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Non-convex optimization

Problem: min f(x) f(-): non-convex function
X

Applications: Matrix/tensor factorization,
Distribution learning, neural networks,...



Gradient descent (GD)

Problem: min f (x)
X

Gradient descent: X;.1 = x; — 1 - Vf(x;)

\

Stepsize Gradient



GD for smooth non-convex functions

* Smoothness: |[Vf(x) =V < 2llx — |

* Global optimum may not be achievable in general

* [[VF(xpll < e in t =0 (f(f(x(’)_f*)) (Nesterov 1998)
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e- first order stationary point f* < min f(x)
X



First-order stationary points

Local minima Saddle points/local maxima




First-order stationary points

In many applications such as PCA, matrix completion, dictionary
learning etc.

Local minima Saddle points

Either all local minima * Very poor compared -
_are global minima to global minima ¢

* Oralllocal minima as * Several such points
good as global minima




First-order stationary points

In many applications such as PCA, matrix completion, dictionary
learning etc.

Bottomline: Local minima much more desirable than saddle points
However, gradient descent can indeed converge to saddle points.

Can gradient descent escape saddle points?
* By adding noise -- best known results poly(d) (Ge et al. 2015)

Question: How to escape saddle points efficiently?



Second-order stationary points

* Smoothness:||Vf(x) — V()| < ?|lx — y||
» Hessian Lipschitz: ||[72f(x) — V2f ()| < pllx — vl
e x an e-second order stationary point if (Nesterov and Polyak 2006)

IVl < e and Amin(V2f (X)) = —/p€



Our result

Perturbed gradient descent finds e-second order stationary point

= d (i’(f(xo)—f*))
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Second order stationary point instead of first order stationary
point

In essentially the same amount of time as gradient descent
finds first order stationary point



Perturbed gradient descent

Fort =0,1,:-- do
if perturbation_condition_holds then
X; < Xy + & where & ~ Unif(BO(e/f))

Xer1 < Xe — NV (x¢)

BowoN o

1. Vf(x;)issmall
2. No perturbation in last
several iterations



Recall second order stationary point

Proof idea I7F Il < €
Amin(vzf(x)) = _\/E

o Casel: ||Vf(xp)|| > €
Smoothness } = f(ern) < FO) = I7F Gl

1 1
5 Sf(xt)—gfz

Stepsizen = p

o Casell: [|[Vf(xp)ll <€ and Amin(sz(xt)) < —./p€
x; ~ saddle point

How do we escape from here?



Geometry around saddle points

S & set of points around saddle
point from where gradient descent
does not escape saddle point.

Key technical result

Vol(S) is small
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Recap

e Gradient descent converges to first order stationary points
* Perturbed gradient descent converges to second order stationary points
* Depends only logarithmically on dimension

* Key idea: understand structure around saddle points



Further results using local structure

e Strict saddle property: Every saddle point has a strictly negative
eigenvalue

* PCA, CCA, matrix sensing/completion, dictionary learning, orthogonal tensor
decomposition etc.

* Converge to local minima

 Local strong convexity
 PCA, CCA, matrix factorization
* Local geometric convergence



Conclusions

* (Gradient descent + a little randomness) can escape saddle points
* In fact, efficiently. Only polylog(d) dependence.

* Key ingredient: understand geometry around saddle points

Some open directions

* Israndomness in the beginning sufficient?
Do momentum methods help accelerate for non-convex problems?

 Extensions to the stochastic case



