Trading Information Complexity for Error

Hamed Hatami

joint work with Yuval Dagan, Yuval Filmus, Yaqiao Li

School of Computer Science McGill University

April 10, 2017

Hamed Hatami (McGill University)

April 10, 2017 1 / 17

< ロ > < 同 > < 回 > < 回 >

- Setting: the standard two-party communication model.
- Main question: How much one can save in information complexity by allowing an error of *ε*?

4 A N

- Setting: the standard two-party communication model.
- Main question: How much one can save in information complexity by allowing an error of *ε*?
- How does $IC_{\mu}(f, 0) IC_{\mu}(f, \epsilon)$ behave?

4 **A b b b b b b**

- Setting: the standard two-party communication model.
- Main question: How much one can save in information complexity by allowing an error of *ε*?
- How does $IC_{\mu}(f, 0) IC_{\mu}(f, \epsilon)$ behave?
- How does IC(AND, 0) − IC(AND, ϵ) behave?
 [BGPW13]: We know IC(AND, 0) ≈ 1.4923

< ロ > < 同 > < 回 > < 回 >

Continuation of Shannon's information theory.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Shannon (1916-2001)

Shannon's setting

- One-way channel: Alice receives independent samples X_1, X_2, \ldots, X_n of a random variable X.
- She wants to transmit them to Bob.

Shannon's setting

- One-way channel: Alice receives independent samples X_1, X_2, \ldots, X_n of a random variable X.
- She wants to transmit them to Bob.
- On average how many bits does she need to send?

Shannon's setting

- One-way channel: Alice receives independent samples X_1, X_2, \ldots, X_n of a random variable X.
- She wants to transmit them to Bob.
- On average how many bits does she need to send?

$$\lim_{n\to\infty}\frac{C_n(X)}{n}=\mathbb{H}(X),$$

where $\mathbb{H}(X)$ is the entropy of X and it captures the amount of information in X.

伺下 イヨト イヨ

Communication complexity

- Consider a pair of random variables $(X, Y) \sim \mu$.
- Alice receives *X* and Bob receives *Y*.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Communication complexity

- Consider a pair of random variables $(X, Y) \sim \mu$.
- Alice receives X and Bob receives Y.
- They want to compute f(X, Y) collaboratively.

Communication complexity

- Consider a pair of random variables $(X, Y) \sim \mu$.
- Alice receives X and Bob receives Y.
- They want to compute f(X, Y) collaboratively.
- How many bits of communication is necessary?

Let π be the communication protocol (has access to randomness).

• • • • • • • • • • • •

Let π be the communication protocol (has access to randomness).

• $[f, \epsilon]$: For every x, y,

 $\Pr[f(x, y) \neq \pi(x, y)] \leq \epsilon.$

• • • • • • • • • • • •

Let π be the communication protocol (has access to randomness).

• $[f, \epsilon]$: For every x, y,

 $\Pr[f(x, y) \neq \pi(x, y)] \leq \epsilon.$

[*f*, μ, ε]:

 $\Pr_{xy \sim \mu}[f(x, y) \neq \pi(x, y)] \leq \epsilon.$

• • • • • • • • • • • • •

Let π be the communication protocol (has access to randomness).

• $[f, \epsilon]$: For every x, y,

$$\Pr[f(x, y) \neq \pi(x, y)] \leq \epsilon.$$

• $[f, \mu, \epsilon]$:

$$\Pr_{xy \sim \mu}[f(x, y) \neq \pi(x, y)] \leq \epsilon.$$

• common notation: $R_{\epsilon}(f) = CC[f, \epsilon]$ and $D^{\epsilon}_{\mu}(f) = CC[f, \mu, \epsilon]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let π be the communication protocol (has access to randomness).

• $[f, \epsilon]$: For every x, y,

 $\Pr[f(x, y) \neq \pi(x, y)] \leq \epsilon.$

• $[f, \mu, \epsilon]$:

$$\Pr_{xy \sim \mu}[f(x, y) \neq \pi(x, y)] \leq \epsilon.$$

• common notation: $R_{\epsilon}(f) = CC[f, \epsilon]$ and $D^{\epsilon}_{\mu}(f) = CC[f, \mu, \epsilon]$.

Theorem (Yao's minimax theorem)

$$\operatorname{CC}[f, \epsilon] = \max_{\mu} \operatorname{CC}[f, \mu, \epsilon].$$

< ロ > < 同 > < 回 > < 回 >

What is information complexity?

• It extends Shannon's information theory.

What is information complexity?

- It extends Shannon's information theory.
- Same setting as communication complexity:
 - Alice and Bob want to compute f(X, Y) collaboratively.

What is information complexity?

- It extends Shannon's information theory.
- Same setting as communication complexity:
 - Alice and Bob want to compute f(X, Y) collaboratively.
 - Now they want to minimize the information cost.

What is information complexity?

- It extends Shannon's information theory.
- Same setting as communication complexity:
 - Alice and Bob want to compute f(X, Y) collaboratively.
 - Now they want to minimize the information cost.

Information cost of a protocol is the amount of information Alice and Bob learn from the communicated bits Π about each other's inputs.

 $\mathrm{IC}_{\mu}(\pi) = I(X; \Pi | Y) + I(Y; \Pi | X)$

 $\mathrm{IC}_{\mu}(T) := \inf_{\pi} \mathrm{IC}_{\mu}(\pi)$ where π performs T

Hamed Hatami (McGill University)

▶ ▲ 王 ▶ 王 ∽ ९ ୯ April 10, 2017 8/17

$$\operatorname{IC}_{\mu}(T) := \inf_{\pi} \operatorname{IC}_{\mu}(\pi)$$
 where π performs T

Examples

$$\mathrm{IC}_{\mu}[f,\epsilon]$$
 and $\mathrm{IC}_{\mu}[f,\nu,\epsilon]$.

イロト イヨト イヨト イヨト

$$\mathrm{IC}_{\mu}(T) := \inf_{\pi} \mathrm{IC}_{\mu}(\pi)$$
 where π performs T

Examples

 $\operatorname{IC}_{\mu}[f,\epsilon]$ and $\operatorname{IC}_{\mu}[f,\nu,\epsilon]$.

Theorem (Braverman-Rao'10: Amortized communication = Information complexity)

For $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{\operatorname{CC}([f,\mu,\epsilon]^n)}{n}=\operatorname{IC}_{\mu}[f,\mu,\epsilon].$$

$$\mathrm{IC}_{\mu}(T) := \inf_{\pi} \mathrm{IC}_{\mu}(\pi)$$
 where π performs T

Examples

 $\operatorname{IC}_{\mu}[f,\epsilon]$ and $\operatorname{IC}_{\mu}[f,\nu,\epsilon]$.

Theorem (Braverman-Rao'10: Amortized communication = Information complexity)

For $\epsilon > 0$, $\lim_{n \to \infty} \frac{\operatorname{CC}([f, \mu, \epsilon]^n)}{n} = \operatorname{IC}_{\mu}[f, \mu, \epsilon].$

Theorem (Braverman'12: Amortized communication = Information complexity) For $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{\operatorname{CC}([f,\epsilon]^n)}{n} = \max_{\mu}\operatorname{IC}_{\mu}[f,\epsilon] = \max_{\mu,\nu}\operatorname{IC}_{\mu}[f,\nu,\epsilon].$$

 $\lim_{n \to \infty} \operatorname{CC}([f, \mu, \epsilon]^n)/n = \operatorname{IC}_{\mu}[f, \mu, \epsilon].$ $\lim_{n \to \infty} \operatorname{CC}([f, \epsilon]^n)/n = \max_{\mu} \operatorname{IC}_{\mu}[f, \epsilon] = \max_{\mu, \nu} \operatorname{IC}_{\mu}[f, \nu, \epsilon].$

イロト イポト イヨト イヨト

$$\begin{split} &\lim_{n\to\infty} \mathrm{CC}([f,\mu,\epsilon]^n)/n = \mathrm{IC}_{\mu}[f,\mu,\epsilon].\\ &\lim_{n\to\infty} \mathrm{CC}([f,\epsilon]^n)/n = \max_{\mu} \mathrm{IC}_{\mu}[f,\epsilon] = \max_{\mu,\nu} \mathrm{IC}_{\mu}[f,\nu,\epsilon]. \end{split}$$

Definition (Prior-free information complexity)

$$\operatorname{IC}(f,\epsilon) := \max_{\mu,\nu} \operatorname{IC}_{\mu}[f,\nu,\epsilon]$$

and

$$\mathrm{IC}^{D}(f,\epsilon) := \max_{\mu} \mathrm{IC}_{\mu}[f,\mu,\epsilon]$$

イロト 不得 トイヨト イヨト 二日

$$\begin{split} &\lim_{n\to\infty} \mathrm{CC}([f,\mu,\epsilon]^n)/n = \mathrm{IC}_{\mu}[f,\mu,\epsilon].\\ &\lim_{n\to\infty} \mathrm{CC}([f,\epsilon]^n)/n = \max_{\mu} \mathrm{IC}_{\mu}[f,\epsilon] = \max_{\mu,\nu} \mathrm{IC}_{\mu}[f,\nu,\epsilon]. \end{split}$$

Definition (Prior-free information complexity)

$$\operatorname{IC}(f,\epsilon) := \max_{\mu,\nu} \operatorname{IC}_{\mu}[f,\nu,\epsilon]$$

and

$$\mathrm{IC}^{D}(f,\epsilon) := \max_{\mu} \mathrm{IC}_{\mu}[f,\mu,\epsilon]$$

Theorem (Braverman'12)

$$\mathrm{IC}(f,\mathbf{0})=\mathrm{IC}^{D}(f,\mathbf{0}),$$

and for every $0 < \alpha < 1$,

$$\mathrm{IC}^{D}(f,\epsilon) \leq \mathrm{IC}(f,\epsilon) \leq \frac{1}{1-\alpha} \mathrm{IC}^{D}(f,\epsilon\alpha),$$

イロト イポト イヨト イヨト 二日

$$\begin{split} &\lim_{n\to\infty} \mathrm{CC}([f,\mu,\epsilon]^n)/n = \mathrm{IC}_{\mu}[f,\mu,\epsilon].\\ &\lim_{n\to\infty} \mathrm{CC}([f,\epsilon]^n)/n = \max_{\mu} \mathrm{IC}_{\mu}[f,\epsilon] = \max_{\mu,\nu} \mathrm{IC}_{\mu}[f,\nu,\epsilon]. \end{split}$$

Definition (Prior-free information complexity)

$$\operatorname{IC}(f,\epsilon) := \max_{\mu,\nu} \operatorname{IC}_{\mu}[f,\nu,\epsilon]$$

and

$$\mathrm{IC}^{D}(f,\epsilon) := \max_{\mu} \mathrm{IC}_{\mu}[f,\mu,\epsilon]$$

Theorem (Braverman'12)

$$\mathrm{IC}(f,\mathbf{0})=\mathrm{IC}^{D}(f,\mathbf{0}),$$

and for every $0 < \alpha < 1$,

$$\mathrm{IC}^{D}(f,\epsilon) \leq \mathrm{IC}(f,\epsilon) \leq \frac{1}{1-\alpha} \mathrm{IC}^{D}(f,\epsilon\alpha),$$

[Braverman'12]: $IC^{D}(f, \epsilon) = IC(f, \epsilon)$?

イロト イポト イヨト イヨト

$$S, T \subseteq \{1, \ldots, n\},$$
 DISJ_n $(S, T) = \begin{cases} 1 & S \cap T = \emptyset \\ 0 & S \cap T \neq \emptyset \end{cases}$

Hamed Hatami (McGill University)

Э.

イロン イ理 とく ヨン イヨン

$$S, T \subseteq \{1, \ldots, n\},$$
 DISJ_n $(S, T) = \begin{cases} 1 & S \cap T = \emptyset \\ 0 & S \cap T \neq \emptyset \end{cases}$

Theorem (KS92, Raz92)
For
$$\epsilon < 1/2$$
,
 $CC[DISJ_n, \epsilon] = \Theta(n)$.

イロト イヨト イヨト イヨト

$$S, T \subseteq \{1, \ldots, n\},$$
 DISJ_n $(S, T) = \begin{cases} 1 & S \cap T = \emptyset \\ 0 & S \cap T \neq \emptyset \end{cases}$

Theorem (KS92, Raz92)

For $\epsilon < 1/2$,

 $CC[DISJ_n, \epsilon] = \Theta(n).$

Disjointness as OR of AND's

$$\mathrm{DISJ}_n(X, Y) = \neg \vee_{i=1}^n (X_i \wedge Y_i).$$

イロト イヨト イヨト イヨト

- 34

10/17

April 10, 2017

Hamed Hatami (McGill University)

$$S, T \subseteq \{1, \ldots, n\},$$
 DISJ_n $(S, T) = \begin{cases} 1 & S \cap T = \emptyset \\ 0 & S \cap T \neq \emptyset \end{cases}$

Theorem (KS92, Raz92)

For $\epsilon < 1/2$,

 $CC[DISJ_n, \epsilon] = \Theta(n).$

Disjointness as OR of AND's

$$\mathrm{DISJ}_n(X, Y) = \neg \vee_{i=1}^n (X_i \wedge Y_i).$$

An idea: Computing $\text{DISJ}_n(X, Y)$ is essentially equivalent to computing all $X_i \wedge Y_i$ (amortized).

Theorem (BGPW13)

 $\lim_{\epsilon \to 0} \mathrm{CC}[\mathrm{DISJ}_n, \epsilon] \approx \mathrm{IC}(\mathrm{DISJ}_n, 0) \approx 0.4827n + o(n)$

where

0.4827... = $IC^{0}(AND, 0) := \max_{\mu} \{ IC_{\mu}(AND, 0) : \mu(1, 1) = 0 \}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (BGPW13)

 $\lim_{\epsilon \to 0} \mathrm{CC}[\mathrm{DISJ}_n, \epsilon] \approx \mathrm{IC}(\mathrm{DISJ}_n, 0) \approx 0.4827n + o(n)$

where

$$0.4827... = \mathrm{IC}^{0}(\mathrm{AND}, \mathbf{0}) := \max_{\mu} \{ \mathrm{IC}_{\mu}(\mathrm{AND}, \mathbf{0}) : \mu(1, 1) = \mathbf{0} \}.$$

[BGPW13]'s questions

- What is the behaviour of IC(AND, 0) IC(AND, ϵ) as $\epsilon \rightarrow 0$?
- What is the behaviour of $IC[DISJ_n, 0] IC[DISJ_n, \epsilon]$ as $\epsilon \to 0$?

IC(AND, 0) – IC(AND, ϵ) = $\Theta(h(\epsilon))$, IC[DISJ_n, ϵ] and CC[DISJ_n, ϵ] = 0.4827*n* – $\Theta(h(\epsilon)n)$.

Hamed Hatami (McGill University)

April 10, 2017 12 / 17

IC(AND, 0) – IC(AND, ϵ) = $\Theta(h(\epsilon))$, IC[DISJ_n, ϵ] and CC[DISJ_n, ϵ] = 0.4827n – $\Theta(h(\epsilon)n)$.

The lower bound IC_μ(AND, ε) ≥ IC_μ(AND, 0) − Θ(h(ε)) is difficult.
 We do not know what the optimal protocol is for IC_μ(AND, ε).

IC(AND, 0) – IC(AND, ϵ) = $\Theta(h(\epsilon))$, IC[DISJ_n, ϵ] and CC[DISJ_n, ϵ] = 0.4827n – $\Theta(h(\epsilon)n)$.

- The lower bound IC_μ(AND, ε) ≥ IC_μ(AND, 0) − Θ(h(ε)) is difficult.
 We do not know what the optimal protocol is for IC_μ(AND, ε).
- The approach of [BGPW13] based on verifying some local convexity conditions does not seem to work.

 $IC^{D}[DISJ_{n}, \epsilon] := \max_{\mu} IC_{\mu}[DISJ_{n}, \mu, \epsilon] =$

 $n[\mathrm{IC}^{0}(\mathrm{AND}) - \Theta(\sqrt{h(\epsilon)})] + O(\log n).$

Hamed Hatami (McGill University)

April 10, 2017 13 / 17

イロト 不得 トイヨト イヨト 二日

Theorem (Dagan-Filmus-H-Li) $IC^{D}[DISJ_{n}, \epsilon] := \max_{\mu} IC_{\mu}[DISJ_{n}, \mu, \epsilon] = n[IC^{0}(AND) - \Theta(\sqrt{h(\epsilon)})] + O(\log n).$

This with the previous theorem separates distributional prior-free and non-distributional prior-free information complexity and shows that Braverman's analysis is tight

$$\mathrm{IC}^{D}(\mathrm{DISJ}_{n}, \epsilon) \neq \mathrm{IC}(\mathrm{DISJ}_{n}, \epsilon).$$

$$\mathrm{IC}_{\mu}[\mathrm{DISJ}_{n}, \mu, \epsilon] \leq n[\mathrm{IC}^{0}(\mathrm{AND}) - \Theta(\sqrt{h(\epsilon)})] + O(\log n).$$

2

イロト イヨト イヨト イヨト

 $\operatorname{IC}_{\mu}[\operatorname{DISJ}_{n}, \mu, \epsilon] \leq n[\operatorname{IC}^{0}(\operatorname{AND}) - \Theta(\sqrt{h(\epsilon)})] + O(\log n).$

Alice and Bob try to compute (X_i ∧ Y_i) for all i = σ₁, σ₂,... for a random permutation σ of {1, 2, ..., n}.

 $\operatorname{IC}_{\mu}[\operatorname{DISJ}_{n}, \mu, \epsilon] \leq n[\operatorname{IC}^{0}(\operatorname{AND}) - \Theta(\sqrt{h(\epsilon)})] + O(\log n).$

- Alice and Bob try to compute (X_i ∧ Y_i) for all i = σ₁, σ₂,... for a random permutation σ of {1, 2, ..., n}.
- To compute $(X_i \land Y_i)$, they run an (almost) optimal for $IC_{\nu_{\sigma_i}}(AND, \epsilon/2p, 1 \rightarrow 0)$, where
 - $1 \rightarrow 0$ means one-sided error.
 - $\rho = \Pr_{\mu}[\text{DISJ}_n(X, Y) = 1].$
 - ν_{σi} is the corresponding marginal conditioned on the event that the protocol has not yet terminated.

Open Problems

We proved

$$\mathrm{IC}^{0}(\mathrm{AND},\epsilon) \leq \frac{\mathrm{IC}(\mathrm{DISJ}_{n},\epsilon)}{n} \leq \frac{\mathrm{IC}(\mathrm{DISJ}_{n},\epsilon,1\to0)}{n} \leq \mathrm{IC}^{0}(\mathrm{AND},\epsilon,1\to0)$$

- Here 1 \rightarrow 0 denote one-sided error (if output is 0 we are always correct).
- IC⁰ means we only consider μ with $\mu(1, 1) = 0$.

-

A (10) A (10)

Open Problems

We proved

$$\mathrm{IC}^{0}(\mathrm{AND},\epsilon) \leq \frac{\mathrm{IC}(\mathrm{DISJ}_{n},\epsilon)}{n} \leq \frac{\mathrm{IC}(\mathrm{DISJ}_{n},\epsilon,1\to0)}{n} \leq \mathrm{IC}^{0}(\mathrm{AND},\epsilon,1\to0)$$

- Here 1 \rightarrow 0 denote one-sided error (if output is 0 we are always correct).
- IC⁰ means we only consider μ with $\mu(1, 1) = 0$.

Conjecture

$$\frac{\mathrm{IC}(\mathrm{DISJ}_n,\epsilon)}{n} = \mathrm{IC}^0(\mathrm{AND},\epsilon,1\to0)\pm o(1).$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We prove that for every function $IC_{\mu}(f, 0) - \Theta(\sqrt{h(\epsilon)}) \leq IC_{\mu}(f, \epsilon) \leq IC_{\mu}(f, 0) - \Theta(h(\epsilon)).$

Is the upper-bound always the truth?