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Szemerédi’s Regularity Lemma

Szemerédi’s regularity lemma

Roughly speaking, in any graph, the vertices can be

partitioned into a bounded number of parts, such that the

graph is “random-like” between almost all pairs of parts.

Very important tool in

graph theory

Gives a rough structural

result for all graphs
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Regularity of Sets

Let X and Y be two sets of vertices in a graph G .

e(X ,Y ): number of pairs of vertices in X × Y that have an

edge between them.

d(X ,Y ) = e(X ,Y )
|X ||Y | .

Definition

Given a graph G and two sets of vertices X and Y , we say the

pair (X ,Y ) is ε-regular if for any X ′ ⊂ X with |X ′| ≥ ε|X |,
Y ′ ⊂ Y with |Y ′| ≥ ε|Y |, we have∣∣∣d(X ′,Y ′)− d(X ,Y )

∣∣∣ ≤ ε.

Roughly says graph between X and Y is “random-like”.
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Szemerédi’s Regularity Lemma

Definition

Given a partition P of the set of vertices V , we say it is

equitable if the size of any two parts differs by at most one.

Definition

Given an equitable partition P of the set of vertices V , it is

ε-regular if all but ε|P|2 pairs are ε-regular.

Szemerédi’s regularity lemma

For every ε > 0, there is an M(ε) such that for any graph

G = (V ,E ), there is an equitable, ε-regular partition of the

vertices into at most M(ε) parts.
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Regularity Lemma Proof Sketch

Definition

For a vertex partition P : V = V1 ∪ V2 ∪ ... ∪ Vk , define the

mean square density:

q(P) =
∑
i ,j

pipjd(Vi ,Vj)
2,

where pi = |Vi |
|V | .

Between 0 and 1.

If we refine the partition, it cannot decrease.

If a partition into k parts is not ε-regular, can divide each

piece into at most 2k+1 parts, according to worst case

sets, to get an increase of ε5 (then make equitable).
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Algorithmic Regularity

Alon-Duke-Lefmann-Rödl-Yuster (1994)

If a pair (X ,Y ) is not ε-regular, find a pair of subsets that

show they are not ε4/16-regular, in time Oε(n
ω+o(1)). Implies

tower height at most T (ε−20). (ω < 2.373)

Frieze-Kannan (1999)

Regularity lemma algorithmically, through a spectral approach.

Kohayakawa-Rödl-Thoma (2003)

Faster algorithmic lemma, running time Oε(n
2).

Alon-Naor (2006)

Polynomial-time algorithm, at most T (O(ε−7)) parts.
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Algorithmic Regularity

Even though only a tower-type number is guaranteed, most

graphs have a much smaller regularity partition. Previous

algorithms may not find it.

Fischer-Matsliah-Shapira (2010)

Randomized algorithm which runs in time Oε,k(1), if there is

an ε-regular partition with k parts, finds 2ε-regular partition

with at most k parts.

Folklore/Tao blog post (2010)

Randomized algorithm in time Oε(1), ε-regular partition.
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Finding a regular partition

Fox-L.-Zhao

An Oε,α(n2)-time deterministic algorithm which, given ε, α, k

and a graph G on n vertices that has an ε-regular partition

with k parts, gives a (1 + α)ε-regular partition into k parts.

An intermediate result is testing regularity.

Fox-L.-Zhao

An Oε,α,k(n2)-time deterministic algorithm which, given ε, α

and a graph G between sets X ,Y of size n, outputs either

that (X ,Y ) are ε-regular.

a pair of subsets U ⊂ X , W ⊂ Y that show that (X ,Y )

are not (1− α)ε-regular, i.e. |U | ≥ (1− α)ε|X |,
|W | ≥ (1−α)ε|Y |, and |d(X ,Y )− d(U ,W )| > (1−α)ε.
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Frieze-Kannan (weak) regularity lemma

Definition

Given a partition P = {V1,V2, ...,Vk} of the set of vertices V ,

it is Frieze-Kannan ε-regular (FK-ε-regular) if for any pair of

sets S ,T ⊆ V , we have∣∣∣∣∣e(S ,T )−
k∑

i ,j=1

d(Vi ,Vj)|S ∩ Vi ||T ∩ Vj |

∣∣∣∣∣ ≤ ε|V |2

Frieze-Kannan regularity lemma

Let ε > 0. Every graph has a Frieze-Kannan ε-regular partition

with at most 22/ε2 parts.

Proof similar: refine by worst case sets, mean square density

increases by ε2.
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Counting Lemma

Definition

Given two (possibly weighted) graphs G1 and G2 on the same

vertex set V , we define their cut distance

d�(G1,G2) =
1

|V |2
max
S,T⊆V

|eG1(S ,T )− eG2(S ,T )|.

Partition P is FK-ε-regular if and only if d�(G ,GP) ≤ ε.

Counting lemma

Given two graphs G1 and G2 on the same vertex set, for any

graph H on k vertices, we have

| hom(H ,G1)− hom(H ,G2)| ≤ e(H)d�(G1,G2)nk .
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Algorithmic Frieze-Kannan

Dellamonica-Kalyanasundaram-Martin-Rödl-Shapira

Give a deterministic algorithm which finds a Frieze-Kannan

ε-regular partition

in time ε−6nω+o(1) into at most 2O(ε−7) parts (2012)

in time O(22ε
−O(1)

n2) into at most 2ε
−O(1)

parts (2015)

Dellamonica-Kalyanasundaram-Martin-Rödl-Shapira

There is an nω+o(1)-time algorithm which, given ε > 0, an

n-vertex graph G and a partition P of V (G ), either:

1 Correctly states that P is FK-ε-regular;

2 Finds sets S , T which witness the fact that P is not

FK-ε3/1000-regular.
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Algorithmic Frieze-Kannan

Corollary

There is an ε−O(1)nω+o(1)-time algorithm which, given ε > 0,

an n-vertex graph G , outputs t ≤ ε−O(1), subsets

S1, S2, ..., St ,T1,T2, ...,Tt ⊂ V (G ) and real numbers

c1, c2, ..., ct such that

d�(G , d(G )KV (G) + c1KS1,T1 + c2KS2,T2 + ... + ctKSt ,Tt ) ≤ ε.

Can also do in time 22ε
−O(1)

n2.
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Counting subgraphs

Algorithmic problem

Count the number of copies of a graph H in a graph G on n

vertices.

Special case: is there a single copy?

Even for Kk , Zuckerman showed NP-hard to approximate the

size of the largest clique within a factor n1−ε, building on an

earlier result of Hastad.

How fast can we approximate the count within an additive

εn|V (H)|?
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Count the number of copies of a graph H on k vertices in a

graph G on n vertices, up to an error of at most εnk .

Duke-Lefmann-Rödl (1996)

Can be done in time 2(k/ε)O(1)
nω+o(1).

Fox-L.-Zhao (2017)

Can be done in time OH(ε−O(e(H))n + ε−O(1)nω+o(1)).

Corollary

We can approximate the count of K1000 in a graph on n

vertices within an additive n1000−10
−6

in time O(n2.4).
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vertices within an additive n1000−10
−6

in time O(n2.4).
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Counting subgraphs proof sketch

Fox-L.-Zhao (2017)

Can count the number of copies of a graph H on k vertices in

a graph G on n vertices, up to an error of at most εnk in time

OH(ε−O(e(H))n + ε−O(1)nω+o(1)).

Apply algorithmic Frieze-Kannan: In time ε−O(1)nω+o(1), get

G ′ = d(G )KV (G) + c1KS1,T1 + c2KS2,T2 + ... + ctKSt ,Tt

and d�(G ,G ′) ≤ ε/e(H), t ≤ ε−O(1).

This means that the count is off by at most εnk in G ′.

We can compute hom(H ,G ′) by computing a sum of

(t + 1)e(H) terms.
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Algorithmic regularity proof sketch

Fox-L.-Zhao

An Oε,α(n2)-time deterministic algorithm which, given ε, α and

a graph G between sets X ,Y of size n, outputs either

that (X ,Y ) are ε-regular.

a pair of subsets U ⊂ X , W ⊂ Y that show that (X ,Y )

are not (1− α)ε-regular.

Algorithmic Frieze-Kannan: t ≤ (αε)−O(1), G ′ with

d�(G ,G ′) ≤ αε3/4,

G ′ = d(G )KV (G) + c1KS1,T1 + c2KS2,T2 + ... + ctKSt ,Tt .

Can check a bounded number of cases based on the sizes of

the intersection of U ,W with X ,Y and each Si ,Ti . Check

feasibility and whether the density is off.
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Corollary

An Oε,α,k(n2)-time algorithm which, given ε, α, k > 0, graph G

on n vertices, and a k-part partition P of the vertices, either:

correctly states that P is (1 + α)ε-regular.

correctly states that P is not ε-regular.
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Algorithmic regularity proof sketch

Fox-L.-Zhao

An Oε,α(n2)-time deterministic algorithm which, given ε, α, k

and a graph G on n vertices that has an ε-regular partition

with k parts, gives a (1 + α)ε-regular partition into k parts.

Apply algorithmic Frieze-Kannan to obtain t ≤ (αε/k)O(1), G ′

such that d�(G ,G ′) ≤ αε/(10k2), and

G ′ = d(G )KV (G) + c1KS1,T1 + c2KS2,T2 + ... + ctKSt ,Tt .

Can work with G ′. Need to check 22(k/αε)
O(1)

possible

partitions. For each one, either get not (1 + α/2)ε-regular, or

(1 + 3α/4)ε-regular. Second case must happen for a partition.
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Conclusion

Dellamonica, Kalyanasundaram, Martin, Rödl and Shapira

developed an algorithmic Frieze-Kannan regularity lemma.

It actually gives a bit more than just a partition: it gives a

finite sum structure.

We can use this to count the number of copies of a small

graph H in a graph G efficiently.

We can also use this to more efficiently find and test regularity

of sets and of partitions.

Questions

Faster algorithmic regularity lemmas?

With what additive error can we count subgraphs?
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