Inferring
Structural
Properties: Bridges
and Graphs

Anna Gilbert Jae Young Park Michael Wakin

University of Michigan
Colorado School of Mines



Structural health monitoring

I-35W Mississippi River Bridge (2007) Sampoong Depart Store (1995)

* Automated monitoring of buildifg o th e -

e \Wireless sensors resource constrained
— acquire vibration data, data collection,
. processing
— transmit to central node

* Goal: maximize battery life, accurately
accurate model of structure
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Structural Dynamics

N sensors on
structure

N/2+1 N

* Each sensor observes displacement data ()

* Concatenate to get:[x(t)] = [z1(t), z2(t), ..., zn(t)]"

* An N-degree-of-freedom structure with no damping can
be modeled by:

de(t)}

Qﬂ[ T

N x N mass matrix N x N stiffness matrix free decay

- K x(t)] = [0(¢ [M], [K] : unknown




Structural Dynamics

 Homogeneous solution:

Generalized
= E On Sln(wnt Hn)[ wn eigenvectors
"~~~ "~ (IKI=A’[M]) =0
modal frequency N x 1 mode shape

e 1] are orthonormal, independent of time, physical

mformatlon about structure //\

2.44 Hz 2.83 Hz 10.25 Hz
* Modal analysis:

— Extract modal frequencies, mode shapes, etc., from |z ()]



Recall:

Consider analytic signal:

Data Collection

()] = 3 pusin(wnt +0.)( Y|

n= 1moda1 frequency

N x 1 mode shape

2(t)] = D Ane " [¢hy]

Sample [z(t)] attimes t1,%2,...,1lp

Stack samples into M x N matrix [ X].

X]

z1(t1)
z1(t2)

z1(tn)

T2 (t1)
i) (tg)

To(tar)

TN (t1)
Ty (t2)

N (tr)



SVD for Modal Analysis

r1(t1)  x2(t1) - an(t1) recall
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sampled sinusoids diagonal unitary

can make nearly orthogonal amplitudes mode shapes



SVD for Modal Analysis

* Keyidea:

right singular vectors of | X |~ true mode shapes

* Accuracy depends on

— strategy for choosing sample times t1,t5,...,tM

— number of samples M

— total sampling duration T

— minimum separation between modal frequencies

5min — NI A£np ‘wl — Wn
— maximum separation between moda

5max — INaXjA£n ‘wl — Wn

frequencies



Uniform Sampling

* Theorem 1:

Suppose t1,ta,...,tp are uniformly spaced with
sampling interval Ts = —— and

5m ax

M ~ max (1og€N . Omax N) .

5min

Then
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Random Sampling

* Theorem 2:

Suppose t1,t2,...,tpr are chosen uniformly at
random over |0, T'| with
T~ 228X and M~ Mgl

Then with exponentially small failure probability,
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Practical sampling in HW

e Goal: reduce transmission, save batteries/use solar
power

* Uniform samples possible, generates too much data
* Uniformly random in time too hard to implement

e Uniform samples but randomly “reduced” or
sketched

2
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Uniform Sampling with Random Matrix Multiplication

* Theorem 3: Suppose t1,%2,...,trpare uniformly spaced
with sampling interval T = +—— and

5m ax

5min

M ~ max (188 . Jusx )

Let [Y] = [®][X]with [®] random JLT with m ~ 22X

roOws.

For the right singular vectors of [Y'], with high probability,
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Grove Street bridge, Ypsilanti, Ml
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Simulations: Grove Street bridge data
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« N = 18 sensor nodes acquire M = 3000 uniform time samples

[5131], [CIZ’Q], Cee [3718] c R3900
* 3 dominant mode shapes in dataset

S DSOS NS

2.44 Hz 2.83 Hz 10.25 Hz

e m = 90 Gaussian measurements at each node



Simulations: Grove Street Bridge Data

FDD: popular modal analysis algorithm
CS+FDD: reconstruct each signal, then pass through FDD
SVD([Y]): our proposed method

‘—FDD+--CS+FDD-+-SVD([Y])

—FDD-=-CS+FDD-=-SVD([Y]) —FDD-=-CS+FDD-=-SVD([Y])
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SVD([Y])=0.16 SVD([Y])=0.14 SVD([Y])=0.19



Estimating Modal Frequencies

* Recall:
" elwit piwzti .. giwNtr ] _Al o ... 0 |
eiwltg eiwgtg eintQ O A2 O
. ] (2] - Y]]
. . . . . . y/\
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amplitudes mode shapes

* ldea: estimate modal frequencies by taking FFT of
left singular vectors of | X]|.



Simulations: Synthetic Data
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Not-so-hidden theory: Sketched SVD



Consider a Data Matrix
 Data matrix X ofsize M X N ( M > N)

— each column represents a signhal/document/time series/etc.
— recordings are distributed across /V nodes or sensors
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SVD of Data I\/Iatrix

X Ux 2x

e '«.@

unitary diagonal unitary
principal relative principal
column energies row

directions directions



Spectral Analysis

e SVD of X:
X =Ux3xVi

e Qurinterest: 2 xand Vx, from which we can obtain
— principal directions of rows of X (but not columns)
— KL transform: inter-signal correlations (but not intra-signal)
— NOT subspace spanned by (right) singular vectors

Challenge:
Obtaining X and computing SVD(X ) whenM is large.




Sketching

« Data matrix X ofsize M X N (M > N)
e Construct random m X M sketching matrix (JL matrix) ®
* Collect a one-sided sketch ¥ = &X

— can be obtained column-by-column (“sensor-by-sensor”)
— easily updated dynamically if X changes

% Ea

Y: mxN Od: mx M i.'.-
-

-

X: MxN




Sketched SVD

e Sketched matrix of size m x IV:

Y =0X =0UxXx Vi

* We simply compute the SVD of Y:

Y = Uy Sy Vi

e Suppose Xis rank £ for some small k. If
m = O(ke?)

then with high probability, >y ~ ¥ x and Vy = Vx.



Sketched SVD

More formally, fory =1,2,...,k,
— singular values are preserved [Magen and Zouzias, 2010]

c;(Y)
o;(X)

(1 o 6)1/2 < < (1 _|_€)1/2

— right singular vectors are preserved
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o) =os(Wll2 = “ A= \#j cé%ﬂ{fl]{aﬂm—a?()f)-<1+ce>}}
/ |

roughlye small if 0 (X) is well separated

from other singular values o .X



Relies on arguments from matrix perturbation theory

Recall:

Then:

YV = X101 0X = Vx X xUx @' dUx X Vi

Defining Ag := ®1® — I, we have
szxU;Z;(I—I— A@)szxv)?
VX2 VE + Vi Ex Ut AeUxEx Vi

Y1y

Sketch of Proof

Y =0X = dUxXx Vi
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“perturbation”



Sketch of Proof

e Recall

“original” “perturbation”

\ )
[ \ ( \
YIY = V33 VE + VxS xUs AsUx X x Vi

* Using concentration of measure arguments,
Ap = 0Td T
will have small norm on colspan(Ux).

e Singular value bound follows from [Barlow and Demmel,

1980]. Singular vector bound follows from [Mathias and
Veselic, 1998].



Related Work: Randomized Linear Algebra

 Compressive PCA [Fowler, 2009], [Qi and Hughes, 2012]
— interested in left singular vectors rather than right
— different aspect ratio for data matrix
— utilize different random projections for different columns

e Subspace approximation, low-rank approximation [many!]
— focused on subspaces rather than individual singular vectors
— can require multiple passes over data matrix
— many talks yesterday...



Conclusion

* Data application with embedded theory problems
— Fourier sampling questions
— Compressive SVD
— Actual hardware platform for experimentation

* Future work
— modal analysis of systems with damping
— estimation bounds for modal frequencies
— more sophisticated estimation strategies

— Graph analogs for PDEs



EXTRAS



Related Work: Matrix Perturbation Theory

 Absolute bounds

— absolute error in eigenvalues, absolute separation
between eigenvalues [Davis and Kahan, 1970], [Golub
and van Loan, 1996]

e Relative bounds

— relative error in eigenvalues, relative separation
between eigenvalues [Eisenstat and Ipsen, 1995], [Li,
1996], [Li, 1998]

— useful even for small eigenvalues



SVD, eigenvectors of Laplacian,
and spectral graph theory...?

Recall [¢,,| are eigenvectors of (discrete, generalized)
Laplacian on line graph with N vertices

Generalize to graph Laplacian, L
Eigenvectors of L = singular vectors of incidence matrix

— Well-approximated by sketch of incidence matrix

One use of spectral graph theory: solve Poisson problems on
graphs, construct Green’s function = invert Laplacian

Lu=f onV

Dirichlet boundary conditions




Graph Analogs for PDEs

Absorption at vertices in V

@ f onV
@—9@

Generalized boundary conditions

.\

— Forward problem: solve for u (discrete Green’s function)

— Inverse problem: given sources and observations on
boundary, find «

Joint work with Jeremy Hoskins, John Schotland (Umich)



