
Trading Information Complexity for Error

Hamed Hatami
joint work with Yuval Dagan, Yuval Filmus, Yaqiao Li

School of Computer Science
McGill University

April 10, 2017

Hamed Hatami (McGill University) April 10, 2017 1 / 17



Setting: the standard two-party communication model.

Main question: How much one can save in information complexity
by allowing an error of ε?

How does ICµ(f ,0)− ICµ(f , ε) behave?

How does IC(AND,0)− IC(AND, ε) behave?
[BGPW13]: We know IC(AND,0) ≈ 1.4923
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Information complexity

Continuation of Shannon’s information theory.

Shannon (1916-2001)
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Shannon’s setting

One-way channel: Alice receives independent samples
X1,X2, . . . ,Xn of a random variable X .
She wants to transmit them to Bob.

On average how many bits does she need to send?

lim
n→∞

Cn(X )

n
= H(X ),

where H(X ) is the entropy of X and it captures the amount of
information in X .
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Communication complexity

Consider a pair of random variables (X ,Y ) ∼ µ.

Alice receives X and Bob receives Y .

They want to compute f (X ,Y ) collaboratively.

How many bits of communication is necessary?
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Communication Tasks

Let π be the communication protocol (has access to randomness).

[f , ε]: For every x , y ,

Pr[f (x , y) 6= π(x , y)] ≤ ε.

[f , µ, ε]:
Pr

xy∼µ
[f (x , y) 6= π(x , y)] ≤ ε.

common notation: Rε(f ) = CC[f , ε] and Dε
µ(f ) = CC[f , µ, ε].

Theorem (Yao’s minimax theorem)

CC[f , ε] = max
µ

CC[f , µ, ε].
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Information complexity

What is information complexity?

It extends Shannon’s information theory.

Same setting as communication complexity:

I Alice and Bob want to compute f (X ,Y ) collaboratively.
I Now they want to minimize the information cost.

Information cost of a protocol is the amount of information Alice and
Bob learn from the communicated bits Π about each other’s inputs.

ICµ(π) = I(X ; Π|Y ) + I(Y ; Π|X )
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Information complexity of a communication task T :

ICµ(T ) := inf
π

ICµ(π) where π performs T

Examples

ICµ[f , ε] and ICµ[f , ν, ε].

Theorem (Braverman-Rao’10: Amortized communication = Information complexity)
For ε > 0,

lim
n→∞

CC([f , µ, ε]n)

n
= ICµ[f , µ, ε].

Theorem (Braverman’12: Amortized communication = Information complexity)
For ε > 0,

lim
n→∞

CC([f , ε]n)

n
= max

µ
ICµ[f , ε] = max

µ,ν
ICµ[f , ν, ε].
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limn→∞ CC([f , µ, ε]n)/n = ICµ[f , µ, ε].
limn→∞ CC([f , ε]n)/n = maxµ ICµ[f , ε] = maxµ,ν ICµ[f , ν, ε].

Definition (Prior-free information complexity)

IC(f , ε) := max
µ,ν

ICµ[f , ν, ε]

and
ICD(f , ε) := max

µ
ICµ[f , µ, ε]

Theorem (Braverman’12)

IC(f ,0) = ICD(f ,0),

and for every 0 < α < 1,

ICD(f , ε) ≤ IC(f , ε) ≤ 1
1− α

ICD(f , εα),

[Braverman’12]: ICD(f , ε) = IC(f , ε)?
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Set Disjointness

S,T ⊆ {1, . . . ,n}, DISJn(S,T ) =

{
1 S ∩ T = ∅
0 S ∩ T 6= ∅

Theorem (KS92, Raz92)
For ε < 1/2,

CC[DISJn, ε] = Θ(n).

Disjointness as OR of AND’s

DISJn(X ,Y ) = ¬ ∨n
i=1 (Xi ∧ Yi).

An idea: Computing DISJn(X ,Y ) is essentially equivalent to computing
all Xi ∧ Yi (amortized).
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Set Disjointness

Theorem (BGPW13)

lim
ε→0

CC[DISJn, ε] ≈ IC(DISJn,0) ≈ 0.4827n + o(n)

where

0.4827... = IC0(AND,0) := max
µ
{ICµ(AND,0) : µ(1,1) = 0}.

[BGPW13]’s questions
What is the behaviour of IC(AND,0)− IC(AND, ε) as ε→ 0?
What is the behaviour of IC[DISJn,0]− IC[DISJn, ε] as ε→ 0?
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Theorem (Dagan-Filmus-H-Li)

IC(AND,0)− IC(AND, ε) = Θ(h(ε)),

IC[DISJn, ε] and CC[DISJn, ε] = 0.4827n −Θ(h(ε)n).

The lower bound ICµ(AND, ε) ≥ ICµ(AND,0)−Θ(h(ε)) is difficult.
We do not know what the optimal protocol is for ICµ(AND, ε).

The approach of [BGPW13] based on verifying some local
convexity conditions does not seem to work.
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Theorem (Dagan-Filmus-H-Li)

ICD[DISJn, ε] := maxµ ICµ[DISJn, µ, ε] =

n[IC0(AND)−Θ(
√

h(ε))] + O(log n).

This with the previous theorem separates distributional prior-free and
non-distributional prior-free information complexity and shows that
Braverman’s analysis is tight

ICD(DISJn, ε) 6= IC(DISJn, ε).
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Theorem (Dagan-Filmus-H-Li)

ICµ[DISJn, µ, ε] ≤ n[IC0(AND)−Θ(
√

h(ε))] + O(log n).

Alice and Bob try to compute (Xi ∧ Yi) for all i = σ1, σ2, . . . for a
random permutation σ of {1,2, . . . ,n}.

To compute (Xi ∧ Yi), they run an (almost) optimal for
ICνσi

(AND, ε/2p,1→ 0), where

I 1→ 0 means one-sided error.
I p = Prµ[DISJn(X ,Y ) = 1].
I νσi is the corresponding marginal conditioned on the event that the

protocol has not yet terminated.
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Open Problems

We proved

IC0(AND, ε) ≤ IC(DISJn, ε)

n
≤ IC(DISJn, ε,1→ 0)

n
≤ IC0(AND, ε,1→ 0)

Here 1→ 0 denote one-sided error (if output is 0 we are always
correct).
IC0 means we only consider µ with µ(1,1) = 0.

Conjecture
IC(DISJn, ε)

n
= IC0(AND, ε,1→ 0)± o(1).
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We prove that for every function
ICµ(f ,0)−Θ(

√
h(ε)) ≤ ICµ(f , ε) ≤ ICµ(f ,0)−Θ(h(ε)).

Is the upper-bound always the truth?
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