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Learning neural networks

Neural networks are extremely successful in ‘
learning many nonlinear functions

Most are trained with simple Stochastic

Gradient Descent (SGD) ‘ Q ‘

Highly non-convex objective function

Why SGD work so well? >
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Learning neural networks

One-hidden-layer neural networks with ReLU activation ‘

n

flz) = z_j vko(w] z) "
Least-squares loss ‘ Q ‘
1 ™m
= o Z yi — f(z1)) " \
=1 k /

Main results: ‘ ‘ ‘

For “nice” neural weights, with high probability,
any stationary point is a global optimum




The structure of the gradient

Gradient w.r.t. first layer weights
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The structure of the gradient

Gradient w.r.t. first layer weights
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The structure of the gradient

Gradient w.r.t. first layer weights
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The structure of the gradient

Gradient w.r.t. first layer weights
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The intuition

Key inequality
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The intuition

Key inequality
0L
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Need to lower bound minimum singular value




Bounding the error

Key inequality
OL

sm(D) |[OW

Ir]] <

Need to lower bound minimum singular value

Directly analyze the singular value

G, =D'"'D/n it is a function of the weights;
difficult to analyze




Bounding the error

Key inequality
0L

sm(D) |[OW

Ir]] <

Need to lower bound minimum singular value

Directly analyze the singular value

G, = DTD/n G = E,[G,]

iINntroduce an intermediate variable
that has uniform weights



Bounding the error

Key inequality
0L
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Need to lower bound minimum singular value

Directly analyze the singular value

G, = DTD/n G = E,[G,]

Decompose into two parts
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I. ideal spectrum  II. discrepancy



Bounding the first term

Kernel function associated with RelLU

Gij = Ey [U/(WT%)U/(@UT%)} (Tis Tj)
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Bounding the first term

Kernel function associated with RelLU

Gij = Ey [0/ (w ' zi)0" (w' 25)] (i, 25)
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With high probability

Am(G) > m Yy, /2

The spectrum of ReLU in between O(1/m) and O(1/v/m)



Bounding the second term

The difference between true weights and the expected one

|G — Gl < O(p(L2(W))




Bounding the second term

The difference between true weights and the expected one

|G — Gl < O(p(L2(W))

Difference ot expected

Weight discrepancy and actual weights
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A bound on the minimum singular value

With high probability

sm(D)? > nmy /2 — enp(La(W))




A simplified result

With high probability

sm(D)? > nmy /2 — enp(La(W))

Suppose 1t and d are large enough and weight discrepancy is small

n = Q(l/’ym) d Q(l//ym) Lo(W) = é(n_1/4d_1/4)

Then with high probabillity

sm(D)? > Q(m)



For 10 and d large enough

For any 1/ that has small weight discrepancy

With high probability
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For 10 and d large enough

For any 1/ that has small weight discrepancy

With high probability

1 ™m
2m
=1

(f(x1) —w)” <O

small gradient means small error!



For 10 and d large enough

For any 1/ that has small weight discrepancy

With high probability

1 ™m
2m
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(f(z1) —y)° <O

n and d are between O(1/m) and O(m)

Most |V satisfy weight discrepancy small enough



Analyzed optimization landscape of one-hidden layer network

Technical difficulty on ensuring small weight discrepancy

Next: semi-random units




Semi-random units

The main technical difficulty comes from the nonlinearity part
Decouple RelLLU: semi-random units
oc(w'z)=T[w'z>0]w'z

lreplace by random projections!

o(w'z)=1[r'z>0lw'z
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Semi-random units

Properties of semi-random units
It sits between fully-random features and fully-adjustable units
Linear in the parameters, but nonlinear in the input

- Guaranteed to converge to global optimum w.h.p.

Has universal approximation abillity




Experiment results

Matching the performance of RelLU
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Experiment results

Width vs depth; depth helps more
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Experiment results

Image classification benchmarks

neuron type MNIST CIFARIO SVHN

RelLU 10.70) 116.3) 3.9 ]

RF 8.80 59.2 73.9
RF 2 x 5.71 55.8 70.5
RF 4 x 4.10 49 .8 58.4
RF 16 269  (40.7) (37.1)
SR 0.97 21.4 7.6
SR 2% 0.78 17.4

6.9
SR 4x 10.71) (18.7) [ 6.4)




Conclusion

For one-hidden-layer neural network, under weight diversity
condition, any critical points are w.h.p. global optimal

The result depends on the spectrum decay of the kernel
associated with the activation function

Propose semi-random units and networks with these units are
guaranteed to converge to global optimal

Matching the performance of ReLU with slightly more units but
much better than random features



