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Learning algorithms ensure (global) quality of inference process

But what about the (local) labels assigned to data 2

Can we find LOCAL and SUCCINCT certificates that validate correctness of
data labels 2



[.ocal Validation in Classification
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Platt scaling (P99): plv =1[xw.b) = 1+ B)

Parameters are estimated using ML



Clustering Data
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Group objects into meaningful clusters

Different methods produce different answers
- k-means/medoids, HAC, spectral clustering, subspace

clustering, correlation clustering, information bottleneck, ...

How do we know if an answer is good 2



Validating Clusterings

Internal validation:

intra- vs inter-cluster
distance

External validation:
compare to a reference
clustering

Relative validation/
stability:

compare different runs
of algorithm




Power to the points

Given a clustering of data, determine confidence scores
for the label assigned to a point.

Desiderata:

1. Data-independent scale.

2. Agnostic to the method by which the clustering was
made.

3.Works for a single clustering...

4.but can be used to compare different clusterings.



Outlier Detection vs Local Validation
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Outlier changes cost function
Q but not the structure of the answer

0 Locally unstable points change the
@ structure of the answer, but not the cost
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Distances are "one-dimensional™ measures of influence



Regions can be shielded

q is equidistant from C and C' (and half the distance from C*), and by
distance estimation alone should have same chance of being assigned to
either as to C*



Voronoi property of clusterings

It's always better to assign a point to its nearest neighbor



Voronoi Regions of Influence




Voronoi Regions of Influence




Voronoi Regions of Influence

C1 0 o
VOI(RZ')
K; —
Vol(R)
op
0 \R3
Cs



Voronoi Regions of Influence

C1 0 o &
VO](RZ')
K; =

Vol(R)

@)

LN
O Rj
Cs

Affinity of a point for a cluster is the fractional area stolen from it

* A point is "stable" if the maximum affinity is more than 0.5:
e Maximum affinity is a continuous scalar function

 This idea was first used for doing interpolation of a scalar field (natural
neighbor interpolation)
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Incorporating cluster density

If Voronoi diagram has polyhedral cells, then all relevant
volumes are polyhedral cells.

d(p,x) = ||p — x||* d(p,x) = [lp — x[|* — wx
(power diagram)
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Generalizing to other distance spaces

Bregman divergences: Kullback-Leibler, ltakura-Saito, ...
Bp(x,y) = ¢(x) —¢(y) — (Vo(y), x —y)
d(p,x) = By(p,x) — wx
d(p,x) = d(p,y) =c+ (Vo(y) = Vo(x),p) =0

Kernel distances: graphs, strings, ...

d(p, x) = || (p) — (x)||* — wx



Computing affinity vectors

In 2D:
» Computing Voronoi diagram is O(k log k)
* Intersection of two convex polygons takes O(k) time
* k-vertex polygon can be triangulated in O(k) time
* Area of a triangle can be computed in O(1) time.

Overall: O(k log k) time per query
In 3D:

e Voronoi diagram takes O(k2) time.
* Intersection of convex polyhedra takes O(k) time
e Tetrahedralization can be done in O(k) time.

Overall: O(kz) time per query
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* Intersection of two convex polygons takes O(k) time
* k-vertex polygon can be triangulated in O(k) time
* Area of a triangle can be computed in O(1) time.

Voronoi diagram in d dimensions has

complexity O(kd/2)

Overall:

In 3D:

e Voronoi diagram takes O(k™) time.
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e Tetrahedralization can be done in O(k) time.
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Approximate Affinities
Given € > 0 find & suchthat [& —a| <e¢

Sampling algorithm:

Ci1 0 o
e Sample s from Voronoi cell of p
* Find second closest neighbor of s
. * Increment count of that neighbor
p
. * At end, return normalized counts.
Cs

Each sample is processed in O(k) time
Need to solve two problems:

1) How many samples to pick

2) How to sample from Voronoi cell of p
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Volume Sampling

Voronoi cell of p is a convex body

Membership oracle is easy: "is sample nearer to p than to any other point"
Use standard results for sampling from convex body with membership oracle

O*(d4) samples suffice [LY06].

In practice, use hit-and-run sampling.
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Dimensionality Reduction

Running time is polynomial in d (ambient space dimension).

Consider Euclidean distance:

d(x,y) = |lx =yl

k clusters induce a k-1 dimensional space H
x=u+w,ucHH,wlu

d(x,x') = [Ju—u'||* + |lw — /||

Any Voronoi cell can be written as

V=V +HLV eH

Volume ratios need only be measured in H



Algorithm Summary

Given k clusters and query p

* Project clusters to k-dimensional space

e Sample uniformly from Voronoi cell of p

e Compute frequencies of second-nearest neighbors
* Return approximate affinity scores

Overall running time: poly(k, 1/¢)
In practice: on the order of milliseconds/query.



Clustering digits

Highly stable points

20

25

Highly unstable points



Accelerating Clustering

"Active clustering": only pick points that inform true decision boundary
|dea: use affinity scores to identify points that might lie on boundary
* Use fast procedure to generate cluster centers (k-means++ initialization)
e Sample points with low affinity scores, as well as few points with high
affinity scores.
e Cluster reduced sample.

Result: comparable accuracy of clustering with orders of magnitude speedup

Work in progress (with Kilian Weinberger): speeding up classification
algorithms using affinity scores.

Points with low affinity scores act as sparse "skeleton" of data set.



Model Selection

How do we choose the right "k" for a clustering with k centers 2

Cost of K-Means Vs Number of Clusters
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Model Selection

Average stability does not increase monotonically with increasing clusters
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Sum of Stability Scores Vs Number of Clusters

(Normalized) Sum of Stability Scores
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Questions

Can affinity scores be correlated with the probabilities extracted from
a clustering model 2

The (maximum) affinities define a (scalar) field over the data. Can topological
methods like persistence help to identify "interesting" parts of the space 2

Can we compute points of low affinity (the data skeleton) quickly
(without exploring the entire space) 2

Are there other applications where affinity scores can be used as an
accelerant 2
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