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Fast Testing of Graph Properties
(in Big Data setting)

e We want to process Big Graphs quickly
— Detect basic properties
— Analyze their structure
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Fast Testing of Graph Properties
(in Big Data setting)

e We want to process Big Graphs quickly
— Detect basic properties
— Analyze their structure

e For graphs with millions or billions of nodes, quickly
often mean sublinear in the size of the graph



Fast Testing of Graph Properties

e How to test basic properties of graphs
in the framework of property testing



Fast Testing of Graph Properties

e Does this graph have
a clique of size 11?

e Doesithave a given
/7 as its subgraph?

e Does it have good
expansion?

e Is this graph planar?

e [sitbipartite?

o Isit A-colorable?

from Fan Chung’s web page




Framework of property testing

e We cannot quickly give 100% precise answer
e We need to approximate

o Distinguish graphs that have specific property
from those that are far from having the property



Property Testing definition

Given input &
If (- has the property ™ tester passes

If (' is &far from any string that has the property © tester fails

error probability < 1/3

Notion of &far : DISTANCE to the Property

One needs to change & fraction of the input to obtain
an object satisfying the property

Typically we think about &
as on a small constant, say, £&=0.1



Property Testing definition

Given input &
If (- has the property ™ tester passes

If (' is &far from any string that has the property © tester fails

error probability < 1/3

* This is two-sided error tester
* one-sided error: errs only for & being &far

One sided-error tester often can give a certificate
that & doesn’t have the property



Framework

e Goal:
Distinguish between the case when
— graph ¢ has property P and
- ('is far from having property P

e one has to change G in an « fraction of its representation
to obtain a graph with property P

e What does it mean “an &fraction of its representation”?



First model:
Adjacency Matrix

Graph ('is e-far from satisfying property P

If one needs to modify more than &-fraction of entries
in adjacency matrix to obtain a graph satistying P

Access to & via oracle:
is Zconnected by edge to /7
(4[2/]=17)

—_ OO0~ |0
OO0~ |O
O IO ||k

—_ OO |— |0
—_ == O |-




First model:
Adjacency Matrix

Graph ('is e-far from satisfying property P

If one needs to modify more than &-fraction of entries
in adjacency matrix to obtain a graph satistying P

enf2_edges have to be added/deleted

Suitable for dense graphs




Adjacency matrix model

= |O|O |+ |O
Rk, |k |O|R
= |O|O |+~ | O
O |OoO|Oo |+~ |O
oO|lo|lr|r |R

Accept every graph that satisfies property P

Reject every graph that is e-far from property P

&-far from P: one has to modify at least 272 entries of
the adjacency matrix to obtain a graph with property P

Arbitrary answer if the graph doesn’t satisfy P nor is

W

—far from P

Complexity: number of queries to the matrix entries

Can err with probability < 1/3

Sometimes errs only for “rejects”: one-sided-error



Adjacency matrix model

= |O|O |+ |O
Rk, |k |O|R

= |O|O |+~ |O

O |o|Oo |+ |O

oO|lo|lr|r |R

Very easy example:
e Testif a graph contains a triangle (cycle of length 3)

Return YES (always)

Highly nontrivial example:
e Testifagraph is triangle-free

« Can be done in f(&)=0(1) time
« Proof: nontrivial combinatorics




Adjacency matrix model

= |O|O |+ |O
Rk, |k |O|R
= |O|O |+~ | O
O |OoO|Oo |+~ |O
oO|lo|lr|r |R

[Goldreich, Trevisan’03] Wlog we can consider only algorithms

of the following form: Any other algorithm will have not more
than a quadratic speed-up

Randomly sample set .$ of vertices

Consider subgraph of & induced by .§

If the subgraph satisfies a property = accept
otherwise = reject




Adjacency matrix model

There are very fast property testers
They're very simple
Property tester for bipartiteness:

«Select a random set of vertices ¢/
Test if the subgraph induced by ¢/ is bipartite

Key question: What should be the size of | //]?

*Goldreich, Goldwasser, Ron: [/[=poly(1/¢)
*Alon, Krivelevich: [U[=0T+ (1/&£)= complexity OT* (1/£72)



General result

e Every hereditary property can be tested in constant-time!

(even with one-sided error)
|Alon & Shapira, 2003-2005]

e Property is hereditary if
- It holds if we remove vertices

e bipartitness

being perfect

being chordal

having no induced subgraph H



Main Lemma

Main Lemma:

If G is efar from satisfying a hereditary property P, then
whp random subgraph of size W/A(¢) doesn’t satisfy P

Proof: by a strengthened version of Szemeredi regularity
lemma

Can be extended to hypergraphs

- via a strengthened version of Szemeredi regularity lemma
for hypergraphs



General result

e Every hereditary property can be tested in constant-time!

(even with one-sided error)
|Alon & Shapira, 2003-2005]

e Being hereditary is essentially necessary and sufficient for
one-sided error

Complete characterization of graph properties

testable in constant-time with one-sided error




General result

e Every hereditary property can be tested in constant-time!

(even with one-sided error)
|Alon & Shapira, 2003-2005]

e Similar characterization for two-sided error testing
Informally:

A graph property is testable in constant-time iff
testing can be reduced to testing finitely many
Szemeredi partitions

|Alon, Fischer, Newman, Shapira’09]




Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

«Select a random set of vertices U
Test the property on the subgraph induced by U

The analysis is (often) very hard

We understand this model very well
- mostly because of very close relation to combinatorics

— Typical running time: (via Szemeredi regularity lemma)
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Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

«Select a random set of vertices U
Test the property on the subgraph induced by U

The analysis is (often) very hard

We understand this model very well
- mostly because of very close relation to combinatorics

— Typical running time: (via Szemeredi regularity lemma)
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Adjacency matrix model

e There are very fast property testers
e They're very simple
- Typical algorithm:

Select a random set of vertices U
Test the property on the subgraph induced by U

e The analysis is (often) very hard

e We understand this model very well
- mostly because of very close relation to combinatorics

— Typical running time: (via Szemeredi regularity lemma)

Tower(Tower(Tower(1/s)))
For £=0.5 we have Tower(Tower(Tower(1/s)))=Tower(65536)



Adjacency matrix model

There are very fast property testers
They're very simple
- Typical algorithm:

Select a random set of vertices U
Test the property on the subgraph induced by U

The analysis is (often) very hard

We understand this model very well
- mostly because of very close relation to combinatorics

Still: sometimes the runtime is better
0(1/), O(1/ 12 ), O(1/21¢)
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Adjacency matrix model

o | O
o | O

o |O | O
o

Very easy example:
e Testif a graph contains a triangle (cycle of length 3)

Return YES (always)

Highly nontrivial example:
e Testifagraph is triangle-free

« Can be done in f(£)=0(1) tim

« Currently best bound for /(&) is
Tower(1/c)




Problems of adjacency matrix model

e Even if many properties are testable in “constant-time”,
dependency on 1/¢if often very high

e Being &far from property requires distance €272 from
any graph satisfying the property = distance is BIG

- We could reduce the distance by using small & but then the
dependency on £ would make the complexity very high



Other model ?




Second model:
Adjacency Lists

Graph ('is e-far from satisfying property P

If one needs to modify more than &-fraction of entries
in adjacency lists to obtain a graph satisfying P

Access to & via oracle:

1775172 Return the #&th neighbor of »
214153

3152

412

511713712




Second model:
Adjacency Lists

Graph ('is e-far from satisfying property P

If one needs to modify more than &-fraction of entries
in adjacency lists to obtain a graph satisfying P

£|£] edges have to be added/deleted

Suitable for sparse graphs




Second model:
Adjacency Lists

Graph ('is e-far from satisfying property P

If one needs to modify more than &-fraction of entries
in adjacency lists to obtain a graph satisfying P

£|£] edges have to be added/deleted

Main model: graphs with max-degree &

edn edges have to be added/deleted




Bounded-degree model

e We consider bounded-degree model
— graph has maximum degree & [constant]

e Less connection to combinatorics

e Main techniques:
- random sampling
- local search (exploring the neighborhood/ball of a vertex)

- random walks (a random neighbor of a random neighbor of a
random neighbor-...)



Bounded-degree adjacency list model

Testing connectivity




Bounded-degree adjacency list model

Testing connectivity

What does it mean that a graph & with maximum degree
at most &'is &-far from connected?

=» G has at least @7 connected components

e notenough...we need many small connected components



Bounded-degree adjacency list model

What does it mean that a graph & with maximum degree at
most &'is e-far from connected?

G has =&dn/2 connected components of size <2/&d

/Repeat O(eT—1 d) times: \
choose a random vertex 7

run BFS from 27 until either 142 / £d vertices have been
visited or the entire connected component has been visited

if 7is contained in a connected component of size <2 /&d
then reject
\accept /

f’esting connectivity can be done in O(&7T—2 d) time




Bounded-degree adjacency list model

Testing connectivity was easy ...

Similarly easy: testing /Z-freeness (e.g. triangle-freeness)
e (is &far from triangle-free =

G has Q(72/ €) disjoint triangles =

random sampling of O(1/¢) nodes will detect a triangle

What properties can be tested in constant-time?
We want a characterization!




Bounded-degree adjacency list model

e Testing bipartiteness




Bounded-degree adjacency list model

e Testing bipartiteness
- Can be done in 0% (vVn /€10(1) ) time (Goldreich & Ron)

Algorithm:
Select )(1/ &) starting vertices
For eath vertex run poly (¢7—1 logn )\/\/72 random walks of length poly(£7—1 log;

*If any of the starting vertices lies on an odd-length cycle then reject
*Otherwise accept

fldea:

* if Gis &far from bipartite then G has many odd-length
cycles of length O(s7—1 logn )
* run many short random walks to find one

- /

~




Bounded-degree adjacency list model

e Testing bipartiteness
- Can be done in 0% (vVn /€10(1) ) time (Goldreich & Ron)

Algorithm:
Select )(1/ &) starting vertices
For eath vertex run poly (¢7—1 logn )\/\/72 random walks of length poly(£7—1 log;

*If any of the starting vertices lies on an odd-length cycle then reject
*Otherwise accept

~

Analysis: very elaborate

e Relatively easy for rapidly mixing case

* For general case: no rapid mixing = small cut
_ use small cut to decompose the graph and the problemj




Bounded-degree adjacency list model

e Testing bipartiteness
- Can be done in 07 (vVn /€10(1) ) time (Goldreich & Ron)
— Cannot be done faster (Goldreich & Ron)

~

/Q(\/n) time is needed to distinguish between random graphs
from the following two classes

e a Hamiltonian cycle Z + a perfect matching M/
 a Hamiltonian cycle /7 + a perfect matching #/ such that each
\ edge from M creates an even-length cycle when added to /7’/




Bounded-degree adjacency list model

e Testing bipartiteness
- Can be done in @7 (V2 /£10(1) ) time (Goldreich & Ron)
— Cannot be done faster (Goldreich & Ron)

So: no constant-time algorithms



Bounded-degree adjacency list model

e Testing 3-colorability

... requires checking (almost) all vertices and edges!
|[Bogdanov, Obata, Trevisan'02]



Bounded-degree adjacency list model

Testing cycle-freeness (acyclicity)

Complexity depend on the error-model
e One-sided error (always accept cycle-free graphs)
e Two-sided error (can err for acceptance and rejection)



Testing cycle-freeness in bounded-degree graphs
“two-sided error )

Testing cycle-freeness
Complexity depend on the error-model

e Two-sided error (can err for acceptance and rejection)

Can be done with O(&T—2 (d+£7—-1))

rﬂmnlnr

JUIIIHILJ \

/Goldreich and Ron’02:

Estimate the number of edges
Estimate the number of connected components
If these number are OK for a forest then accept

\Elsereject -/




Testing cycle-freeness in bounded-degree graphs

4 one-sided erroB

Testing cycle-freeness

Complexity depend on the error-model
e One-sided error (always accept cycle-free graphs)

/Goldreich, Ron’02:
A lower bound of Q(v72)




Testing cycle-freeness in bounded-degree graphs
one-sided error

Testing cycle-freeness

Complexity depend on the error-model
e One-sided error (always accept cycle-free graphs)

[C, Goldreich, Ron, Seshadhri, Sohler, Shapira 12
An upper bound of O (Vn):
reduction to bipartiteness

\ /




Testing cycle-freeness in bounded-degree graphs
one-sided error

C, Goldreich, Ron, Seshadhri, Sohler, Shapira '12

Testing cycle-freeness can be done in 07 (Vn):
e we know how to test bipartiteness (no odd-length cycles)
e reduce testing cycle-freeness to that of bipartiteness



Idea: original graph & has lots of cycles iff new graph
G T+ has lots of odd-length cycles




Put a new node on some edges ...
(some = random half)







the obtained graph is bipartite

[ If the original graph is cycle-free then }

With high probability:
original graph is &far from cycle-free <
\ obtained graph is O (&)-far from bipartite D




Testing cycle-freeness in bounded-degree graphs
one-sided error

C, Goldreich, Ron, Seshadhri, Sohler, Shapira '12

[Testing cycle-freeness can be done in 0T (v )}:

e we know how to test bipartiteness (no odd-length cycles)
e reduce testing cycle-freeness to that of bipartiteness



Bounded-degree adjacency list model

C, Goldreich, Ron, Seshadhri, Sohler, Shapira '12

Property:
Being Clk-minor free (having no cycle of length >4)

For every constant £, testing if a bounded-degree
graph Gis Clk-minor free can be done in 07 (Vr

If &is efar from Cli-minor-freeness then we can find
a cycle of length O(eT—11ogn) in O+ (V) time



Bounded-degree adjacency list model

C, Goldreich, Ron, Seshadhri, Sohler, Shapira '12

For every constant £, testing if a bounded-degree
graph is Clk-minor free can be done in 0T (V)

Can we do better?

For any fixed Z that contains a simple cycle, testing minor
H-freeness with one-sided error requires Q(v7) time

Goldreich, Ron’02 proved it for /=2



Bounded-degree adjacency list model

C, Goldreich, Ron, Seshadhri, Sohler, Shapira '12

For every constant £, testing if a bounded-degree graph is
C/-minor free can be done in OTx (\/72)

For any fixed /Z that contains a simple cycle, testing minor
f/-freeness with one-sided error requires Q(\/n) time

For any fixed tree 7, testing minor 7-freeness with one-
sided error can be done in constant-time




Bounded-degree adjacency list model

Characterization of testing Z-minor freeness
(in bounded-degree graphs, with one-sided error):

For any fixed #, testing if a graph is Z-minor-free can be
done in complexity that only depends on ¢
if and only if
H is cycle-free

Testing A-minor-freeness for Zhaving a
cycle needs time Q(v7), but we don’t have
any further good complexity characterization




ting planarity
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Testing planarity

Testing planar graphs can be done with 0(1) queries
(with two-sided error) [Benjamini, Schramm, Shapira’08]

e Why is it surprising?
e There are graphs & such that
— any connected subgraph of & of constant size is planar

- ('is &far from planar
p Bounded-degree expanders

For each subgraph of constant size,
check the number of its occurrences in &
No all frequencies are possible in planar graphs!




Testing planarity

Testing planar graphs can be done with 0(1) queries
(with two-sided error) [Benjamini, Schramm, Shapira’08]

e Runtime: 27272 Tpoly(1/¢)

e Hassidim et al.’09 improved the runtime to 2P°V(/¢)
— with somewhat simpler analysis and simpler algorithm

If &'is &-far from planar then
-either & has lots of constant-size non-planar subgraphs
-or & has lots of small subgraphs without good separator




Testing planarity

Testing planar graphs can be done with 0(1) queries
(with two-sided error) [Benjamini, Schramm, Shapira’08]

e Runtime: 27272 Tpoly(1/¢)

e Hassidim et al.’09 improved the runtime to 2P°V(/¢)

— with somewhat simpler analysis and simpler algorithm

e Leviand Ron’13 improved the runtime to 2 70(

log72 (1/¢))



Testing planarity

Testing planar graphs can be done with O(1) queries

(with two-sided error) [Benjamini, Schramm, Shapira’08]
[Hassidim, Kelner, Nguyen, Onak’09]
[Levi, Ron"13]

e Runtime: 270(log72 (1/&) ) (constant for &= (1); still
/ superpolynomial in c) \

e The resultis with two-sided error:

— can accept non-planar graphs & can reject planar graphs




Extension: all minor-closed properties

e Every minor-closed property can be tested in a similar
way
e Minor-closed properties include:
— Planar,
— QOuter-planar,
— Series-parallel,
- Bounded-genus,
— bounded tree-width,

e Minor = obtained by edge/vertex removal + edge contractions
e P is minor-closed if every minor of a graph in P is also in P



Testing expansion

e In the adjacency list model, rapidly mixing properties
play key role:

- If G doesn’t “mix” fast then ... testing is fast

e Planar graphs don’t mix fast (have large cuts)
— Testing properties in planar graphs might be easy

e Expanders mix fast:
— Testing properties might be hard



ting expansion
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Testing expansion

e For graphs of bounded degree, we can distinguish
expanders from graphs that are “far” even from poor
expanders in O+ (V) time

|C, Sohler ‘07, Kale, Seshadhri’07, Nachmias, Shapira’08]

e QO(Vn) time is needed
|Goldreich, Ron’02]



Testing expansion

‘o

hoose 0(1/&) nodes at random

\

For each chosen node run O(v7) random walks of length O(log7)

Count the number of collisions at the end-node
If the number of collisions is too large then Reject

@ccept

/

Idea:
e If 4is an expander then end-nodes are random nodes
= we can estimate number of collisions well

e If 4is far from expander then we will have many more
collisions (requires non-trivial arguments)



Testing in planar graphs

e All previous results assumed the input graph is
arbitrary

Testing in planar graphs is easier!



e Testing bipartiteness in planar graphs of bounded
degree can be done in constant time

|C, Sohler, Shapira’09]

Pick random sample of OT* (d/ £) vertices
For each vertex explore its neighborhood (of size (d/
g)T0(1))
If the input graph is &far from bipartite:
the induced subgraph should NOT be bipartite!

Complexity/runtime

(d/e)T0(d/g)TO(1)



Testing in planar graphs

e One can make this idea to work to design property
testers for planar graphs (of constant max-degree)
for all hereditary properties

e Key property: every hereditary property can be
characterized by a set of minimal forbidden induced
subgraphs

 Hence: we only have to check if these subgraphs
don’t exist in small components



Testing in hyperfinite graphs

One can go beyond planar graphs:
- It's enough to have some separator properties

Works for all “non-expanding families” of graphs (class
of hyperfinite graphs)

For every hereditary property P, for any “non-expanding”
bounded-degree graph ¢,

testing if &' has P can be done in constant-time



Testing in hyperfinite graphs

Complete characterization for non-uniform algorithms:

Newman & Sohler’'2011:

e Testing any property in hyperfinite (“non-expanding”)
families of graphs of bounded-degree can be done in
J(1) time (two-sided-error)



These techniques don’t work for arbitrary-degree
graphs

Testing planarity in arbitrary degree graphs requires
Q(vn) time

Two instances:
— empty graph on 7z nodes
- clique on vz nodes + isolated 7z—v7 nodes



Arbitrary graphs (no bound for max-degree)




Adjacency Lists in arbitrary graphs

Graph ('is e-far from satisfying property P

If one needs to modify more than &-fraction of entries
in adjacency lists to obtain a graph satisfying P

More general model & more challenging model:
graphs of arbitrary max-degree

£|£] edges have to be added/deleted




Adjacency Lists in arbitrary graphs

Graph ('is e-far from satisfying property P

If one needs to modify more than &-fraction of entries
in adjacency lists to obtain a graph satisfying P

More general model & more challenging model:
graphs of arbitrary max-degree

Access to & via oracle: Access to & via oracle:
Return a random Return the &th neighbor of »

neighbor of » Return the degree of »




Testing in arbitrary graphs

e Testing neighborhood may cost even J(7) time!

=» Graph exploration is expensive



Testing in arbitrarygraphs

e (C, Monemizadeh, Onak, Sohler (2011)

o Testing bipartiteness in planar graphs can be done in
constant time

e Challenge:
how to explore neighbourhood of a node quickly?

» Run many short random walks

» For a planar graph that is sfar from bipartite, prove that
one of the random walks will find an odd-length cycle




Extensions

e Broader class of graphs than planar
— Graphs defined by arbitrary fixed forbidden minors

e Extension beyond bipartiteness: work in progress



Summary

Big Graphs need good understanding of testing
algorithms

Many graph properties can be tested efficiently
- Sometimes in constant-time
— More often in sublinear-time

But our understanding of testing graph properties in
arbitrary graphs is still patchy ...



Summary

e Adjacency matrix model:
— Complete characterization

e Adjacency lists model:
— Bounded-degree graphs

e Some basic characterizations known; many open questions still left

— Special classes of bounded-degree graphs
e For “non-expanding” graphs we can test efficiently

— Graphs with no bounds for the degree
e Very little is known

e What haven’'t been mentioned:
— Directed graphs
— Access through random edges



