastic case