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Learning algorithms ensure (global) quality of inference process

But what about the (local) labels assigned to data ? 

Can we find LOCAL and SUCCINCT certificates that validate correctness of 
data labels ? 



Local Validation in Classification

hw, xi+ b = 0

Platt scaling (P99): p(y = 1 | x, w, b) =
1

exp(A(hw, xi+ b) + B)

Parameters are estimated using ML



How do we know if an answer is good ? 

Group objects into meaningful clusters

Different methods produce different answers
⁃ k-means/medoids, HAC, spectral clustering, subspace 

clustering, correlation clustering, information bottleneck, ...

Clustering Data



Validating Clusterings

Internal validation:
intra- vs inter-cluster
distance

External validation:
compare to a reference
clustering

Relative validation/
stability:
compare different runs 
of algorithm

d(C, C 0)



Power to the points
Given a clustering of data, determine confidence scores
for the label assigned to a point.

1. Data-independent scale.
2.Agnostic to the method by which the clustering was 

made.
3.Works for a single clustering...
4.but can be used to compare different clusterings.

Desiderata:



Outlier Detection vs Local Validation

Outlier changes cost function
but not the structure of the answer

min
S⇢P,|S|�(1�e)|P|

min
C(S)

f (C)

Locally unstable points change the
structure of the answer, but not the cost
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Regions of influence

A point should be in a cluster if its 
region of influence overlaps the 
cluster region of influence
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Regions of influence

A point should be in a cluster if its 
region of influence overlaps the 
cluster region of influence

To estimate a point's affinity for a cluster, add it as a 
singleton "cluster" and see how much area it "steals" from 
neighboring clusters

Distances are "one-dimensional" measures of influence



Regions can be shielded

q

C

C0

C⇤

q is equidistant from C and C' (and half the distance from C*), and by 
distance estimation alone should have same chance of being assigned to 
either as to C* 



Voronoi property of clusterings

It's always better to assign a point to its nearest neighbor
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Voronoi Regions of Influence
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Voronoi Regions of Influence
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Voronoi Regions of Influence

R3

ai =
Vol(Ri)
Vol(R)

Affinity of a point for a cluster is the fractional area stolen from it

p

a(p) = (a1, . . . , ak)

Â ai = 1



Voronoi Regions of Influence

C1 C2

C3

R3

ai =
Vol(Ri)
Vol(R)

Affinity of a point for a cluster is the fractional area stolen from it

• A point is "stable" if the maximum affinity is more than 0.5: 
• Maximum affinity is a continuous scalar function
• This idea was first used for doing interpolation of a scalar field (natural 

neighbor interpolation)





Incorporating cluster density

If Voronoi diagram has polyhedral cells, then all relevant
volumes are polyhedral cells.

d(p, x) = kp � xk2
d(p, x) = kp � xk2 � w

x

(power diagram)





Generalizing to other distance spaces

Bregman divergences: Kullback-Leibler, Itakura-Saito, ...
Bf(x, y) = f(x)� f(y)� hrf(y), x � yi

d(p, x) = Bf(p, x)� w

x

d(p, x) = d(p, y) ⌘ c + hrf(y)�rf(x), pi = 0

Kernel distances: graphs, strings, ...

d(p, x) = kF(p)� F(x)k2 � w

x



Computing affinity vectors
In 2D:
• Computing Voronoi diagram is O(k log k)
• Intersection of two convex polygons takes O(k) time
• k-vertex polygon can be triangulated in O(k) time
• Area of a triangle can be computed in O(1) time.

Overall: O(k log k) time per query

In 3D:

• Voronoi diagram takes O(k2) time.
• Intersection of convex polyhedra takes O(k) time
• Tetrahedralization can be done in O(k) time.

Overall: O(k2) time per query



Computing affinity vectors
In 2D:
• Computing Voronoi diagram is O(k log k)
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• k-vertex polygon can be triangulated in O(k) time
• Area of a triangle can be computed in O(1) time.

Overall: O(k log k) time per query

In 3D:

• Voronoi diagram takes O(k2) time.
• Intersection of convex polyhedra takes O(k) time
• Tetrahedralization can be done in O(k) time.

Overall: O(k2) time per query

Voronoi diagram in d dimensions has 

complexity O(kd/2)



Approximate Affinities
# > 0 ã |ã � a|  #Given find such that 

C1 C2

C3

p

Sampling algorithm:

• Sample s from Voronoi cell of p
• Find second closest neighbor of s
• Increment count of that neighbor

• At end, return normalized counts.

Each sample is processed in O(k) time
Need to solve two problems:
1) How many samples to pick
2) How to sample from Voronoi cell of p



Approximate Affinities
# > 0 ã |ã � a|  #Given find such that 

C1 C2

C3

p

Sampling algorithm:

• Sample s from Voronoi cell of p
• Find second closest neighbor of s
• Increment count of that neighbor

• At end, return normalized counts.

Each sample is processed in O(k) time
Need to solve two problems:
1) How many samples to pick
2) How to sample from Voronoi cell of p

O(
1

#2

log

1

#
)



Volume Sampling

• Voronoi cell of p is a convex body
• Membership oracle is easy: "is sample nearer to p than to any other point"
• Use standard results for sampling from convex body with membership oracle

       O*(d4) samples suffice [LV06]. 
• In practice, use hit-and-run sampling.
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Dimensionality Reduction

Running time is polynomial in d (ambient space dimension).

Consider Euclidean distance: 

d(x, y) = kx � yk2

k clusters induce a k-1 dimensional space H
x = u + w, u 2 H, w ? u

d(x, x

0) = ku � u

0k2 + kw � w

0k2

Any Voronoi cell can be written as 

V = V0 +H?, V0 2 H

Volume ratios need only be measured in H



Algorithm Summary

Given k clusters and query p

• Project clusters to k-dimensional space
• Sample uniformly from Voronoi cell of p
• Compute frequencies of second-nearest neighbors
• Return approximate affinity scores

Overall running time: poly(k, 1/#)
In practice: on the order of milliseconds/query. 
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Accelerating Clustering

"Active clustering": only pick points that inform true decision boundary

Idea: use affinity scores to identify points that might lie on boundary

• Use fast procedure to generate cluster centers (k-means++ initialization)
• Sample points with low affinity scores, as well as few points with high

       affinity scores.
• Cluster reduced sample.

Result: comparable accuracy of clustering with orders of magnitude speedup

Work in progress (with Kilian Weinberger): speeding up classification
algorithms using affinity scores. 

Points with low affinity scores act as sparse "skeleton" of data set.



Model Selection
How do we choose the right "k" for a clustering with k centers ? 

          


































  





Model Selection
Average stability does not increase monotonically with increasing clusters
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Questions

Can affinity scores be correlated with the probabilities extracted from 
a clustering model ? 

The (maximum) affinities define a (scalar) field over the data. Can topological
methods like persistence help to identify "interesting" parts of the space ? 

Can we compute points of low affinity (the data skeleton) quickly 
(without exploring the entire space) ? 

Are there other applications where affinity scores can be used as an 
accelerant ? 
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