Trading Information Complexity for Error

Hamed Hatami

joint work with Yuval Dagan, Yuval Filmus, Yaqiao Li

School of Computer Science
McGill University

April 10, 2017

- Setting: the standard two-party communication model.
- Main question: How much one can save in information complexity by allowing an error of ϵ ?
- Setting: the standard two-party communication model.
- Main question: How much one can save in information complexity by allowing an error of ϵ ?
- How does $\mathrm{IC}_{\mu}(f, 0)-\mathrm{IC}_{\mu}(f, \epsilon)$ behave?
- Setting: the standard two-party communication model.
- Main question: How much one can save in information complexity by allowing an error of ϵ ?
- How does $\mathrm{IC}_{\mu}(f, 0)-\mathrm{IC}_{\mu}(f, \epsilon)$ behave?
- How does IC(AND, 0) - IC(AND, ϵ) behave?
[BGPW13]: We know IC(AND, 0$) \approx 1.4923$

Information complexity

Continuation of Shannon's information theory.

Shannon (1916-2001)

Shannon's setting

- One-way channel: Alice receives independent samples $X_{1}, X_{2}, \ldots, X_{n}$ of a random variable X.
- She wants to transmit them to Bob.

Shannon's setting

- One-way channel: Alice receives independent samples $X_{1}, X_{2}, \ldots, X_{n}$ of a random variable X.
- She wants to transmit them to Bob.
- On average how many bits does she need to send?

Shannon's setting

- One-way channel: Alice receives independent samples $X_{1}, X_{2}, \ldots, X_{n}$ of a random variable X.
- She wants to transmit them to Bob.
- On average how many bits does she need to send?

$$
\lim _{n \rightarrow \infty} \frac{C_{n}(X)}{n}=\mathbb{H}(X)
$$

where $\mathbb{H}(X)$ is the entropy of X and it captures the amount of information in X.

Communication complexity

- Consider a pair of random variables $(X, Y) \sim \mu$.
- Alice receives X and Bob receives Y.

Communication complexity

- Consider a pair of random variables $(X, Y) \sim \mu$.
- Alice receives X and Bob receives Y.
- They want to compute $f(X, Y)$ collaboratively.

Communication complexity

- Consider a pair of random variables $(X, Y) \sim \mu$.
- Alice receives X and Bob receives Y.
- They want to compute $f(X, Y)$ collaboratively.
- How many bits of communication is necessary?

Communication Tasks

Let π be the communication protocol (has access to randomness).

Communication Tasks

Let π be the communication protocol (has access to randomness).

- $[f, \epsilon]$: For every x, y,

$$
\operatorname{Pr}[f(x, y) \neq \pi(x, y)] \leq \epsilon
$$

Communication Tasks

Let π be the communication protocol (has access to randomness).

- $[f, \epsilon]$: For every x, y,

$$
\operatorname{Pr}[f(x, y) \neq \pi(x, y)] \leq \epsilon
$$

- $[f, \mu, \epsilon]$:

$$
\operatorname{Pr}_{x y \sim \mu}[f(x, y) \neq \pi(x, y)] \leq \epsilon .
$$

Communication Tasks

Let π be the communication protocol (has access to randomness).

- $[f, \epsilon]$: For every x, y,

$$
\operatorname{Pr}[f(x, y) \neq \pi(x, y)] \leq \epsilon
$$

- $[f, \mu, \epsilon]$:

$$
\operatorname{Pr}_{x y \sim \mu}[f(x, y) \neq \pi(x, y)] \leq \epsilon .
$$

- common notation: $R_{\epsilon}(f)=C C[f, \epsilon]$ and $D_{\mu}^{\epsilon}(f)=C C[f, \mu, \epsilon]$.

Communication Tasks

Let π be the communication protocol (has access to randomness).

- $[f, \epsilon]$: For every x, y,

$$
\operatorname{Pr}[f(x, y) \neq \pi(x, y)] \leq \epsilon .
$$

- $[f, \mu, \epsilon]$:

$$
\underset{x y \sim \mu}{\operatorname{Pr}}[f(x, y) \neq \pi(x, y)] \leq \epsilon .
$$

- common notation: $R_{\epsilon}(f)=C C[f, \epsilon]$ and $D_{\mu}^{\epsilon}(f)=C C[f, \mu, \epsilon]$.

Theorem (Yao's minimax theorem)

$$
\operatorname{CC}[f, \epsilon]=\max _{\mu} \operatorname{CC}[f, \mu, \epsilon] .
$$

Information complexity

What is information complexity?

- It extends Shannon's information theory.

Information complexity

What is information complexity?

- It extends Shannon's information theory.
- Same setting as communication complexity:
- Alice and Bob want to compute $f(X, Y)$ collaboratively.

Information complexity

What is information complexity?

- It extends Shannon's information theory.
- Same setting as communication complexity:
- Alice and Bob want to compute $f(X, Y)$ collaboratively.
- Now they want to minimize the information cost.

Information complexity

What is information complexity?

- It extends Shannon's information theory.
- Same setting as communication complexity:
- Alice and Bob want to compute $f(X, Y)$ collaboratively.
- Now they want to minimize the information cost.

Information cost of a protocol is the amount of information Alice and Bob learn from the communicated bits Π about each other's inputs.

$$
\operatorname{IC}_{\mu}(\pi)=I(X ; \Pi \mid Y)+I(Y ; \Pi \mid X)
$$

Information complexity of a communication task T :

$$
\mathrm{IC}_{\mu}(T):=\inf _{\pi} \mathrm{IC}_{\mu}(\pi) \quad \text { where } \pi \text { performs } T
$$

Information complexity of a communication task T :

$$
\mathrm{IC}_{\mu}(T):=\inf _{\pi} \mathrm{IC}_{\mu}(\pi) \quad \text { where } \pi \text { performs } T
$$

Examples

$$
\mathrm{IC}_{\mu}[f, \epsilon] \quad \text { and } \quad \mathrm{IC}_{\mu}[f, \nu, \epsilon] .
$$

Information complexity of a communication task T :

$$
\mathrm{IC}_{\mu}(T):=\inf _{\pi} \mathrm{IC}_{\mu}(\pi) \quad \text { where } \pi \text { performs } T
$$

Examples

$$
\mathrm{IC}_{\mu}[f, \epsilon] \quad \text { and } \quad \mathrm{IC}_{\mu}[f, \nu, \epsilon] .
$$

Theorem (Braverman-Rao'10: Amortized communication = Information complexity)
For $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{\mathrm{CC}\left([f, \mu, \epsilon]^{n}\right)}{n}=\mathrm{IC}_{\mu}[f, \mu, \epsilon] .
$$

Information complexity of a communication task T :

$$
\mathrm{IC}_{\mu}(T):=\inf _{\pi} \mathrm{IC}_{\mu}(\pi) \quad \text { where } \pi \text { performs } T
$$

Examples

$$
\mathrm{IC}_{\mu}[f, \epsilon] \quad \text { and } \quad \operatorname{IC}_{\mu}[f, \nu, \epsilon] .
$$

Theorem (Braverman-Rao'10: Amorized communicaition $=$ ntiormaition complexity)
For $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{CC}\left([f, \mu, \epsilon]^{n}\right)}{n}=\operatorname{IC}_{\mu}[f, \mu, \epsilon] .
$$

Theorem (Braverman'12: Amorized communicaion = Intormation compexiti)
For $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{\mathrm{CC}\left([f, \epsilon]^{n}\right)}{n}=\max _{\mu} \mathrm{IC}_{\mu}[f, \epsilon]=\max _{\mu, \nu} \mathrm{IC}_{\mu}[f, \nu, \epsilon] .
$$

$\lim _{n \rightarrow \infty} \mathrm{CC}\left([f, \mu, \epsilon]^{n}\right) / n=\mathrm{IC}_{\mu}[f, \mu, \epsilon]$.
$\lim _{n \rightarrow \infty} \operatorname{CC}\left([f, \epsilon]^{n}\right) / n=\max _{\mu} \operatorname{IC}_{\mu}[f, \epsilon]=\max _{\mu, \nu} \operatorname{IC}_{\mu}[f, \nu, \epsilon]$.
$\lim _{n \rightarrow \infty} \mathrm{CC}\left([f, \mu, \epsilon]^{n}\right) / n=\mathrm{IC}_{\mu}[f, \mu, \epsilon]$.
$\lim _{n \rightarrow \infty} \operatorname{CC}\left([f, \epsilon]^{n}\right) / n=\max _{\mu} \operatorname{IC}_{\mu}[f, \epsilon]=\max _{\mu, \nu} \operatorname{IC}_{\mu}[f, \nu, \epsilon]$.
Definition (Prior-free information complexity)

$$
\operatorname{IC}(f, \epsilon):=\max _{\mu, \nu} \operatorname{IC}_{\mu}[f, \nu, \epsilon]
$$

and

$$
\mathrm{IC}^{D}(f, \epsilon):=\max _{\mu} \mathrm{IC}_{\mu}[f, \mu, \epsilon]
$$

$\lim _{n \rightarrow \infty} \mathrm{CC}\left([f, \mu, \epsilon]^{n}\right) / n=\mathrm{IC}_{\mu}[f, \mu, \epsilon]$.
$\lim _{n \rightarrow \infty} \mathrm{CC}\left([f, \epsilon]^{n}\right) / n=\max _{\mu} \operatorname{IC}_{\mu}[f, \epsilon]=\max _{\mu, \nu} \operatorname{IC}_{\mu}[f, \nu, \epsilon]$.
Definition (Prior-free information complexity)

$$
\operatorname{IC}(f, \epsilon):=\max _{\mu, \nu} \operatorname{IC}[f, \nu, \epsilon]
$$

and

$$
\operatorname{IC}^{D}(f, \epsilon):=\max _{\mu} \operatorname{IC}_{\mu}[f, \mu, \epsilon]
$$

Theorem (Braverman'12)

$$
\operatorname{IC}(f, 0)=\operatorname{IC}^{D}(f, 0)
$$

and for every $0<\alpha<1$,

$$
\operatorname{IC}^{D}(f, \epsilon) \leq \operatorname{IC}(f, \epsilon) \leq \frac{1}{1-\alpha} \operatorname{IC}^{D}(f, \epsilon \alpha),
$$

$\lim _{n \rightarrow \infty} \mathrm{CC}\left([f, \mu, \epsilon]^{n}\right) / n=\mathrm{IC}_{\mu}[f, \mu, \epsilon]$.
$\lim _{n \rightarrow \infty} \mathrm{CC}\left([f, \epsilon]^{n}\right) / n=\max _{\mu} \operatorname{IC}_{\mu}[f, \epsilon]=\max _{\mu, \nu} \operatorname{IC}_{\mu}[f, \nu, \epsilon]$.
Definition (Prior-free information complexity)

$$
\operatorname{IC}(f, \epsilon):=\max _{\mu, \nu} \operatorname{IC}_{\mu}[f, \nu, \epsilon]
$$

and

$$
\mathrm{IC}^{D}(f, \epsilon):=\max _{\mu} \mathrm{IC}_{\mu}[f, \mu, \epsilon]
$$

Theorem (Braverman'12)

$$
\operatorname{IC}(f, 0)=\operatorname{IC}^{D}(f, 0)
$$

and for every $0<\alpha<1$,

$$
\operatorname{IC}^{D}(f, \epsilon) \leq \operatorname{IC}(f, \epsilon) \leq \frac{1}{1-\alpha} \operatorname{IC}^{D}(f, \epsilon \alpha)
$$

[Braverman'12]: $\operatorname{IC}^{D}(f, \epsilon)=\operatorname{IC}(f, \epsilon) ?$

Set Disjointness

$$
S, T \subseteq\{1, \ldots, n\}, \quad \operatorname{DISJ}_{n}(S, T)= \begin{cases}1 & S \cap T=\emptyset \\ 0 & S \cap T \neq \emptyset\end{cases}
$$

Set Disjointness

$$
S, T \subseteq\{1, \ldots, n\}, \quad \operatorname{DISJ}_{n}(S, T)= \begin{cases}1 & S \cap T=\emptyset \\ 0 & S \cap T \neq \emptyset\end{cases}
$$

Theorem (KS92, Raz92)
For $\epsilon<1 / 2$,

$$
\operatorname{CC}\left[\text { DISJ }_{n}, \epsilon\right]=\Theta(n) .
$$

Set Disjointness

$$
S, T \subseteq\{1, \ldots, n\}, \quad \operatorname{DISJ}_{n}(S, T)= \begin{cases}1 & S \cap T=\emptyset \\ 0 & S \cap T \neq \emptyset\end{cases}
$$

Theorem (KS92, Raz92)
For $\epsilon<1 / 2$,

$$
\mathrm{CC}\left[\operatorname{DISJ}_{n}, \epsilon\right]=\Theta(n)
$$

Disjointness as OR of AND's

$$
\operatorname{DISJ}_{n}(X, Y)=\neg \vee_{i=1}^{n}\left(X_{i} \wedge Y_{i}\right)
$$

Set Disjointness

$$
S, T \subseteq\{1, \ldots, n\}, \quad \operatorname{DISJ}_{n}(S, T)= \begin{cases}1 & S \cap T=\emptyset \\ 0 & S \cap T \neq \emptyset\end{cases}
$$

Theorem (KS92, Raz92)
For $\epsilon<1 / 2$,

$$
\mathrm{CC}\left[\mathrm{DISJ}_{n}, \epsilon\right]=\Theta(n) .
$$

Disjointness as OR of AND's

$$
\operatorname{DISJ}_{n}(X, Y)=\neg v_{i=1}^{n}\left(X_{i} \wedge Y_{i}\right) .
$$

An idea: Computing $\operatorname{DISJ}_{n}(X, Y)$ is essentially equivalent to computing all $X_{i} \wedge Y_{i}$ (amortized).

Set Disjointness

Theorem (BGPW13)

$\lim _{\epsilon \rightarrow 0} \mathrm{CC}\left[\operatorname{DISJ}_{n}, \epsilon\right] \approx \operatorname{IC}\left(\operatorname{DISJ}_{n}, 0\right) \approx 0.4827 n+o(n)$
where

$$
0.4827 \ldots=\mathrm{IC}^{0}(\mathrm{AND}, 0):=\max _{\mu}\left\{\mathrm{IC}_{\mu}(\mathrm{AND}, 0): \mu(1,1)=0\right\}
$$

Set Disjointness

Theorem (BGPW13)

$$
\lim _{\epsilon \rightarrow 0} \mathrm{CC}\left[\operatorname{DISJ}_{n}, \epsilon\right] \approx \mathrm{IC}\left(\operatorname{DISJ}_{n}, 0\right) \approx 0.4827 n+o(n)
$$

where

$$
0.4827 \ldots=\mathrm{IC}^{0}(\mathrm{AND}, 0):=\max _{\mu}\left\{\mathrm{IC}_{\mu}(\mathrm{AND}, 0): \mu(1,1)=0\right\}
$$

[BGPW13]'s questions

- What is the behaviour of $\operatorname{IC}(\mathrm{AND}, 0)-\operatorname{IC}(\mathrm{AND}, \epsilon)$ as $\epsilon \rightarrow 0$?
- What is the behaviour of IC[DISJ $\left.{ }_{n}, 0\right]-\operatorname{IC}\left[\operatorname{DISJ}_{n}, \epsilon\right]$ as $\epsilon \rightarrow 0$?

Theorem (Dagan-Filmus-H-Li)

$$
\begin{aligned}
& \operatorname{IC}(\text { AND }, 0)-\operatorname{IC}(A N D, \epsilon)=\Theta(h(\epsilon)) \text {, } \\
& \operatorname{IC}\left[\operatorname{DISJ}_{n}, \epsilon\right] \text { and } \operatorname{CC}\left[\operatorname{DISJ}_{n}, \epsilon\right]=0.4827 n-\Theta(h(\epsilon) n) .
\end{aligned}
$$

Theorem (Dagan-Filmus-H-Li)

$$
\begin{aligned}
& \operatorname{IC}(\text { AND }, 0)-\operatorname{IC}(A N D, \epsilon)=\Theta(h(\epsilon)) \text {, } \\
& \operatorname{IC}\left[\operatorname{DISJ}_{n}, \epsilon\right] \text { and } \operatorname{CC}\left[\operatorname{DISJ}_{n}, \epsilon\right]=0.4827 n-\Theta(h(\epsilon) n) .
\end{aligned}
$$

- The lower bound $\mathrm{IC}_{\mu}(\mathrm{AND}, \epsilon) \geq \mathrm{IC}_{\mu}(\mathrm{AND}, 0)-\Theta(h(\epsilon))$ is difficult. We do not know what the optimal protocol is for $\mathrm{IC}_{\mu}(\mathrm{AND}, \epsilon)$.

Theorem (Dagan-Filmus-H-Li)

$$
\begin{aligned}
& \operatorname{IC}(\text { AND }, 0)-\operatorname{IC}(A N D, \epsilon)=\Theta(h(\epsilon)) \text {, } \\
& \operatorname{IC}\left[\operatorname{DISJ}_{n}, \epsilon\right] \text { and } \operatorname{CC}\left[\operatorname{DISJ}_{n}, \epsilon\right]=0.4827 n-\Theta(h(\epsilon) n) .
\end{aligned}
$$

- The lower bound $\mathrm{IC}_{\mu}(\mathrm{AND}, \epsilon) \geq \mathrm{IC}_{\mu}(\mathrm{AND}, 0)-\Theta(h(\epsilon))$ is difficult. We do not know what the optimal protocol is for $\mathrm{IC}_{\mu}(\mathrm{AND}, \epsilon)$.
- The approach of [BGPW13] based on verifying some local convexity conditions does not seem to work.

Theorem (Dagan-Filmus-H-Li)
$\mathrm{IC}^{D}\left[\mathrm{DISJ}_{n}, \epsilon\right]:=\max _{\mu} \mathrm{IC}_{\mu}\left[\mathrm{DISJ}_{n}, \mu, \epsilon\right]=$

$$
n\left[\mathrm{IC}^{0}(\mathrm{AND})-\Theta(\sqrt{h(\epsilon)})\right]+O(\log n) .
$$

Theorem (Dagan-Filmus-H-Li)

$\operatorname{IC}^{D}\left[\operatorname{DISJ}_{n}, \epsilon\right]:=\max _{\mu} \operatorname{IC}_{\mu}\left[\operatorname{DISJ}_{n}, \mu, \epsilon\right]=$

$$
n\left[\mathrm{IC}^{0}(\mathrm{AND})-\Theta(\sqrt{h(\epsilon)})\right]+O(\log n) .
$$

This with the previous theorem separates distributional prior-free and non-distributional prior-free information complexity and shows that Braverman's analysis is tight

$$
\operatorname{IC}^{D}\left(\operatorname{DISJ}_{n}, \epsilon\right) \neq{\operatorname{IC}\left(\operatorname{DISJ}_{n}, \epsilon\right) .}
$$

Theorem (Dagan-Filmus-H-Li)

$$
\mathrm{IC}_{\mu}\left[\mathrm{DISJ}_{n}, \mu, \epsilon\right] \leq n\left[\mathrm{IC}^{0}(\mathrm{AND})-\Theta(\sqrt{h(\epsilon)})\right]+O(\log n) .
$$

Theorem (Dagan-Filmus-H-Li)

$$
\mathrm{IC}_{\mu}\left[\mathrm{DISJ}_{n}, \mu, \epsilon\right] \leq n\left[\mathrm{IC}^{0}(\mathrm{AND})-\Theta(\sqrt{h(\epsilon)})\right]+O(\log n) .
$$

- Alice and Bob try to compute $\left(X_{i} \wedge Y_{i}\right)$ for all $i=\sigma_{1}, \sigma_{2}, \ldots$ for a random permutation σ of $\{1,2, \ldots, n\}$.

Theorem (Dagan-Filmus-H-Li)

$$
\mathrm{IC}_{\mu}\left[\mathrm{DIS}_{n}, \mu, \epsilon\right] \leq n\left[\mathrm{IC}^{0}(\mathrm{AND})-\Theta(\sqrt{h(\epsilon)})\right]+O(\log n) .
$$

- Alice and Bob try to compute $\left(X_{i} \wedge Y_{i}\right)$ for all $i=\sigma_{1}, \sigma_{2}, \ldots$ for a random permutation σ of $\{1,2, \ldots, n\}$.
- To compute $\left(X_{i} \wedge Y_{i}\right)$, they run an (almost) optimal for $\mathrm{IC}_{\nu_{\sigma_{i}}}$ (AND, $\epsilon / 2 p, 1 \rightarrow 0$), where
- $1 \rightarrow 0$ means one-sided error.
- $p=\operatorname{Pr}_{\mu}\left[\operatorname{DISJ}_{n}(X, Y)=1\right]$.
- $\nu_{\sigma_{i}}$ is the corresponding marginal conditioned on the event that the protocol has not yet terminated.

Open Problems

We proved
$\mathrm{IC}^{0}(\mathrm{AND}, \epsilon) \leq \frac{\mathrm{IC}\left(\mathrm{DISJ}_{n}, \epsilon\right)}{n} \leq \frac{\mathrm{IC}\left(\mathrm{DISJ}_{n}, \epsilon, 1 \rightarrow 0\right)}{n} \leq \mathrm{IC}^{0}(\mathrm{AND}, \epsilon, 1 \rightarrow 0)$

- Here $1 \rightarrow 0$ denote one-sided error (if output is 0 we are always correct).
- IC 0 means we only consider μ with $\mu(1,1)=0$.

Open Problems

We proved
$\mathrm{IC}^{0}(\mathrm{AND}, \epsilon) \leq \frac{\mathrm{IC}\left(\mathrm{DISJ}_{n}, \epsilon\right)}{n} \leq \frac{\mathrm{IC}\left(\mathrm{DISJ}_{n}, \epsilon, 1 \rightarrow 0\right)}{n} \leq \mathrm{IC}^{0}(\mathrm{AND}, \epsilon, 1 \rightarrow 0)$

- Here $1 \rightarrow 0$ denote one-sided error (if output is 0 we are always correct).
- IC^{0} means we only consider μ with $\mu(1,1)=0$.

Conjecture

$$
\frac{\mathrm{IC}\left(\mathrm{DISJ}_{n}, \epsilon\right)}{n}=\mathrm{IC}^{0}(\mathrm{AND}, \epsilon, 1 \rightarrow 0) \pm o(1)
$$

- We prove that for every function $\operatorname{IC}_{\mu}(f, 0)-\Theta(\sqrt{h(\epsilon)}) \leq \mathrm{IC}_{\mu}(f, \epsilon) \leq \mathrm{IC}_{\mu}(f, 0)-\Theta(h(\epsilon))$. Is the upper-bound always the truth?

