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Motivation




Machine learning success stories

=Recognizing objects in images
after training on more images than a human can see.

= Translating natural languages (somehow)
after training on more text than a human can read.

= Playing Atari games
after playing more games than any teenager can endure.

= Playing Go (famously)
after playing more grandmaster level games than mankind.




What are we doing wrong?

Are our learning algorithms so inefficient?
"Hard to say for the most complex learning systems.

"For simpler systems, in the absence of a strong prior,
the Cramer-Rao bound suggests that this is not the case.




Transfer learning?

Does transfer learning give strong enough priors?
" Transfer learning works well across similar tasks.
" Transfer learning across all human experiences is hypothetical.

= Could there be something else?




Another viewpoint

Is there more signal in data than we think?
* Where to find it?

Typical supervised machine learning systems use

* Elp()] Ely] Ely ¢(x)]
What about

= Beyond correlations... * Elgp(xy)]
—> Causation

- Complex moments




Causation and Moments




Causal confounding

X =aZ + U(—s1,51) Y =bZ+ cX + U(—S3,S3)

Simpson effect

= Suppose we only observe X, Y.

“lIfc<0and b + ca > 0,

Z ~ Bernoulli, p =% then Cor(X,Y) >0




Causal confounding

Apparent regression

Slope b/a+c>0 W
R




Look at the scatterplot!




More scatterplots
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The Hertzsprung—Russell diagram
shows the relationship between
the stars' absolute magnitudes or
luminosities versus their stellar
classifications or effective
temperatures.

Scientists clearly draw causal
conclusions from a scatterplot,
even when interventions are
impossible.




Causal problems with two variables

Given two observed variables X, Y
I.  Either X causes,
II.  orY causes X,

Reichenbach
Ill. or X and Y have unobserved common causes,

V. or X andY are independent.
potentially confounding ]

Let’s focus on causal direction detection (I and Il)




How does causal direction look like?

12 =

In this scatter plot

> _;,:.., |1 = Xis altitude.

4r . 1 =Y is average temperature.
Does the scatter plot reveal whether
ol | = XcausesY

—4r 1 =orYcausesX?
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Footprint example 1 — additive noise
Y=aX+ pf + Noise

| 1 L | | )| 1 | l | 1 1
-3 0 3 —6 0 6 -1 0 1 -1 0 1
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Sometimes the high moments (the corners) reveal something.

(PETERS ET AL., 14)




Footprint example 2 -- coincidences

(JANZING ET AL., 2011)




From scatterplot to causation direction

Detecting causation direction at scale

=*We could build a long list of causal footprint examples, then decide
which example is most appropriate for a given scatterplot, etc.

=*(Or we can construct a classifier...

(LoPez-PAz, ET AL., 2015)




Featurizing a scatterplot

High moments?

m
1
"Fs =— z | 1xjry]-5 for well chosen r and s.
]:

Reproducing Kernel Hilbert space?

F=23" 46y, yp € 3 with (00, ¢ = KC..)

mlaj—q

Learning the features and the classifier

1 m
"F, = ;zjzl dw (X, y;)




Neural Causation Classifier
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Training NCC

We do not have access to large causal direction datasets
But we can generate artificial scatterplots.

Y =f(X)+v(X)e
Step 1 - draw distribution on X

= Draw k~U{1,2,3,4,5} 1r,s~U[0,5]
= Take a mixture of k Gaussians with u~N'(0,7) and a~N (0, s)




Training NCC

Step 2 - draw mechanism f

= Cubic spline with random number of random knots...

Step 3 - draw noise
" Noise ¢ is Gaussian with random variance ~U|[0,5]
= Function v(X) is another cubic spline with random knots.

Step 4 — generate causal scatter plot X —» Y
* Draw xj, &j then compute y; = f(xj) + v(xj)sj

= Rescale Xj,y;j to enforce marginal mean 0 and sdev 1




Training NCC

Step 6 — Generate training examples

= Scatterplot {(xj, yj)} is associated with target label 1

= Scatterplot {(yj, x])} is associated with target label O

Repeat 100000 to generate a training set.
Train the neural network classifier with the usual bag of tricks.
(dropout regularization, rmsprop, cross-validation, etc.)




Sanity check

= After training on artificial data, NCC achieves state-of-the-art [79%)]
performance on the Tiibingen cause-effect dataset”, which contains 100
cause-effect pairs (https://webdav.tuebingen.mpg.de/cause-effect)

Pair Variabele 1 Variable 2 Dataset Ground Truth Weight
pair0001 Altitude Temperature D1 — 1/6
pair0002 Altitude Precipitation D1 — 1/6
pair0003 Longitude Temperature D1 S 1/6
pair0004  Altitude Sunshine hours D1 — 1/6
pair0005 Age Length D2 — 1/7
pair0006 Age Shell weight D2 — 1/7
pair0007 Age Diameter D2 — 1/7
pair0008 Age Height D2 — 1/7
pair0009 Age Whole weight D2 — 1/7
pair0010 Age Shucked weight D2 — 1/7
pair0011 Age Viscera weight D2 — 1/7
pair0012 Age Wage per hour D3 — 1/2
pair0013 Displacement Fuel consumption D4 — 1/4
pair0014 Horse bower Fuel consumpbtion D4 — 1/4




Remarks

= This works also for detecting confounding variables. How to validate that?

=Two-dimensional scatterplots are limited...




Finding
a causal signal
In static Images




Counterfactual on images

Asymmetric relation

= How would this image would
have looked like if one had
removed the cars?

= How would this image would
have looked like if one had
removed the bridge?

Can we use image datasets to
identify the causal dispositions
of object categories?

How to validate a result?




Image datasets

Aabinlad g 7 7+ Imageslabeled with

| personFrontalTrunc ™

=Object of interests (cat, dog, ...)
"Bounding boxes.

The PASCAL VOC dataset contains 20
categories, 11541 images

The COCO dataset is much larger. After
restricting to the same categories than
PASCAL VOC, we have 99309 images.




Featurizing the images

All images are preprocessed using a state-of-the-art pretrained CNN.
Each image is then represented by a vector of 512 features.




Features scores are often interpretable

Features scores
are often interpretable
as features of the scene.

(Zeiler & Fergus, 2013)




Causal and anti-causal features

For each object category, we can also define two sets of features

*The causal features are those that cause the presence of the object of
interest. If the object of interest had not been present in the image, these
feature would still have appeared.

*The anticausal features are those that are caused by the presence of the
object of interest. If the object of interest had not been present in the
image, these feature would not have appeared.




Causal and anti-causal features

If X and F are positively correlated,

. . 4
a trained classifier may rely on SCORE(F). Event X
Presence of a

This correlation may occur because car in the image/

=X—>F (anticausal feature) ' t
Example : F = presence of wheels. p o

"F->X (causal feature) Event F
Example: F = presence of road. Predonc

= F & C > X (something else) feature
Example: F = bike, C=street . 4




Proxy variables

scene (real world)

We hope to see a similar
footprint between the

v

1
1
car (object)  — ’ :
! scores computed by a
—
: wheel ) . : well tuned classifier.
Assume there is A (feature image (pixels) — 3
a causal footprint in the : — —> score(wheel)
distribution of variables that : — A
represent the presence of : feature extractor

an object or a feature




Empirically identifying
causal and anti-causal features

=*We apply NCC to the feature scores and object scores to identify the
top 1% causal and anticausal features for each of the twenty
categories.

» NCC was trained using artificial data only (not image specific)
® The same NCC classifier is used for all categories.




Computer vision # Statistics

Context features vs Object features

Is this less of a car
Car examples in ImageNet because the context is wrong?




Object features and context features

In computer vision, one is often interested in another distinction

"The object features “belong” to the object and are
most often activated inside the object bounding box.
Example: car wheels, person eyes, etc.

"The context features are those most often
activated outside the bounding box.
Example: road under a car, car shadow




Empirically identifying
object and context-features

Since we know the bounding boxes, we can observe how the feature
values change when we black out image parts. Averaging and normalizing
these variations gives us the object-feature ratio and context-feature ratio.

(a) Original image z ; (b) Object image z7 (c) Context image =}




Hypotheses

Hypothesis 2. There exists an observable statistical depen-
dence between object features and anticausal features. The
statistical dependence between context features and causal
features is nonexistent or much weaker.

We expect this because anticausal features should often be features of subparts
of the object, likely to be contained in the bounding box. Context features may
cause or be caused by the presence of an object (e.g., the shadow of a car).




Hypotheses

Hypothesis 2. There exists an observable statistical depen-
dence between object features and anticausal features. The
statistical dependence between context features and causal
features is nonexistent or much weaker.

Hypothesis 1. Image datasets carry an observable statis-
i tical signal revealing the asymmetric relationship between
object categories that results from their causal dispositions.




Results
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*Top anticausal features have higher object scores for all twenty categories.

=The probability that this happens out of chance is 2%~ 10°.




Results
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No clear relation between top causal features and context scores.




More information

" The effect disappears completely if we replace NCC by the correlation
coefficient (or its absolute value) between the feature and the category.

*The effect appears to be robust to many details of the experiment such as
the precise composition of the NCC data, the precise computation of
object/context scores, the methods we use to determine a continuous
proxy for the categories, etc.




Causal signal in images

= We have indirectly shown that high order statistics in image datasets can
inform us about causation in the scenes. To our knowledge, no prior work
has established or even considered the existence of such a signal.

=\We don’t know how to use it.

= Qur detection method is cumbersome.

But there is signal.




On the uses of a
Wasserstein(ish)
distance

(ARJOVSKY, BOTTOU, ICLR 2017)
(ARJOVSKY, CHINTALA, BOTTOU, SUBMITTED).




|II

The “mythical” unsupervised learning

*This is not about using unlabeled data to
discover probability ratios.

=This is about using unlabeled data to
discover the (causal) generating mechanism.

=Causal footprints
— corners, cliffs, shocks, ...
- low dimensional causal models




The generator approach (VAE, GAN, ...)

e —

X ~ P. (unknown)

ﬂ Generated data
Go(Z) ~

Typically low dim (parametric)

\
papdwod aq o

Z~P, (known)

Low dim support —
- cliff shaped “density”




Comparing distributions

e The Total Variation (TV) distance

(Pr,Py) = sup |[P.(A) —Py(A)]| .
AcX

e The Kullback-Leibler (KL) divergence

KL(P, ;) = [ log (ﬁgg) P (2)du(z) | | VAE

requires densities, asymmetric, possibly infinite




Comparing distributions

e The Jensen-Shannon (JS) divergence

JS(P,,P,) = KL(P,||Py,) + KL(Py||Py,) ,
symmetric, does not require densities, 0 < JS < log(2)
e The Earth-Mover (EM) distance or Wasserstein-1
]P)rr, IP — ] f E T.Y)~ T )
W( 9) 76111(?11’,«,1?9) @~ | e =yl ]

always defined, involves metric on underlying space.




Generative adversarial network

Discriminator maximizes and generator minimizes

L(¢a 9) —

o, [log Dy (7))

Conpz [108(1 — Dg(g0(2)))]




Generative adversarial network

Discriminator maximizes and generator minimizes

L(¢7 9) —

L, [10g Dy ()] + Eznp, [log(l — Dy (go(2)))]

Nasty saddle point problem /° Keeping the discriminator optimal :
mein L(¢*(6), ) minimizes JS(B,, Pg)

* Keeping the generator optimal

X mdz);lx L(¢,07(¢)) yields garbage

~

4




Problem with GAN training

If one trains the discriminator thoroughly, the generator receives no gradient...

. Discriminator's error Discriminator’s accuracy Gradient of the generator with the original cost
10 Lo v e 10
—— After 1 epoch N ——  After 1 epoch —— After 1 epoch
10° After 10 epochs ' After 10 epochs 10 ——  After 10 epochs
After 25 epochs Alter 25 epochs After 25 epochs
10
10
= 10
gw
10
10
10
10
10 ! 04 1500 2000 b5
0 S00 1000 1500 2000 2500 3000 3500 4000 0 100 20 30 Y ‘ orations
Training iterations Training iterations Training




Alternate GAN training

Alternate update that has less vanishing gradients Graciont ofthe generator wh the — kg D cot

—— After 1 epoch
~—  After 10 epochs

A8 o Exnpy [Vo log(Dy(90(2)))] ===
Under optimality optimizes
KL(Pg||P,) — 2JSD(P,||Ps) -

Problems: JSD with the wrong sign, reverse KL has ""
high mode dropping. Still unstable when D is good. L

000 0
Training iterations




Distributions with
ow dimensional support

uniform distributions o W(Py,Pp) = |6,

supported by parallel .
line segments separated o JS(Po,Py) = log2 if6#0,
by distance 6. 0 it0=0,

if 040,

—+00
KL(Py||[Py) = KL(Py||Pg) =
¢ ( 9|| 0) ( 0|| 0) {O if0=0,

1 if0£0,

e and §(Py,Py) = {0 £0—0




Optimizing a Wasserstein(ish) distance

Wasserstein-1 has a simple dual formulation (Kantorovich)

W(Pra ]P)O) — ||;r||13}§c1 ]wavﬁ”r [f(:l?)] - EfBNPe [f(SE)]

= Parametrize f(x) , for instance with a neural network.
" Enforce Lipschitz constraint, for instance by aggressively clipping the weights.
= Maintain f (x) well trained, and train Gy (z) by back-prop through f(x).

* No vanishing gradients!




No vanishing gradients

1.0 . T : , : : :
\ — Density of real
08} — Density of fake |
| — GAN Discriminator
——  WGAN Critic

0.6 | i
0.4}

0.2}

0.0 ~ e AL re—s

Linear gradients ~_, /
-0.2} inaWGAN Vanishing gradients 1

in regular GAN

-8 -6 -4 -2 0 2 4 6 8




Theorem

Theorem 3. Let P, be any distribution. Let Py be the distribution of go(Z) with Z

a random variable with density p and gg a function satisfying assumption 1. Then,
there is a solution f : X — R to the problem

max Eg~p, [f(z)] — Ez~p, [f(T)]

11l <1
Note: expectations }
and we have

VOW(PraPO) — _]Ezrvp(z) [Vef(go(Z))]

when both terms are well-defined.




WGAN loss correlates
with sample quality
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GAN loss does not correlate
with sample quality
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WGAN is less sensitive
to modeling choices

K/"‘--lnlﬁi .

Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right:
standard GAN formulation. Both algorithms produce high quality samples.




WGAN is less sensitive
to modeling choices

Figure 6: Algorithms trained with a generator without batch normalization and constant
number of filters at every layer (as opposed to duplicating them every time as in [18]).
Aside from taking out batch normalization, the number of parameters is therefore reduced
by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN
formulation. As we can see the standard GAN failed to learn while the WGAN still was
able to produce samples.




WGAN is less sensitive
to modeling choices

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN

formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.




WGAN

= Many authors have advocated using W distance to estimate densities.
(Rozasco et al, 2012, Cuturi et al, 2015, ...)

= Maximum Mean Discrepancy
(Gretton et al, 2012)

= Qur originality is a focus on continuous distributions with low dim support,
and the idea to parametrize f in order to obtain a fast algorithm.




Conclusion




In Search for Lost Signal

" There is a causal signal in the high moments.

= |t takes the form of cliffs, corners, shocks, etc.

= This has everything to do with the mythical unsupervised learning

= Weak distribution distances such as Wasserstein seem more able to catch it.

= This is just a beginning.




