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Introduction

Introduction

For any weight function w : E → Z, define for any S ⊆ E ,

w(S) =
∑
e∈S

w(e).

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)

Let B ⊆ 2E . For each e ∈ E, assign a random weight from {1, . . . , 2|E |}.
Then with probability ≥ 1/2 there is a unique minimum weight set in B.

Applications:

Perfect Matching, Linear Matroid Intersection in RNC
Polynomial Identity Testing
SAT to Unambiguous-SAT [VV86]
NL/poly ⊆ UL/poly [RA00]
Disjoint Paths(s1, t1, s2, t2) in RP [BH14]
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Introduction

Derandomization

Question: construct an isolating weight assignment determinstically
(with poly(m) weights).

Impossible to do it for all families.

Even if we are allowed to output polynomially many weight
assignments.

Hope to do it: For families B which have a succint representation.

For example,

The set of perfect matchings of a given graph.
The set of strings accepted by a circuit.

Randomized arguments show existence for such families.
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Introduction

Derandomization

Deterministic Isolation is known for

Sparse families.

Spanning trees in a graph (maximum independent sets of a matroid).

Perfect Matchings in Special graphs.

s-t paths in a graph (quasi-poly) [KT16].

Strings accepted by a read-once formula/OBDD (quasi-poly).

Perfect matchings in a bipartite graph (quasi-poly) [FGT16].

Common Independent sets two matroids (quasi-poly) [GT17].

Minimum vertex covers in a bipartite graph (quasi-poly).
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Geometric Approach for Isolation

Polytope of a family

For a set S ⊆ E , define xS ∈ RE

xSe =

{
1, if e ∈ S ,

0, otherwise.

For any B ⊆ 2E , the polytope P(B) ⊂ RE is

P(B) = conv{xS | S ∈ B}.

Its corners are exactly {xS | S ∈ B}.
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Geometric Approach for Isolation

Isolation over the polytope

We view w as a function on P(B).

Define for x ∈ RE ,

w(x) = w · x =
∑
e∈E

w(e) xe .

w · xS = w(S), for any S ⊆ E .

Observation

w is isolating for B
m

w · x has a unique minima over P(B).
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Geometric Approach for Isolation

Isolation over the polytope

Goal: w · x has a unique minima over P(B) (small weights).

We build the isolating weight function in rounds.

for any w ∈ RE ,
points minimizing w · x in P(B) = a face of the polytope P(B).

In each round, slightly modify the current weight function to get a
smaller minimizing face.

We stop when we reach a zero-dimensional face.
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Geometric Approach for Isolation

Modifying w

Let Fw be the minimizing face for w · x .

Claim

Let w1 = w × N + w ′, where ‖w ′‖1 < N.
Then Fw1 ⊆ Fw .

Weights grow as N r , in r -th round.

We will have log n rounds.
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Geometric Approach for Isolation

Reducing the face

Let F0 be the face minimizing the current weight function w0.

Let v be a vector parallel to F0.

E.g., v = a1 − a2, where a1, a2 are corners of F0.

Clearly, w0 · v = 0.

Ensure that w1 · v 6= 0.

v is not parallel to F1.

F1 ⊂ F0.

Significant reduction in the dimension: choose many vectors.
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Geometric Approach for Isolation

Constructing w [FKS84]

v1, v2, . . . , vk ∈ {−(t − 1), . . . , 0, 1, . . . , t − 1}m.

Easy to construct a function w such that
w · vi 6= 0 for each i ∈ [k]

define W := (1, t, t2, . . . , tm−1).

Clearly, W · vi 6= 0 for each i .

Try weight functions W mod j for 2 ≤ j ≤ mk log t.

The construction is blackbox.
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Geometric Approach for Isolation

Constructing w

LF = the set of integral vectors parallel to F .

w0: w0 · v 6= 0, ∀v ∈ Zm with ‖v‖ ≤ 2 (only O(m2) vectors).

F1: face of P(B) minimizing w0 (no length-2 vectors in LF1).

w ′1: w ′1 · v 6= 0, ∀v ∈ LF1 with ‖v‖ ≤ 4.

w1 = w0 · N + w ′1
F2: face minimzing w1 (no length-4 vectors in LF2).

...

Fi : face minimizing wi−1 ( no length≤ 2i vectors in LFi
).

w ′i : w ′i · v 6= 0, ∀v ∈ LFi
with ‖v‖ ≤ 2i+1 (Count?).

...

Flogm: no length-m vectors, hence, the face is a corner .
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Geometric Approach for Isolation

Sufficient condition for Isolation

Let F be described by Ax = b,Cx ≤ d .

LF = {x ∈ Zm | Ax = 0}.

Let λ1(LF ) be the length of the shortest vector in LF .

Sufficient condition for Isolation

For all faces F of P(B),
Number of vectors in LF of length≤ 2λ1(LF ) is poly(m).
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Perfect Matching

Perfect matching polytope

B = the set of all perfect matchings in G (V ,E ).

For a bipartite graph, P(B) is given by

xe ≥ 0, e ∈ E∑
e∈δ(v)

xe = 1, v ∈ V .

A face F
xe = 0, e ∈ S .

LF = {x ∈ ZE such that

xe = 0, e ∈ S∑
e∈δ(v)

xe = 0, v ∈ V }
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Perfect Matching

Number of Cycles

Lemma

For a graph H with n nodes,
No cycles of length ≤ r

⇓
number of cycles of length upto 2r is ≤ n4.
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Perfect Matching

Matroid Intersection

Given two n ×m matrices A and B

I ⊆ [m] is a common base if rank(AI ) = rank(BI ) = n.

Question: is there a common base?

B = set of common bases.

P(B) is given by [Edmonds 1970]

xe ≥ 0 e ∈ E ,∑
e∈S

xe ≤ rank(AS) S ⊆ [m],∑
e∈S

xe ≤ rank(BS) S ⊆ [m],∑
e∈[m]

xe = n.
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Perfect Matching

Faces of P(B)

For any face F there exist

[m] = A0 t S1 t S2 t · · · t Sp
[m] = A0 t T1 t T2 t · · · t Tq and
positive integers n1, n2, . . . , np and m1,m2, . . . ,mq

with
∑

i ni =
∑

j mj = n

xe = 0 ∀e ∈ A0∑
e∈Si

xe = ni ∀i ∈ [p]

∑
e∈Tj

xe = mj ∀i ∈ [q]
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Perfect Matching

Discussion

For what other polytopes this approach would work?

Matchings in General graphs.

NP-compelte problems?
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