Learning representations for active vision

Bruno Olshausen

Redwood Center for Theoretical Neuroscience, Helen Wills Neuroscience Institute, and School of Optometry UC Berkeley

Redwood Center for Theoretical Neuroscience - April 2016

What are the principles governing information processing in this system?

Human eye movements during viewing of an image

Yarbus (1967)

Active vision in jumping spiders

(Wayne Maddison)

(Bair & Olshausen, 1991)

Three questions

- 1. How do we see in the presence of fixational eye movements?
- 2. What is the optimal spatial layout of the image sampling array?
- 3. How is information integrated across multiple fixations?

Fixational eye movements (drift)

(from Austin Roorda, UC Berkeley)

Retinal image motion helps pattern discrimination

Ratnam, K., Domdei, N., Harmening, W. M., & Roorda, A. (2017). Benefits of retinal image motion at the limits of spatial vision. *Journal of Vision, 17*, 1–11.

Simple averaging is not sufficient

The problem

$$I(\vec{x},t) = S(\vec{x} - \Delta \vec{x}(t)) + \epsilon(\vec{x},t)$$

Graphical model for separating form and motion (Alex Anderson, Ph.D. thesis)

 \hat{S}

Eye position

Spikes (from LGN afferents)

Pattern

 $= \arg \max_{S} \log P(R|S)$ $= \arg \max_{S} \log \sum_{X} P(R|X,S) P(X)$

Alternating estimation of pattern (S) and position (X)

Given current estimate of position (X), update S

$$\hat{S}^{t+1} = \arg \max_{S} \sum_{t'=0}^{t} \sum_{j} \langle \log P(R_{j,t'} | X_{t'}, S) \rangle_{P(X_{t'} | S^t, R_{0:t})}$$
$$\log P(R_{j,t} | X_t, S) = R_{j,t} \log \lambda_j - \lambda_j dt$$
$$\log \lambda_j = \sum_{\vec{x}} g_j(\vec{x}) S(\vec{x} - \vec{X}_t)$$

Given current estimate of pattern (S), update X

$$P(X_t|S^t, R_{0:t}) \propto P(R_t|X_t, S^t) \sum_{X_{t-1}} P(X_t|X_{t-1}) P(X_{t-1}|S^{t-1}, R_{0:t-1})$$

Given current estimate of position (X), update S

Given current estimate of pattern (S), update X

Joint estimation of pattern (S) and position (X)

Motion <u>helps</u> estimation of pattern S

Including a prior over S

Eye position

Spikes (from LGN afferents)

Pattern

S = DA

$$\hat{A} = \arg \max_{A} \log P(R|A) + \log P(A)$$

sparse

Learned dictionary D

Prior over *S* improves inference

EM Reconstruction after t = 2.0 ms

Prior over S improves inference

Three questions

- 1. How do we see in the presence of fixational eye movements?
- 2. What is the optimal spatial layout of the image sampling array?
- 3. How is information integrated across multiple fixations?

What is this?

Correct label: Pomeranian

What is this?

Correct label: Afghan hound

DRAW: A Recurrent Neural Network For Image Generation

Karol Gregor Ivo Danihelka Alex Graves Danilo Jimenez Rezende Daan Wierstra Google DeepMind KAROLG @ GOOGLE.COM DANIHELKA @ GOOGLE.COM GRAVESA @ GOOGLE.COM DANILOR @ GOOGLE.COM WIERSTRA @ GOOGLE.COM

-'glimpse window'

Time →

Retinal ganglion cell sampling array (shown at one dot for every 20 ganglion cells)

(from Anderson & Van Essen, 1995)

Learning the glimpse window sampling array (Cheung, Weiss & Olshausen, 2017)

- Network is trained to correctly • classify the digit in the scene.
- To do this it must find a digit and move its glimpse window to that location.

Example MNIST scenes

Evolution of the sampling array during training

Evolution of the sampling array during training

Learned sampling arrays for different conditions

Translation only (Dataset 1)

Translation only (Dataset 2)

Translation & zoom (Dataset 1)

Translation & zoom (Dataset 2)

Comparison to primate retina

Comparison to primate retina

A FOVEATED RETINA-LIKE SENSOR

USING CCD TECHNOLOGY

J. Van der Spiegel, G. Kreider Univ. of Pennsylvania, Dept. of Electrical Engineering Philadelphia, PA 19104-6390

> C. Claeys, I. Debusschere IMEC, Leuven, Belgium

G. Sandini University of Genova, DIST, Genova, Italy

P. Dario, F. Fantini Scuola Superiore S. Anna, Pisa, Italy

> P. Bellutti, G. Soncini IRST, Trento, Italy

A Foveated Image Sensor in Standard CMOS Technology

Robert Wodnicki, Gordon W. Roberts, Martin D. Levine Department of Electrical Engineering, McGill University, Montréal, Québec, CANADA, H3A 2A7

Three questions

- 1. How do we see in the presence of fixational eye movements?
- 2. What is the optimal spatial layout of the image sampling array?
- 3. How is information integrated across multiple fixations?

In order to integrate visual information across fixations, two things must be encoded and combined at each fixation:

position of the glimpse window
contents of the glimpse window

We need to *bind* these two things together!

A scene may then be represented as a superposition of such bindings.

Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors

Pentti Kanerva

- binding without growing dimensionality
- fully distributed representation
- mathematical framework for storing and recovering information:
 - multiplication for binding
 - addition for combining
 - operators and inverses

Network for binding and combining (Eric Weiss, Ph.D. thesis)

Example encoding

Example queries

Where is the '5'?

answer = $\mathbf{V}_5^* \odot \mathbf{M}$ = $\mathbf{V}_5^* \odot (\mathbf{V}_6 \odot \mathbf{\Gamma}_{t=0} + \mathbf{V}_5 \odot \mathbf{\Gamma}_{t=1} + \mathbf{V}_4 \odot \mathbf{\Gamma}_{t=2} + ...)$ $\approx \qquad 0 \qquad + \qquad \mathbf{\Gamma}_{t=1} + \qquad 0$

What object is in the center?

answer = $\mathbf{\Gamma}_{center}^* \odot \mathbf{\Pi}$ = $\mathbf{\Gamma}_{center}^* \odot (\mathbf{V}_6 \odot \mathbf{\Gamma}_{t=0} + \mathbf{V}_5 \odot \mathbf{\Gamma}_{t=1} + \mathbf{V}_4 \odot \mathbf{\Gamma}_{t=2} + ...)$ $\approx \mathbf{V}_6 + \mathbf{0} + \mathbf{0}$

Spatial reasoning

What is below a '2' and to the left of a '1'?

Main points

- The drift movements that occur during fixation may be part of a purposeful, *active* sensing strategy to maximize the effective resolution offered by the foveal cone array.
- A *foveated* image sampling lattice similar to the primate retina emerges as the optimal solution for visual search, but only for an eye without the ability to zoom.
- Neural networks with the ability to *bind* and *combine* information across saccades are capable of building up a scene representation that supports spatial reasoning.