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What are the principles governing information 
processing in this system?

10 Mp camera
(always on)

1 Gb/sec
datastream

20 watts

Moves 
3-5 times/sec



Human eye movements during viewing of an image

Yarbus (1967)



(Wayne Maddison)

Active vision in jumping spiders

(Bair & Olshausen, 1991)



Three questions

1. How do we see in the presence of fixational eye 
movements? 

2. What is the optimal spatial layout of the image sampling 
array?  

3. How is information integrated across multiple fixations?  



Fixational eye movements
(drift)

(from Austin Roorda, UC Berkeley)



preference for specific directions of motion during the
task (Figure 2C, S3 and S4). Across subjects, absolute
trajectory length averaged across all individual trials
was similar. Relative to the underlying mosaic of
photoreceptors, the stimulus traversed a retinal dis-
tance equaling about 10.5 unique cones during each
750-ms presentation during natural viewing (an exam-
ple stimulus trajectory close to this average in shown in
Figure 2A). In 600 analyzed trials under the stabilized
condition, the residual stimulus motion that occurred
due to imperfections of the tracking and stabilization
techniques was small. Here, the stimulus traversed 0.4
cones on average across subjects. Expressed differently,
stimulus trajectory amplitudes under stabilization were
about 25 times less than in natural viewing (Figure 2C).
This analysis confirmed that the exact same set of cones
was stimulated during the stabilized condition, whereas
many more cones were stimulated during natural
viewing.

Given the nature of our orientation discrimination
acuity task (four main orientations of the Snellen E),
we wondered if the eye can adjust FEM relative to the
orientation of the optotype to maximize transient
information content (e.g. motion preferably perpen-
dicular to the bar orientation), and whether specific
motion traces offer advantages for the task compared
to others. In Figure 2D the same motion paths as in
Figure 2C are plotted, but now rotated relative to the
orientation of the optotype orientation during presen-
tation, and with indication of correct and incorrect
psychophysical responses. We observed no clear trends
in this analysis. In this short period of time the eye does
not seem to adjust its FEM behavior according to the
orientation of the letter, and certain directions of eye
motion do not appear to confer clear benefits.

Experiment 1: Discrimination benefits from FEM
at the resolution limit

Discrimination performance with retinal image
stabilization dropped on average by 23% across
subjects (Figure 3D; p , 0.05, two-tailed binomial z
test). Thus, fine spatial resolution was impaired in the
absence of retinal image motion due to FEM, or visual
acuity was enhanced by FEM. In fact, the visual
resolution achieved in our experimental setup was
higher than what simple spatial sampling models of the
cone mosaic would predict. For each subject, the
stimulus gap, or distance between adjacent bars of the
‘‘E,’’ was compared to the Nyquist limit (NC) of the
tested retinal location (Figure 1E). The stimulus gap
constitutes the primary image detail subjects use to
discriminate orientation (Rossi & Roorda, 2010b). For
each subject, the gap size was smaller than NC (gap

size/NC ¼ 0.61/0.90, 0.74/0.85, 0.63/0.80, 0.57/0.94
arcmin for S1 through S4, respectively).

Subjects performed similarly or better under the
incongruent than under the natural condition (Figure
3E; S1, p , 0.01; S2 and S3, p . 0.05; two-tailed
binomial z test, n¼;450). These findings demonstrate
that the visual system can benefit from retinal image
motion even when the activity is independent of FEM
at the time of stimulus presentation.

Experiment 2: Contrast reduction during
stabilization is not critical

To determine whether contrast was reduced under
stabilization and how performance may have been
affected, we devised a pair of experiments. The
perceived contrast of stabilized versus moving stimuli
was indeed reduced by about 20%, but performance
was similar (p . 0.05, two-tailed binomial z test, n ¼
;250) when subjects discriminated naturally moving
stimuli presented at full and reduced (80%) contrast
(Figure 4). These results suggest reduced contrast was

Figure 3. Stimulus motion improves acuity at the resolution
limit. (A) In natural viewing, the stimulus (‘‘E’’) is fixed in space
and the retinal cone mosaic (circles) moves due to fixational eye
motion (FEM, light blue arrow). (B) In stabilized viewing, the
stimulus moves with the retina (orange arrow), such that it
stays locked on the same cones during presentation. (C) In the
incongruent motion condition, the stimulus moves - while the
eye performs its habitual FEM - in a path according to a
previously recorded FEM trace. (D) Stimulus stabilization
reduced discrimination performance in all subjects by an
average of 23%. (E) Relative to the natural viewing condition,
subjects performed equally well or better when incongruent
motion was employed. Asterisk (*) denotes p value , 0.05.
Error bars are standard error of the mean.
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Retinal image motion helps pattern discrimination



Simple averaging is not sufficient



The problem

I(~x, t) = S(~x��~x(t)) + ✏(~x, t)

�̂~x(t) = arg min
�~x(t)

|I(~x, t)� S(~x��~x(t))|2
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Z
I(~x+�~x(t)) dt



Graphical model for separating form and motion
(Alex Anderson, Ph.D. thesis)

Eye position

Spikes
(from LGN afferents)

Pattern
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Alternating estimation of pattern (S) and position (X)

Given current estimate of position (X), update S 
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Given current estimate of pattern (S), update X 



Retina

Internal	Pattern		
Estimate,	S

Internal	Position	
Estimate,	X

Given current estimate of position (X), update S 



Given current estimate of pattern (S), update X 

P (Xt|R0:t)

P (Xt+1|R0:t)

P (Xt+1|R0:t+1)

P (Rt+1|Xt+1, S = St)

Rt+1 St



Joint estimation of pattern (S) and position (X)



Motion helps estimation of pattern S



Including a prior over S

Eye position

Spikes
(from LGN afferents)

Pattern
Sparse

prior

ˆA = argmax

A
logP (R|A) + logP (A)

sparse

S = DA



Learned dictionary D



Prior over S improves inference 



Prior over S improves inference 

Figure 3: Sparse Coding Prior Improves the Image Inference: FIXME Top: Results of the decoding

process. The top left shows the object projected onto a cone mosaic. The top right shows an

exponential moving average of the spikes of the ON and OFF cells. The bottom left shows the

inferred pattern after 200 ms of spikes. The bottom right shows the true eye path (green) and

the estimated eye path (blue) plus or minus one standard deviation. The path was generated with

a diffusion constant of 100 arcmin2/sec. Cone spacing is 1 arcmin. The pattern is defined on a

14 ⇥ 14 array with each pixel spaced apart by 0.7 arcmin. The pattern is inferred using a sparse

coding basis trained on MNIST. Bottom: As a function of time, decoding with a sparse coding

prior works better than the independent pixel prior and the non-sparse prior (p = 0.005). The

shaded region reflects plus or minus half a standard deviation over different trials.
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Three questions

1. How do we see in the presence of fixational eye 
movements? 

2. What is the optimal spatial layout of the image sampling 
array?  

3. How is information integrated across multiple fixations?  



Correct label:  Pomeranian

What is this?



Correct label:  Afghan hound

What is this?



DRAW: A Recurrent Neural Network For Image Generation

Time

Figure 5. Cluttered MNIST classification with attention. Each
sequence shows a succession of four glimpses taken by the net-
work while classifying cluttered translated MNIST. The green
rectangle indicates the size and location of the attention patch,
while the line width represents the variance of the filters.

Table 1. Classification test error on 100 ⇥ 100 Cluttered Trans-
lated MNIST.

Model Error
Convolutional, 2 layers 14.35%
RAM, 4 glimpses, 12 ⇥ 12, 4 scales 9.41%
RAM, 8 glimpses, 12 ⇥ 12, 4 scales 8.11%
Differentiable RAM, 4 glimpses, 12 ⇥ 12 4.18%
Differentiable RAM, 8 glimpses, 12 ⇥ 12 3.36%

time-step, whereas RAM used four, at different zooms.

4.2. MNIST Generation

We trained the full DRAW network as a generative model
on the binarized MNIST dataset (Salakhutdinov & Mur-
ray, 2008). This dataset has been widely studied in the
literature, allowing us to compare the numerical perfor-
mance (measured in average nats per image on the test
set) of DRAW with existing methods. Table 2 shows that
DRAW without selective attention performs comparably to
other recent generative models such as DARN, NADE and
DBMs, and that DRAW with attention considerably im-
proves on the state of the art.

Table 2. Negative log-likelihood (in nats) per test-set example on
the binarised MNIST data set. The right hand column, where
present, gives an upper bound (Eq. 12) on the negative log-
likelihood. The previous results are from [1] (Salakhutdinov &
Hinton, 2009), [2] (Murray & Salakhutdinov, 2009), [3] (Uria
et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende et al., 2014),
[6] (Salimans et al., 2014), [7] (Gregor et al., 2014).

Model � log p 
DBM 2hl [1] ⇡ 84.62

DBN 2hl [2] ⇡ 84.55

NADE [3] 88.33

EoNADE 2hl (128 orderings) [3] 85.10

EoNADE-5 2hl (128 orderings) [4] 84.68

DLGM [5] ⇡ 86.60

DLGM 8 leapfrog steps [6] ⇡ 85.51 88.30

DARN 1hl [7] ⇡ 84.13 88.30

DARN 12hl [7] - 87.72
DRAW without attention - 87.40
DRAW - 80.97

Figure 6. Generated MNIST images. All digits were generated
by DRAW except those in the rightmost column, which shows the
training set images closest to those in the column second to the
right (pixelwise L

2 is the distance measure). Note that the net-
work was trained on binary samples, while the generated images
are mean probabilities.

Once the DRAW network was trained, we generated
MNIST digits following the method in Section 2.3, exam-
ples of which are presented in Fig. 6. Fig. 7 illustrates
the image generation sequence for a DRAW network with-
out selective attention (see Section 3.1). It is interesting to
compare this with the generation sequence for DRAW with
attention, as depicted in Fig. 1. Whereas without attention
it progressively sharpens a blurred image in a global way,
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Abstract

This paper introduces the Deep Recurrent Atten-
tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction
A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-
scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
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Retinal ganglion cell sampling array
(shown at one dot for every 20 ganglion cells)

(from Anderson & Van Essen, 1995)



B

Figure 1: A: Diagram of single kernel filter parameterized by a mean µi and variance �i B: First row
Examples from our variant of the cluttered MNIST dataset. Second row Examples with additional
random rescaling of the digit.

This factorization is shown in equation 3, where the kernel is defined as an isotropic gaussian. For82

each kernel filter, given a center µi and scalar variance �i, a two dimensional gaussian is defined over83

the input image as shown in Figure 1A.84

ki(m,n) = p(m;µi,x,�i)p(n;µi,y,�i) (3)

While this factored formulation reduces the space of possible transformations from input to output, it85

can still form many different mappings from an input U to output V . Figure 2B shows the possible86

windows which an input image can be mapped to an output V . The blue circles denote the central87

location of a particular kernel. Each kernel maps to one of the outputs Vi. The kernel filters in88

our model can be adjusted through two distinct mechanisms: control and training. control defines89

adjustments to the retinal sampling lattice as a whole and can include translation and rescaling of90

the entire lattice. Translational control can be considered analgous to the motor control signals91

which executes saccades of the eye in biology. In contrast, training defines structural adjustments to92

individual kernels which include its position in the lattice as well as its variance. These adjustments93

are only possible during training and are fixed afterwards. Training adjustments can be considered94

analagous to the layout of the retinal sampling lattice which is directed by evolutionary pressures in95

biology.96

3 Recurrent Neural Architecture for Attention97

We develop a recurrent model of overt attention inspired by Mnih et al. (2014). A sample input98

image U is reduced by a glimpse generator using equation 4 to create a output ‘glimpse’ Vt. We99

omit the sample index n to simplify notation. This glimpse Vt is processed by a fully-connected100

recurrent network frnn(). Equation 4-9 details the feedforward process of generating the kernel filter101

configurations which define the retinal sampling lattice for the next time point.102

3

Learning the glimpse window sampling array
(Cheung, Weiss & Olshausen, 2017)

Example MNIST scenes

• Network is trained to correctly 
classify the digit in the scene.

• To do this it must find a digit 
and move its glimpse window 
to that location.

Object identity Control

Recurrent network

Glimpse

Scene



Evolution of the sampling array during training



Evolution of the sampling array during training



Translation only
(Dataset 1)

Translation only
(Dataset 2)

Translation & zoom
(Dataset 1)

Translation & zoom
(Dataset 2)

Learned sampling arrays for different conditions 
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Macaque Retina Model
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cells is shown in Fig. Q(B). In this case the slopes of 
the regression lines of cell body size on the logarithm 
of cell density for the nasal (a = 43.4, h = -6.87) and 
the temporal cells (u = 53.6, h = 9.1) were not 
significantly different (r = 1.0, df‘ 54). Thus the 
differences in cell body size of PX cells in different 
parts of the retina is clearly related to the variation 
in ganglion cell density, although the differences in 
dendritic field size is not simply related to cell density 
alone. The correlation coefficient for the dendritic 
field size of both nasal and temporal Pa cells and the 
logarithm of the ganglion cell density was 0.97, i.e. 
most of the variance in dendritic field size can be 
attributed to differences in ganglion cell density. 

As a check on the accuracy of our ganglion cell 
counts we used them to estimate the total number of 
ganglion cells in the macaque retina which can, in 
turn, be compared with published estimation of the 
number of axons in the optic nerve. To do this we 
plotted onto a scaled drawing of one Nissl-stained 
whole-mounted retina (670mm’ in area) the iso- 
density contours estimated from the counts along the 

A 

meridia. The isodensity contours were drawn as 
approximately ellipsoid but tapering in the nasal 
retina as has been shown in previous studies of 
peripheral ganglion cell counts of the primate 
retina.6’,“x The area between adjacent contours was 
multiplied by the mean ceil density of the two iso- 
density contours. This was repeated for the area 
between all pairs of contours and the totals for all 
areas were summed to give the total number of 
ganglion cells. This yielded an estimate of 1.4 x 10” 
ganglion cells in the retina, in good agreement with 
estimates of the number of axons in the optic nerve 
i.e. 1.5-1.8 x IOh, I.4 x I O'  and 1.2-1.3 x 10”.40~so.” If 
we neglect the naso-temporal overlap, which is small 
in primates,h.h’ then approximately 60’1/ of the cells lie 
in the nasal retina and 40“;) in the temporal retina. 

Our intention was to show which cell types project 
to the magno- and parvocellufar layers of the lateraf 
geniculate nucleus and to estimate the percentage of 
retinal ganglion cells at different eccentricities which 
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ECCENTRICITY mm 

Fig. 6(A) and (B) 
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Eccentricity

(Perry, Oehler & Cowey, 1984)
Macaque Retina
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A FOVEATED RETINA-LIKE SENSOR 

USING CCD TECHNOLOGY 
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ABSTRACT 

A CCD imager whose sampling structure is loosely modeled after the 
biological visual system is described. Its architecture and advantages over 
conventional cameras for pattern recognition are discussed. The sensor has 
embedded in its structure a logarithmic transformation that makes it size and 
rotation invariant. Simulations on real images using the actual sensor 
geometry have been performed to study the sensor performance for 2D 
pattern recognition and object tracking. 

A CCD imager consisting of 30 concentric circles and 64 sensors per 
circle, whose pixel size increases linearly with eccentricity has been 
fabricated. The central part has a constant resolution with 102 photocells. 
The CCD is made in a three phase buried channel technology with triple 
poly and double metal layers. Preliminary results of the testing are given 
showing the validity of the design. 
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Figure 8: Photograph of the fovea, conslstmg of 102 
photosensitive cells, and the first ten concentric 
circles. 

Driving Electronics 

One of the complications of this architecture is the relatively large amount of 
clocks and control signals to read out and synchronize the charge flow. Up to 18 
different clocks are required. When the sensor has to be used as part of a moving 
platform for tracking purposes, it is important to minimize the number of wires and 
external interconnections. Also the dimensions and weight of the clock drivers should 
be small. For this reason an integrated clocking system has been developed that 
generates all the required clocks. It has been fabricated in a 2 !lm CMOS process. The 
chip is fully custom designed in order to reduce the amount of real estate and power 
dissipation as much as possible. The total chip area is less than 3 mm2. A 
photograph of the chip is given in Fig. 9 [27]. This chip will be mounted together 
with the CCD imager on a lightweight substrate and incorporated into the motor 
control platform. The chip is fully functional. Measured outputs of the controller 
chip is shown in Fig. 10. 

A Foveated Image Sensor in Standard CMOS Technology 

Robert Wodnicki, Gordon W. Roberts, Martin D. Levine 
Department of Electrical Engineering, McGill University, 

Montrkal, Qukbec, CANADA, H3A 2A7 

Abstract 

We describe the design and  implementation of a CMOS 
foveated image sensor for use in mobile robotic and ma- 
chine vision applications. T h e  sensor is biologically moti- 
vated and performs a spatial image transformation from 
Cartesian to  log-polar coordinates. As opposed to  tradi- 
tional approaches, the  sensor benefits from a high degree 
of integration, minimal power consumption and  ease of 
manufacture due to  the use of a s tandard 1.2pm ASIC 
CMOS process. T h e  prototype imager operates at 28 
frames/sec when interfaced to  a PC. 
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Introduction 

Foveation is a biologically motivated image transforma- 
tion which has  a t t racted the interest of researchers in the 
fields of computer vision and robotics. I ts  principle ad- 
vantages are the  realization of a high degree of image 
compression as well as the property of scale and rotation 
invariance [2]. T o  date  various computational implemen- 
tations [3][6], as well as a fully custom CCD [a] image sen- 
sor have been proposed. While these approaches achieve 
adequate performance, they nevertheless suffer from the 
need for considerable support resources such as networks 
of DSP processors and digital frame-grabbers. These re- 
sources may be readily available in a laboratory environ- 
ment for use with a tethered robot ,  however truly au- 
tonomous mobile systems will require foveated sensors 
which are extremely compact and energy efficient. Re- 
cent advances in VLSI technology have made poissible the 
implementation of image sensors using standard CMOS 
ASIC’s [4]. Such image sensors benefit from the integra- 
tion of image sensing and image processing functions on 
the same die, yielding a vast reduction in power consump- 
tion and system mass. These savings make possible the 
realization of a completely self-contained foveated image 
sensor for use on mobile robots. We have designed, fab- 
ricated and tested such a device for use in a robot eye for 
an autonomous robot system [3]. In the present discus- 
sion we summarize key design issues and give iresults of 
the functioning sensor. 

Foveation 

The concept of foveation in machine vision stems from 
a detailed examination of the human visual pathway [ B ] .  
The human retina can be roughly divided into two dis- 
tinct regions. The  f ovea  is a small area of very high, 

J 
0 

Mapping template Periphery image 

Figure 1: T h e  foveated mapping 

constant photoreceptor density located near the center of 
the retinal plane. Outside the fovea, in the region known 
as the periphery, visual acuity decreases as a function of 
radial distance from the center of the retina, due to  spa- 
tial averaging of incident intensity performed over regions 
known as receptzve f ields.  

Based on psychophysical experiments, researchers have 
characterized the image transformation performed by the 
visual pathway in mathematical terms. This  nonlinear 
image transformation is known as the log-polar or foveated 
mapping. Fig. 1 illustrates how the mapping is per- 
formed. Image coordinates are mapped from the origi- 
nal image via a mapping template (a) to  separate images 
for the  fovea and the periphery (b). D a t a  in the original 
image corresponding to  the fovea undergoes a one-to-one 
mapping to  the fovea image. Data  corresponding to  the 
periphery undergoes a many-to-one mapping in which all 
image values within a receptive field (RF) are averaged to  
produce a single value in the periphery image. RF’s in the  
periphery are distributed along rays of angular displace- 
ment ,  AQ. All RF’s on ring i have radial displacement 
given by, 
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Figure 5: Photomicrograph of the CMOS foveated sensor 
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Figure 6:  Example of sensor performance. (a) original image with a cross marked A at the center of gaze. (b) sensor 
output .  The  detailed features of the  central part  of the  original image are preserved in the  fovea image, while i ts  
surroundings are mapped to  the periphery image with a log-polar function as indicated in Fig. 1. Horizontal lines 
in the periphery image are due t o  digital scanners in the external circuitry. 
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Three questions

1. How do we see in the presence of fixational eye 
movements? 

2. What is the optimal spatial layout of the image sampling 
array?  

3. How is information integrated across multiple fixations?  



In order to integrate visual information across 
fixations, two things must be encoded and 
combined at each fixation:

  1) position of the glimpse window
  2) contents of the glimpse window

We need to *bind* these two things together!

A scene may then be represented as a 
superposition of such bindings.



• binding without growing dimensionality
• fully distributed representation
• mathematical framework for storing 

and recovering information: 
- multiplication for binding  
- addition for combining  
- operators and inverses

Hyperdimensional Computing: An Introduction to Computing
in Distributed Representation with High-Dimensional
Random Vectors

Pentti Kanerva
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Abstract The 1990s saw the emergence of cognitive
models that depend on very high dimensionality and

randomness. They include Holographic Reduced Repre-

sentations, Spatter Code, Semantic Vectors, Latent Semantic
Analysis, Context-Dependent Thinning, and Vector-

Symbolic Architecture. They represent things in high-

dimensional vectors that are manipulated by operations that
produce new high-dimensional vectors in the style of tradi-

tional computing, in what is called here hyperdimensional

computing on account of the very high dimensionality. The
paper presents the main ideas behind these models, written as

a tutorial essay in hopes of making the ideas accessible and

even provocative. A sketch of how we have arrived at these
models, with references and pointers to further reading, is

given at the end. The thesis of the paper is that hyperdi-

mensional representation has much to offer to students of
cognitive science, theoretical neuroscience, computer

science and engineering, and mathematics.

Keywords Holographic reduced representation !
Holistic record ! Holistic mapping ! Random indexing !
Cognitive code ! von Neumann architecture

Introduction: The Brain as a Computer

In this tutorial essay we address the possibility of under-
standing brainlike computing in terms familiar to us from

conventional computing. To think of brains as computers
responsible for human and animal behavior represents a

major challenge. No two brains are identical yet they can

produce the same behavior—they can be functionally
equivalent. For example, we learn to make sense of the

world, we learn language, and we can have a meaningful

conversation about the world. Even animals without a full-
fledged language can learn by observing each other, and

they can communicate and function in groups and assume

roles as the situation demands.
This means that brains with different ‘‘hardware’’ and

internal code accomplish the same computing. Further-

more, the details of the code are established over time
through interaction with the world. This is very different

from how computers work, where the operations and code

are prescribed in detail from the outside by computer-
design engineers and programmers.

The disparity in architecture between brains and

computers is matched by disparity in performance.
Notably, computers excel in routine tasks that we—our

brains—accomplish with effort, such as calculation,
whereas they are yet to be programmed for universal

human traits such as flexible learning, language use, and

understanding.
Although the disparity in performance need not be due

to architecture, brainlike performance very likely requires

brainlike architecture. The opposite is not necessarily true,
however: brainlike architecture does not guarantee bra-

inlike ‘‘intelligent’’ behavior, as evidenced by many kinds

of mental illness. Thus, we can look at the brain’s
architecture for clues on how to organize computing.

However, to build computers that work at all like brains,

we must do more than copy the architecture. We must
understand the principles of computing that the architec-

ture serves.

P. Kanerva (&)
Center for the Study of Language and Information, Stanford
University, Stanford, CA 94305, USA
e-mail: pkanerva@csli.stanford.edu
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Network for binding and combining
(Eric Weiss, Ph.D. thesis)



t=0 t=1 t=2

m			=			v6		⊙	rt=0      +   v5		⊙	rt=1      +    v4		⊙	rt=2   + . . .

Example encoding

. . .



Example queries

Where is the ‘5’? 

answer =  v5* ⨀ m
             =  v5* ⨀ (v6 ⨀ rt=0  +  v5 ⨀ rt=1  +  v4 ⨀ rt=2  +  …) 
             ≈                  0         +         rt=1      +        0

What object is in the center? 

answer =  rcenter* ⨀ m
             =  rcenter* ⨀ (v6 ⨀ rt=0  +  v5 ⨀ rt=1  +  v4 ⨀ rt=2  +  …) 
             ≈                    v6          +        0          +       0



background
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(a) Example image (b) ”below a 2” (c) ”to the left of a 1” (d) Combined

Figure 1: Query constraint satisfaction maps visualized for a training example. For this image, the
query is ”below a 2 and to the left of a 1”. The correct answer is therefore ”7”.

through multiplication of the Inverse DFT matrix corresponding to the chosen location encoding
parameters. Figure 1b shows the resulting map for ”below a 2”, and figure 1c shows the map for
”to the left of a 1”. We then take the point-wise product of these two maps and normalize, resulting
in the map visualized in figure 1d. As hoped, the majority of the weight is located at the position
of the 7 in the image, which is the correct answer for this example. The final step is to retrieve the
object identity information contained in the scene vector at the location specified by this map. To
do this we convert this final map into a complex vector encoding location. This is achieved through
multiplication by the DFT matrix. Then we multiply the scene vector by the inverse of this location
vector (for location vectors this happens to be its complex conjugate). The resulting vector should
then contain an ”unbound” vector representing ”7”, plus other vectors which will have a near-zero
dot product with any of the ten vectors that represent digit identities. We use the cross-entropy cost
function. The algorithm achieves about 95 percent accuracy on the artificial multi-MNIST dataset
described in this experiment.

3 PATH PLANNING

Our framework can also be used to solve a simple navigation problem. In this experiment, a map
of obstacles and a reward function is stored as a complex vector. Actions, also represented as
complex vectors, act on these maps to produce translations. It is possible to map the concepts
discussed previously onto the value iteration algorithm from reinforcement learning, providing a
way to calculate the optimal action given the current state and reward function. The operations
are very similar to those outlined in the first experiment, making use of the convolution theorem
to reduce computational cost. The only difference is that instead of reducing over spatial positions
using a product, we reduce using a max function. The maze, reward function, and computed value
function are shown in figure 2.

(a) Environment map (b) Value function

Figure 2: Obstacle/reward map and calculated value function described in the path planning experi-
ment. In (a), black indicates walls and green indicates high reward. In (b), red indicates high reward,
while blue indicates low reward.

3

What is below a ‘2’ and to the left of a ‘1’?

Spatial reasoning

answer = f(a1 ⨀ a2) ⨀ m

a1 = f-1(rdown (v2* ⨀ m))
a2 = f-1(rleft (v1* ⨀ m))

a1 ⨀ a2



Main points
• The drift movements that occur during fixation may 

be part of a purposeful, active sensing strategy to 
maximize the effective resolution offered by the 
foveal cone array.

• A foveated image sampling lattice similar to the 
primate retina emerges as the optimal solution for 
visual search, but only for an eye without the ability 
to zoom.

• Neural networks with the ability to bind and combine 
information across saccades are capable of building 
up a scene representation that supports spatial 
reasoning.


