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Deep Learning is Amazing ...
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Deep Learning is Amazing ...

INTEL IS BUYING MOBILEYE FOR $15.3 BILLION IN BIGGEST
ISRAELI HI-TECH DEAL EVER
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This Talk

Simple problems where standard deep learning either

Does not work well

Requires prior knowledge for better architectural/algorithmic choices
Requires other than gradient update rule
Requiers to decompose the problem and add more supervision

Does not work at all

No “local-search” algorithm can work
Even for “nice” distributions and well-specified models
Even with over-parameterization (a.k.a. improper learning)

Mix of theory and experiments
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Outline

1 Piece-wise Linear Curves

2 Flat Activations

3 End-to-end Training

4 Learning Many Orthogonal Functions
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Piecewise-linear Curves: Motivation
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Piecewise-linear Curves

Problem: Train a piecewise-linear curve detector

Input: f = (f(0), f(1), . . . , f(n− 1)) where

f(x) =

k∑
r=1

ar[x− θr]+ , θr ∈ {0, . . . , n− 1}

Output: Curve parameters {ar, θr}kr=1
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First try: Deep AutoEncoder

Encoding network, Ew1 : Dense(500,relu)-Dense(100,relu)-Dense(2k)

Decoding network, Dw2 : Dense(100,relu)-Dense(100,relu)-Dense(n)

Squared Loss: (Dw2(Ew1(f))− f)2

Doesn’t work well ...

500 iterations 10,000 iterations 50,000 iterations
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Second try: Pose as a Convex Objective

Problem: Train a piecewise-linear curve detector

Input: f ∈ Rn where f(x) =
∑k

r=1 ar[x− θr]+
Output: Curve parameters {ar, θr}kr=1

Convex Formulation

Let p ∈ Rn,n be a k-sparse vector whose k max/argmax elements are
{ar, θr}kr=1

Observe: f = Wp where W ∈ Rn,n is s.t. Wi,j = [i− j + 1]+

Learning approach — linear regression: Train a one-layer fully
connected network on (f ,p) examples:

min
U

E
[
(U f − p)2

]
= E

[
(U f −W−1f)2

]
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Second try: Pose as a Convex Objective

min
U

E
[
(U f − p)2

]
= E

[
(U f −W−1f)2

]
Convex; Realizable; but still doesn’t work well ...

500 iterations 10,000 iterations 50,000 iterations
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What went wrong?

Theorem

The convergence of SGD is governed by the condition number of W>W ,
which is large:

λmax(W>W )

λmin(W>W )
= Ω(n3.5)

⇒ SGD requires Ω(n3.5) iterations to reach U s.t.
∥∥E[U ]−W−1

∥∥ < 1/2

Note: Adagrad/Adam doesn’t work because they perform diagonal
conditioning
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3rd Try: Pose as a Convolution

p = W−1f

Observation:

W−1 =



1 0 0 0 · · ·
−2 1 0 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 · · ·
0 0 1 −2 · · ·
...

...
...


W−1f is 1D convolution of f with “2nd derivative” filter (1,−2, 1)

Can train a one-layer convnet to learn filter (problem in R3!)
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Better, but still doesn’t work well ...

500 iterations 10,000 iterations 50,000 iterations

Theorem: Condition number reduced to Θ(n3). Convolutions aid
geometry!

But, Θ(n3) is very disappointing for a problem in R3 ...
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4th Try: Convolution + Preconditioning

ConvNet is equivalent to solving minx E
[
(Fx− p)2

]
where F is

n× 3 matrix with (f(i− 1), f(i), f(i+ 1)) at row i

Observation: Problem is now low-dimensional, so can easily
precondition

Compute empirical approximation C of E[F>F ]
Solve minx E[(FC−1/2x− p)2]
Return C1/2x

Condition number of FC−1/2 is close to 1
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Finally, it works ...

500 iterations 10,000 iterations 50,000 iterations

Remark:

Use of convnet allows for efficient preconditioning

Estimating and manipulating 3× 3 rather than n× n matrices.
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Lesson Learned

SGD might be extremely slow

Prior knowledge allows us to:

Choose a better architecture (not for expressivity, but for a better
geometry)
Choose a better algorithm (preconditioned SGD)
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Flat Activations

Vanishing gradients due to saturating activations (e.g. in RNN’s)
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Flat Activations

Problem: Learning x 7→ u(〈w?,x〉) where u is a fixed step function

Optimization problem:

min
w

E
x

[(u(Nw(x))− u(w?>x))2]

u′(z) = 0 almost everywhere → can’t apply gradient-based methods
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Flat Activations: Smooth approximation

Smooth approximation: replace u with ũ (similar to using sigmoids as
gates in LSTM’s)

u
ũ

Sometimes works, but slow and only approximate result. Often completely
fails

Shai Shalev-Shwartz (huji,ME) Failures of Gradient-Based DL Berkeley’17 23 / 38



Flat Activations: Perhaps I should use a deeper network ...

Approach: End-to-end

min
w

E
x

[(Nw(x)− u(w?>x))2]

(3 ReLU + 1 linear layers; 10000 iterations)

Slow train+test time; curve not captured well
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Flat Activations: Multiclass

Approach: Multiclass
min
w

E
x

[`(Nw(x), y(x))]

Nw(x): to which step does x belong

Problem capturing boundaries
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Flat Activations: “Forward only” backpropagation

Different approach (Kalai & Sastry 2009, Kakade, Kalai, Kanade, Shamir
2011): Gradient descent, but replace gradient with something else

Objective: min
w

E
x

[
1

2

(
(u(w>x))− u(w?>x)

)2]
Gradient: ∇ = E

x

[(
u(w>x)− u(w?>x)

)
· u′(w>x) · x

]
Non-gradient direction: ∇̃ = E

x

[
(u(w>x)− u(w?>x))x

]
Interpretation: “Forward only” backpropagation
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Flat Activation

(linear; 5000 iterations)

Best results, and smallest train+test time

Analysis (KS09, KKKS11): Needs O(L2/ε2) iterations if u is
L-Lipschitz

Lesson learned: Local search works, but not with the gradient ...

Shai Shalev-Shwartz (huji,ME) Failures of Gradient-Based DL Berkeley’17 27 / 38



Outline

1 Piece-wise Linear Curves

2 Flat Activations

3 End-to-end Training

4 Learning Many Orthogonal Functions

Shai Shalev-Shwartz (huji,ME) Failures of Gradient-Based DL Berkeley’17 28 / 38



End-to-End vs. Decomposition

Input x: k-tuple of images of random lines

f1(x): For each image, whether slope is negative/positive

f2(x): return parity of slope signs

Goal: Learn f2(f1(x))
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End-to-End vs. Decomposition

Architecture: Concatenation of Lenet and 2-layer ReLU, linked by
sigmoid

End-to-end approach: Train overall network on primary objective

Decomposition approach: Augment objective with loss specific to first
net, using per-image labels

0.3

1
k = 1

0.3

1
k = 2

0.3

1
k = 3

20000 iterations
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End-to-End vs. Decomposition

Why end-to-end training doesn’t work ?
Similar experiment by Gulcehre and Bengio, 2016
They suggest “local minima” problems
We show that the problem is different

Signal-to-Noise Ratio (SNR) for random initialization:
End-to-end (red) vs. decomposition (blue), as a function of k
SNR of end-to-end for k ≥ 3 is below the precision of float32

1 2 3 4
0

·10−4
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Learning Many Orthogonal Functions

Let H be a hypothesis class of orthonormal functions:
∀h, h′ ∈ H, E[h(x)h′(x)] = 0

(Improper) learning of H using gradient-based deep learning:

Learn the parameter vector, w, of some architecture, pw : X → R
For every target h ∈ H, the learning task is to solve:

min
w

Fh(w) := E
x

[`(pw(x), h(x)]

Start with a random w and update the weights based on ∇Fh(w)

Analysis tool: How much ∇Fh(w) tells us about the identity of h ?
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Analysis: how much information in the gradient?

min
w

Fh(w) := E
x

[`(pw(x), h(x)]

Theorem: For every w, there are many pairs h, h′ ∈ H s.t.
Ex[h(x)h′(x)] = 0 while

‖∇Fh(w)−∇Fh′(w)‖2 = O

(
1

|H|

)

Proof idea: show that if the functions in H are orthonormal then, for
every w,

Var(H, F,w) := E
h

∥∥∥∥∇Fh(w)− E
h′
∇Fh′(w)

∥∥∥∥2 = O

(
1

|H|

)
To do so, express every coordinate of ∇pw(x) using the orthonormal
functions in H
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Proof idea

Assume the squared loss, then

∇Fh(w) = E
x

[(pw(x)− h(x)∇pw(x)]

= E
x

[pw(x)∇pw(x)]︸ ︷︷ ︸
independent of h

−E
x

[h(x)∇pw(x)]

Fix some j and denote g(x) = ∇jpw(x)

Can expand g =
∑|H|

i=1〈hi, g〉hi + orthogonal component

Therefore, Eh (Ex[h(x) g(x)])2 ≤ Ex[g(x)2]
|H|

It follows that

Var(H, F,w) ≤ Ex[‖∇pw(x)‖2]
|H|
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Example: Parity Functions

H is the class of parity functions over {0, 1}d and x is uniformly
distributed

There are 2d orthonormal functions, hence there are many pairs
h, h′ ∈ H s.t. Ex[h(x)h′(x)] = 0 while
‖∇Fh(w)−∇Fh′(w)‖2 = O(2−d)

Remark:

Similar hardness result can be shown by combining existing results:

Parities on uniform distribution over {0, 1}d is difficult for statistical
query algorithms (Kearns, 1999)
Gradient descent with approximate gradients can be implemented with
statistical queries (Feldman, Guzman, Vempala 2015)
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Visual Illustration: Linear-Periodic Functions

Fh(w) = Ex[(cos(w>x)− h(x))2] for h(x) = cos([2, 2]>x), in 2
dimensions, x ∼ N (0, I):

No local minima/saddle points

However, extremely flat unless very close to optimum
⇒ difficult for gradient methods, especially stochastic

In fact, difficult for any local-search method
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Summary

Cause of failures: optimization can be difficult for geometric reasons
other than local minima / saddle points

Condition number, flatness
Using bigger/deeper networks doesn’t always help

Remedies: prior knowledge can still be important

Convolution can improve geometry (and not just sample complexity)
“Other than gradient” update rule
Decomposing the problem and adding supervision can improve
geometry

Understanding the limitations: While deep learning is great,
understanding the limitations may lead to better algorithms and/or
better theoretical guarantees

For more information:

“Failures of Deep Learning”: arxiv 1703.07950
github.com/shakedshammah/failures_of_DL
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