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Learning neural networks
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Neural networks are extremely successful in 
learning many nonlinear functions

Most are trained with simple Stochastic 
Gradient Descent (SGD)

Highly non-convex objective function

Why SGD work so well?



Learning neural networks

One-hidden-layer neural networks with ReLU activation
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Least-squares loss

Main results:

For “nice” neural weights, with high probability, 
any stationary point is a global optimum
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The structure of the gradient
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Gradient w.r.t. first layer weights
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non-singular?



The intuition

Key inequality

krk  1

sm(D)
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Key inequality
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Need to lower bound minimum singular value



Bounding the error

Key inequality

krk  1
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Gn = D>D/n

Directly analyze the singular value

Need to lower bound minimum singular value

it is a function of the weights; 
difficult to analyze



Bounding the error

Key inequality

krk  1

sm(D)
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Gn = D>D/n G = Ew[Gn]

Directly analyze the singular value

Need to lower bound minimum singular value

introduce an intermediate variable 
that has uniform weights



Bounding the error

Key inequality

krk  1
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Gn = D>D/n G = Ew[Gn]

�m(Gn) � �m(G)| {z }
I. ideal spectrum

� kG�Gnk| {z }
II. discrepancy

Decompose into two parts

Directly analyze the singular value

Need to lower bound minimum singular value



Bounding the first term

Kernel function associated with ReLU

spherical harmonics 
decomposition
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Bounding the first term

Kernel function associated with ReLU

With high probability

�m(G) � m�m/2

The spectrum of ReLU in between              and O(1/m) O(1/
p
m)
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Bounding the second term

The difference between true weights and the expected one

kG�Gnk  O(⇢(L2(W ))



Bounding the second term

The difference between true weights and the expected one
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A bound on the minimum singular value

With high probability

sm(D)2 � nm�m/2� cn⇢(L2(W ))



A simplified result

Suppose     and    are large enough and weight discrepancy is small

L2(W ) = Õ(n�1/4d�1/4)

Then with high probability

n = ⌦̃(1/�m) d = ⌦̃(1/�m)

With high probability
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Final error

For any       that has small weight discrepancy

With high probability
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Final error

For any       that has small weight discrepancy

With high probability
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small gradient means small error!



Final error

For any       that has small weight discrepancy

With high probability
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Most       satisfy weight discrepancy small enoughW



Recap

Analyzed optimization landscape of one-hidden layer network

Technical difficulty on ensuring small weight discrepancy

Next: semi-random units
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Semi-random units

The main technical difficulty comes from the nonlinearity part

Decouple ReLU: semi-random units
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Semi-random units

Properties of semi-random units

• It sits between fully-random features and fully-adjustable units


• Linear in the parameters, but nonlinear in the input


• Guaranteed to converge to global optimum w.h.p.


• Has universal approximation ability



Experiment results

Matching the performance of ReLU

Covtype dataset Webspam dataset



Experiment results

Width vs depth; depth helps more

Covtype dataset Webspam dataset



Experiment results

Image classification benchmarks

SVHN dataset. The Street View House Numbers (SVHN) dataset contains house digits collected by Google Street
View. We use the 32⇥ 32 color images version and only predict the digits in the middle of the image. For training, we
combined the training set and the extra set to get a dataset with 604,388 images. We use the same architecture as in
the CIFAR10 experiments. ReLU has the lowest error of 3.9% while semi-random units achieve close error of 6.4%.
Random features suffer from huge errors.

Table 2: Test error (in %) of different methods on three image classification benchmark datasets. 2⇥, 4⇥ and 16⇥
mean the number of units used is 2 times, 4 times and 16 times of that used in neural network with ReLU respectively.

neuron type MNIST CIFAR10 SVHN

ReLU 0.70 16.3 3.9
RF 8.80 59.2 73.9
RF 2⇥ 5.71 55.8 70.5
RF 4⇥ 4.10 49.8 58.4
RF 16⇥ 2.69 40.7 37.1
SR 0.97 21.4 7.6
SR 2⇥ 0.78 17.4 6.9
SR 4⇥ 0.71 18.7 6.4

7 Better than Random Feature?
The experimental results verified our intuition that semi-random feature can outperform random feature with fewer
number of unites due to its learnable weights. We can also strengthen this intuition via the following theoretical
insights. Let f 2 F

random,n
1

···nH
be a function that is a composition of any fully-random features with depth H

where the adjustable weights are only in the last layer. The following corollary states that a model class of any
fully-random features has a approximation power exponentially bad in the dimensionality of x in the worst case.

Corollary 8 (Lower bound on approximation power for fully-random feature) Let ⌦ = [0, 1]d. For any depth H � 0,
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Corollary 8 (lower bound for fully-random feature) together with Theorem 5 (lower bound for semi-random fea-
ture) reflects our intuition that semi-random feature model can potentially get exponential advantage over random
feature by learning hidden layer’s weights. Again, because the lower bound may not be tight, this is intended only to
aid our intuition.

We can also compare upper bounds on their approximation errors with an additional assumption. Assume that we
can represent a target function f using some basis as

f(x) =
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Then, we can obtain the following results.

• If we have access to the true distribution p(r, w), f(x) can be approximated as a finite sample average, obtaining
approximation error of O(

1p
n
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Conclusion

For one-hidden-layer neural network, under weight diversity 
condition, any critical points are w.h.p. global optimal

The result depends on the spectrum decay of the kernel 
associated with the activation function

Propose semi-random units and networks with these units are 
guaranteed to converge to global optimal

Matching the performance of ReLU with slightly more units but 
much better than random features


