DERANDOMIZING ISOLATION LEMMA: A GEOMETRIC APPROACH

Rohit Gurjar
Tel Aviv University

Based on joint works with Stephen Fenner and Thomas Thierauf

March 9, 2017
For any weight function $w : E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$
For any weight function $w : E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)

Let $B \subseteq 2^E$.

Applications:
- Perfect Matching
- Linear Matroid Intersection in RNC
- Polynomial Identity Testing
- SAT to Unambiguous-SAT [VV86]
- $NL/poly \subseteq UL/poly$ [RA00]
- Disjoint Paths(s_1, t_1, s_2, t_2) in RP [BH14]
For any weight function $w : E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)

Let $B \subseteq 2^E$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1/2$ there is a unique minimum weight set in B. Applications: Perfect Matching, Linear Matroid Intersection in RNC, Polynomial Identity Testing, SAT to Unambiguous-SAT [VV86], NL/poly \subseteq UL/poly [RA00], Disjoint Paths(s_1, t_1, s_2, t_2) in RP [BH14].
For any weight function $w : E \to \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)

Let $\mathcal{B} \subseteq 2^E$. For each $e \in E$, assign a random weight from \{1, \ldots, 2|E|\}. Then with probability $\geq 1/2$ there is a unique minimum weight set in \mathcal{B}.
For any weight function \(w : E \rightarrow \mathbb{Z} \), define for any \(S \subseteq E \),

\[
w(S) = \sum_{e \in S} w(e).
\]

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)

Let \(\mathcal{B} \subseteq 2^E \). For each \(e \in E \), assign a random weight from \(\{1, \ldots, 2|E|\} \). Then with probability \(\geq 1/2 \) there is a unique minimum weight set in \(\mathcal{B} \).

Applications:
- Perfect Matching, Linear Matroid Intersection in RNC
For any weight function $w : E \rightarrow \mathbb{Z}$, define for any $S \subseteq E$,

$$w(S) = \sum_{e \in S} w(e).$$

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)

Let $B \subseteq 2^E$. For each $e \in E$, assign a random weight from $\{1, \ldots, 2|E|\}$. Then with probability $\geq 1/2$ there is a unique minimum weight set in B.

Applications:
- Perfect Matching, Linear Matroid Intersection in RNC
- Polynomial Identity Testing
- SAT to Unambiguous-SAT [VV86]
- $\text{NL/poly} \subseteq \text{UL/poly}$ [RA00]
- Disjoint Paths(s_1, t_1, s_2, t_2) in RP [BH14]
Introduction

For any weight function \(w : E \to \mathbb{Z} \), define for any \(S \subseteq E \),

\[
 w(S) = \sum_{e \in S} w(e).
\]

Isolation Lemma (Muldumley, Vazirani, Vazirani 1987)

Let \(B \subseteq 2^E \). For each \(e \in E \), assign a random weight from \(\{1, \ldots, 2|E|\} \). Then with probability \(\geq 1/2 \) there is a unique minimum weight set in \(B \).

Applications:

- Perfect Matching, Linear Matroid Intersection in RNC
- Polynomial Identity Testing
- SAT to Unambiguous-SAT [VV86]
For any weight function \(w : E \rightarrow \mathbb{Z} \), define for any \(S \subseteq E \),

\[
w(S) = \sum_{e \in S} w(e).
\]

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)

Let \(\mathcal{B} \subseteq 2^E \). For each \(e \in E \), assign a random weight from \(\{1, \ldots, 2|E|\} \). Then with probability \(\geq 1/2 \) there is a unique minimum weight set in \(\mathcal{B} \).

Applications:
- Perfect Matching, Linear Matroid Intersection in RNC
- Polynomial Identity Testing
- SAT to Unambiguous-SAT [VV86]
- NL/poly \(\subseteq \) UL/poly [RA00]
For any weight function \(w : E \rightarrow \mathbb{Z} \), define for any \(S \subseteq E \),

\[
w(S) = \sum_{e \in S} w(e).
\]

Isolation Lemma (Mulmuley, Vazirani, Vazirani 1987)

Let \(B \subseteq 2^E \). For each \(e \in E \), assign a *random weight from* \(\{1, \ldots, 2|E|\} \).

Then with probability \(\geq 1/2 \) there is a *unique minimum weight set* in \(B \).

Applications:
- Perfect Matching, Linear Matroid Intersection in RNC
- Polynomial Identity Testing
- SAT to Unambiguous-SAT [VV86]
- NL/poly \(\subseteq \) UL/poly [RA00]
- Disjoint Paths\((s_1, t_1, s_2, t_2) \) in RP [BH14]
Question: construct an isolating weight assignment deterministically (with poly(m) weights).
Derandomization

- **Question:** construct an isolating weight assignment deterministically (with $\text{poly}(m)$ weights).
- Impossible to do it for all families.
Derandomization

- **Question**: construct an isolating weight assignment deterministically (with $\text{poly}(m)$ weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
Derandomization

- **Question:** construct an isolating weight assignment deterministically (with poly(m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families B which have a succinct representation.
Derandomization

- **Question**: construct an isolating weight assignment deterministically (with poly(m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families \mathcal{B} which have a succinct representation.
- For example,
 - The set of perfect matchings of a given graph.
 - The set of strings accepted by a circuit.
Derandomization

- **Question**: construct an isolating weight assignment deterministically (with poly(m) weights).
- Impossible to do it for all families.
- Even if we are allowed to output polynomially many weight assignments.
- Hope to do it: For families \mathcal{B} which have a succinct representation.
- For example,
 - The set of perfect matchings of a given graph.
 - The set of strings accepted by a circuit.
- Randomized arguments show existence for such families.
Deterministic Isolation is known for

- Sparse families.
Derandomization

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph
Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
Derandomization

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
Determinate Isolation is known for
- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].
Derandomization

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].
- Common Independent sets two matroids (quasi-poly) [GT17].
Derandomization

Deterministic Isolation is known for

- Sparse families.
- Spanning trees in a graph (maximum independent sets of a matroid).
- Perfect Matchings in Special graphs.
- s-t paths in a graph (quasi-poly) [KT16].
- Strings accepted by a read-once formula/OBDD (quasi-poly).
- Perfect matchings in a bipartite graph (quasi-poly) [FGT16].
- Common Independent sets two matroids (quasi-poly) [GT17].
- Minimum vertex covers in a bipartite graph (quasi-poly).
For a set $S \subseteq E$, define $x^S \in \mathbb{R}^E$

$$x_e^S = \begin{cases} 1, & \text{if } e \in S, \\ 0, & \text{otherwise.} \end{cases}$$
Polytope of a Family

- For a set $S \subseteq E$, define $x^S \in \mathbb{R}^E$

$$x^S_e = \begin{cases} 1, & \text{if } e \in S, \\ 0, & \text{otherwise.} \end{cases}$$

- For any $B \subseteq 2^E$, the polytope $P(B) \subset \mathbb{R}^E$ is

$$P(B) = \text{conv}\{x^S \mid S \in B\}.$$
For a set $S \subseteq E$, define $x^S \in \mathbb{R}^E$

$$x^S_e = \begin{cases} 1, & \text{if } e \in S, \\ 0, & \text{otherwise.} \end{cases}$$

For any $B \subseteq 2^E$, the polytope $P(B) \subset \mathbb{R}^E$ is

$$P(B) = \text{conv}\{x^S \mid S \in B\}.$$
We view w as a function on $P(B)$.
We view w as a function on $P(B)$.

Define for $x \in \mathbb{R}^E$,

$$w(x) = w \cdot x = \sum_{e \in E} w(e) x_e.$$
We view \(w \) as a function on \(P(B) \).

Define for \(x \in \mathbb{R}^E \),

\[
w(x) = w \cdot x = \sum_{e \in E} w(e) x_e.
\]

\(w \cdot x^S = w(S) \), for any \(S \subseteq E \).

Observation

\(w \) is isolating for \(B \)

\[\iff\]

\(w \cdot x \) has a unique minima over \(P(B) \).
Goal: $w \cdot x$ has a unique minima over $P(B)$ (small weights).
Isolation over the polytope

- **Goal:** \(w \cdot x \) has a unique minima over \(P(B) \) (small weights).
- We build the isolating weight function in rounds.
Goal: $w \cdot x$ has a unique minima over $P(B)$ (small weights).

- We build the isolating weight function in rounds.
- For any $w \in \mathbb{R}^E$, points minimizing $w \cdot x$ in $P(B)$ is a face of the polytope $P(B)$.
Goal: $w \cdot x$ has a unique minima over $P(B)$ (small weights).

We build the isolating weight function in rounds.

for any $w \in \mathbb{R}^E$,

points minimizing $w \cdot x$ in $P(B)$ = a face of the polytope $P(B)$.

In each round, slightly modify the current weight function to get a smaller minimizing face.
Isolation over the polytope

- **Goal:** $w \cdot x$ has a unique minima over $P(B)$ (small weights).
- We build the isolating weight function in rounds.
- for any $w \in \mathbb{R}^E$,
 - points minimizing $w \cdot x$ in $P(B) = a$ face of the polytope $P(B)$.
- In each round, slightly modify the current weight function to get a smaller minimizing face.
- We stop when we reach a zero-dimensional face.
Modifying w

- Let F_w be the minimizing face for $w \cdot x$.

Weights grow as N^r in the r-th round.

We will have $\log n$ rounds.
Modifying w

Let F_w be the minimizing face for $w \cdot x$.

Claim

Let $w_1 = w \times N + w'$, where $\|w'\|_1 < N$.
Then $F_{w_1} \subseteq F_w$.
Modifying \(w \)

- Let \(F_w \) be the minimizing face for \(w \cdot x \).

Claim

\[w_1 = w \times N + w', \text{ where } \|w'\|_1 < N. \]

Then \(F_{w_1} \subseteq F_w \).

- Weights grow as \(N^r \), in \(r \)-th round.
Modifying w

- Let F_w be the minimizing face for $w \cdot x$.

Claim

Let $w_1 = w \times N + w'$, where $\|w'\|_1 < N$. Then $F_{w_1} \subseteq F_w$.

- Weights grow as N^r, in r-th round.
- We will have log n rounds.
Reducing the face

- Let F_0 be the face minimizing the current weight function w_0.

Reducing the face

- Let F_0 be the face minimizing the current weight function w_0.
- Let v be a vector parallel to F_0.

Clearly, $w_0 \cdot v = 0$.

Ensure that $w_1 \cdot v \neq 0$.

v is not parallel to F_1.

$F_1 \subset F_0$.

Significant reduction in the dimension: choose many vectors.
Reducing the face

- Let F_0 be the face minimizing the current weight function w_0.
- Let v be a vector parallel to F_0.
- E.g., $v = a_1 - a_2$, where a_1, a_2 are corners of F_0.
Reducing the face

- Let F_0 be the face minimizing the current weight function w_0.
- Let v be a vector parallel to F_0.
- E.g., $v = a_1 - a_2$, where a_1, a_2 are corners of F_0.
- Clearly, $w_0 \cdot v = 0$.
Reducing the face

- Let F_0 be the face minimizing the current weight function w_0.
- Let v be a vector parallel to F_0.
- E.g., $v = a_1 - a_2$, where a_1, a_2 are corners of F_0.
- Clearly, $w_0 \cdot v = 0$.
- Ensure that $w_1 \cdot v \neq 0$.
Reducing the face

- Let F_0 be the face minimizing the current weight function w_0.
- Let v be a vector parallel to F_0.
- E.g., $v = a_1 - a_2$, where a_1, a_2 are corners of F_0.
- Clearly, $w_0 \cdot v = 0$.
- Ensure that $w_1 \cdot v \neq 0$.
- v is not parallel to F_1.
Reducing the face

- Let F_0 be the face minimizing the current weight function w_0.
- Let v be a vector parallel to F_0.
- E.g., $v = a_1 - a_2$, where a_1, a_2 are corners of F_0.
- Clearly, $w_0 \cdot v = 0$.
- Ensure that $w_1 \cdot v \neq 0$.
- v is not parallel to F_1.
- $F_1 \subset F_0$.
Reducing the face

- Let F_0 be the face minimizing the current weight function w_0.
- Let v be a vector parallel to F_0.
- E.g., $v = a_1 - a_2$, where a_1, a_2 are corners of F_0.
- Clearly, $w_0 \cdot v = 0$.
- Ensure that $w_1 \cdot v \neq 0$.
- v is not parallel to F_1.
- $F_1 \subset F_0$.
- Significant reduction in the dimension: choose many vectors.
Constructing w [FKS84]

- $v_1, v_2, \ldots, v_k \in \{- (t - 1), \ldots, 0, 1, \ldots, t - 1\}^m$.

Easy to construct a function w such that $w \cdot v_i \neq 0$ for each $i \in [k]$. Define $W := (1, t, t^2, \ldots, t^{m - 1})$. Clearly, $W \cdot v_i \neq 0$ for each i. Try weight functions $W \mod j$ for $2 \leq j \leq mk \log t$. The construction is blackbox.
Constructing w [FKS84]

- $v_1, v_2, \ldots, v_k \in \{- (t - 1), \ldots, 0, 1, \ldots, t - 1\}^m$.
- Easy to construct a function w such that $w \cdot v_i \neq 0$ for each $i \in [k]$.
Constructing w [FKS84]

- $v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m$.
- Easy to construct a function w such that $w \cdot v_i \neq 0$ for each $i \in [k]$.
- Define $W := (1, t, t^2, \ldots, t^{m-1})$.

Clearly, $W \cdot v_i \neq 0$ for each $i \in [k]$.

Try weight functions $W \mod j$ for $2 \leq j \leq mk \log t$.

The construction is blackbox.
Constructing \(w \) \([\text{FKS84}]\)

- \(v_1, v_2, \ldots, v_k \in \{- (t - 1), \ldots, 0, 1, \ldots, t - 1\}^m \).
- Easy to construct a function \(w \) such that \(w \cdot v_i \neq 0 \) for each \(i \in [k] \).
- Define \(W := (1, t, t^2, \ldots, t^{m-1}) \).
- Clearly, \(W \cdot v_i \neq 0 \) for each \(i \).
CONSTRUCTING \(w \) [FKS84]

- \(v_1, v_2, \ldots, v_k \in \{-(t-1), \ldots, 0, 1, \ldots, t-1\}^m \).

- Easy to construct a function \(w \) such that \(w \cdot v_i \neq 0 \) for each \(i \in [k] \).

- Define \(W := (1, t, t^2, \ldots, t^{m-1}) \).

- Clearly, \(W \cdot v_i \neq 0 \) for each \(i \).

- Try weight functions \(W \mod j \) for \(2 \leq j \leq mk \log t \).
Constructing \(w \) \([\text{FKS84}]\)

- \(v_1, v_2, \ldots, v_k \in \{- (t - 1), \ldots, 0, 1, \ldots, t - 1\}^m \).
- Easy to construct a function \(w \) such that\(w \cdot v_i \neq 0 \) for each \(i \in [k] \).
- Define \(W := (1, t, t^2, \ldots, t^{m-1}) \).
- Clearly, \(W \cdot v_i \neq 0 \) for each \(i \).
- Try weight functions \(W \mod j \) for \(2 \leq j \leq mk \log t \).
- The construction is blackbox.
CONSTRUCTING w

- $L_F = \text{the set of integral vectors parallel to } F$.
Constructing w

- $L_F = \text{the set of integral vectors parallel to } F$.
- $w_0: w_0 \cdot v \neq 0, \forall v \in \mathbb{Z}^m$ with $\|v\| \leq 2$
Constructing \(w \)

- \(L_F = \) the set of integral vectors parallel to \(F \).
- \(w_0: \ w_0 \cdot v \neq 0, \ \forall v \in \mathbb{Z}^m \) with \(\|v\| \leq 2 \) (only \(O(m^2) \) vectors).

...
Constructing \(w \)

- \(L_F = \) the set of integral vectors parallel to \(F \).
- \(w_0: w_0 \cdot v \neq 0, \ \forall v \in \mathbb{Z}^m \) with \(\|v\| \leq 2 \) (only \(O(m^2) \) vectors).
- \(F_1: \) face of \(P(B) \) minimizing \(w_0 \).
Constructing \(w \)

- \(L_F = \) the set of integral vectors parallel to \(F \).
- \(w_0: w_0 \cdot v \neq 0, \forall v \in \mathbb{Z}^m \) with \(\|v\| \leq 2 \) (only \(O(m^2) \) vectors).
- \(F_1: \) face of \(P(B) \) minimizing \(w_0 \) (no length-2 vectors in \(L_{F_1} \)).
Constructing \(w \)

- \(L_F = \) the set of integral vectors parallel to \(F \).
- \(w_0: w_0 \cdot v \neq 0, \forall v \in \mathbb{Z}^m \text{ with } \|v\| \leq 2 \) (only \(O(m^2) \) vectors).
- \(F_1: \) face of \(P(B) \) minimizing \(w_0 \) (no length-2 vectors in \(L_{F_1} \)).
- \(w'_1: w'_1 \cdot v \neq 0, \forall v \in L_{F_1} \text{ with } \|v\| \leq 4 \).
Constructing w

- $L_F =$ the set of integral vectors parallel to F.
- w_0: $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $\|v\| \leq 2$ (only $O(m^2)$ vectors).
- F_1: face of $P(B)$ minimizing w_0 (no length-2 vectors in L_{F_1}).
- w'_1: $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $\|v\| \leq 4$.
- $w_1 = w_0 \cdot N + w'_1$
Constructing \(w \)

- \(L_F \) = the set of integral vectors parallel to \(F \).
- \(w_0 \): \(w_0 \cdot v \neq 0, \forall v \in \mathbb{Z}^m \) with \(\|v\| \leq 2 \) (only \(O(m^2) \) vectors).
- \(F_1 \): face of \(P(B) \) minimizing \(w_0 \) (no length-2 vectors in \(L_{F_1} \)).
- \(w_1' \): \(w_1' \cdot v \neq 0, \forall v \in L_{F_1} \) with \(\|v\| \leq 4 \).
- \(w_1 = w_0 \cdot N + w_1' \)
- \(F_2 \): face minimizing \(w_1 \) (no length-4 vectors in \(L_{F_2} \)).
Constructing w

- L_F = the set of integral vectors parallel to F.
- w_0: $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $\|v\| \leq 2$ (only $O(m^2)$ vectors).
- F_1: face of $P(B)$ minimizing w_0 (no length-2 vectors in L_{F_1}).
- w_1': $w_1' \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $\|v\| \leq 4$.
- $w_1 = w_0 \cdot N + w_1'$
- F_2: face minimizing w_1 (no length-4 vectors in L_{F_2}).

 :
- F_i: face minimizing w_{i-1} (no length $\leq 2^i$ vectors in L_{F_i}).
Constructing w

- L_F = the set of integral vectors parallel to F.
- w_0: $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $\|v\| \leq 2$ (only $O(m^2)$ vectors).
- F_1: face of $P(B)$ minimizing w_0 (no length-2 vectors in L_{F_1}).
- w'_1: $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $\|v\| \leq 4$.
- $w_1 = w_0 \cdot N + w'_1$
- F_2: face minimizing w_1 (no length-4 vectors in L_{F_2}).

 :

- F_i: face minimizing w_{i-1} (no length $\leq 2^i$ vectors in L_{F_i}).
- w'_i: $w'_i \cdot v \neq 0$, $\forall v \in L_{F_i}$ with $\|v\| \leq 2^{i+1}$
Constructing w

- $L_F = \text{the set of integral vectors parallel to } F$.
- w_0: $w_0 \cdot v \neq 0$, $\forall v \in \mathbb{Z}^m$ with $\|v\| \leq 2$ (only $O(m^2)$ vectors).
- F_1: face of $P(B)$ minimizing w_0 (no length-2 vectors in L_{F_1}).
- w'_1: $w'_1 \cdot v \neq 0$, $\forall v \in L_{F_1}$ with $\|v\| \leq 4$.
- $w_1 = w_0 \cdot N + w'_1$
- F_2: face minimizing w_1 (no length-4 vectors in L_{F_2}).

 ⋮

- F_i: face minimizing w_{i-1} (no length $\leq 2^i$ vectors in L_{F_i}).
- w'_i: $w'_i \cdot v \neq 0$, $\forall v \in L_{F_i}$ with $\|v\| \leq 2^{i+1}$ (Count?).
Constructing \(w \)

- \(L_F = \) the set of integral vectors parallel to \(F \).
- \(w_0: w_0 \cdot v \neq 0, \forall v \in \mathbb{Z}^m \) with \(\|v\| \leq 2 \) (only \(O(m^2) \) vectors).
- \(F_1: \) face of \(P(B) \) minimizing \(w_0 \) (no length-2 vectors in \(L_{F_1} \)).
- \(w_1': w_1' \cdot v \neq 0, \forall v \in L_{F_1} \) with \(\|v\| \leq 4 \).
- \(w_1 = w_0 \cdot N + w_1' \)
- \(F_2: \) face minimizing \(w_1 \) (no length-4 vectors in \(L_{F_2} \)).

- \(F_i: \) face minimizing \(w_{i-1} \) (no length \(\leq 2^i \) vectors in \(L_{F_i} \)).
- \(w_i': w_i' \cdot v \neq 0, \forall v \in L_{F_i} \) with \(\|v\| \leq 2^{i+1} \) (Count?).

- \(F_{\log m}: \) no length-\(m \) vectors, hence, the face is a corner.
Geometric Approach for Isolation

Sufficient condition for Isolation

Let F be described by $Ax = b, Cx \leq d$.

$L_F = \{x \in \mathbb{Z}^m | Ax = 0\}$.

Let $\lambda_1(L_F)$ be the length of the shortest vector in L_F.

Sufficient condition for Isolation

For all faces F of $P(B)$, the number of vectors in L_F of length $\leq 2\lambda_1(L_F)$ is $\text{poly}(m)$.
Let F be described by $Ax = b, Cx \leq d$.
Let F be described by $Ax = b$, $Cx \leq d$.

$$L_F = \{x \in \mathbb{Z}^m \mid Ax = 0\}.$$
Sufficient condition for Isolation

- Let F be described by $Ax = b, Cx \leq d$.

 $$L_F = \{ x \in \mathbb{Z}^m \mid Ax = 0 \}.$$

- Let $\lambda_1(L_F)$ be the length of the shortest vector in L_F.

Sufficient condition for Isolation

Let F be described by $Ax = b, Cx \leq d$.

$$L_F = \{x \in \mathbb{Z}^m \mid Ax = 0\}.$$

Let $\lambda_1(L_F)$ be the length of the shortest vector in L_F.

Sufficient condition for Isolation

For all faces F of $P(\beta)$, the number of vectors in L_F of length $\leq 2\lambda_1(L_F)$ is poly(m).
Perfect Matching

Perfect matching polytope

- $\mathcal{B} =$ the set of all perfect matchings in $G(V, E)$.
Perfect Matching Polytope

- \(\mathcal{B} = \) the set of all perfect matchings in \(G(V,E) \).
- For a bipartite graph, \(P(\mathcal{B}) \) is given by

\[
\begin{align*}
\sum_{e \in \delta(v)} x_e & = 1, \quad v \in V. \\
x_e & \geq 0, \quad e \in E
\end{align*}
\]
Perfect Matching Polytope

- $\mathcal{B} =$ the set of all perfect matchings in $G(V, E)$.
- For a bipartite graph, $P(\mathcal{B})$ is given by
 \[x_e \geq 0, \quad e \in E \]
 \[\sum_{e \in \delta(v)} x_e = 1, \quad v \in V. \]
- A face F
 \[x_e = 0, \quad e \in S. \]
Perfect matching polytope

- $\mathcal{B} =$ the set of all perfect matchings in $G(V, E)$.
- For a bipartite graph, $P(\mathcal{B})$ is given by
 \[
 x_e \geq 0, \ e \in E \\
 \sum_{e \in \delta(v)} x_e = 1, \ v \in V.
 \]
- A face F
 \[x_e = 0, \ e \in S.\]
- $L_F = \{x \in \mathbb{Z}^E \text{ such that} \}$
 \[
 x_e = 0, \ e \in S \\
 \sum_{e \in \delta(v)} x_e = 0, \ v \in V\}.
 \]
Lemma

For a graph H with n nodes,

No cycles of length $\leq r$

\[\Downarrow\]

number of cycles of length upto $2r$ is $\leq n^4$.
Matroid Intersection

- Given two $n \times m$ matrices A and B
- $I \subseteq [m]$ is a common base if $\text{rank}(A_I) = \text{rank}(B_I) = n$.
Matroid Intersection

- Given two $n \times m$ matrices A and B
- $I \subseteq [m]$ is a common base if $\text{rank}(A_I) = \text{rank}(B_I) = n$.
- Question: is there a common base?
Matroid Intersection

- Given two \(n \times m \) matrices \(A \) and \(B \)
- \(I \subseteq [m] \) is a common base if \(\text{rank}(A_I) = \text{rank}(B_I) = n \).
- Question: is there a common base?
- \(B = \) set of common bases.
Matroid Intersection

- Given two $n \times m$ matrices A and B
- $I \subseteq [m]$ is a common base if $\text{rank}(A_I) = \text{rank}(B_I) = n$.
- Question: is there a common base?
- \mathcal{B} = set of common bases.
- $P(\mathcal{B})$ is given by [Edmonds 1970]

\[
\begin{align*}
\sum_{e \in E} x_e &\geq 0 \quad e \in E, \\
\sum_{e \in S} x_e &\leq \text{rank}(A_S) \quad S \subseteq [m], \\
\sum_{e \in S} x_e &\leq \text{rank}(B_S) \quad S \subseteq [m], \\
\sum_{e \in [m]} x_e &= n.
\end{align*}
\]
For any face F there exist

- $[m] = A_0 \sqcup S_1 \sqcup S_2 \sqcup \cdots \sqcup S_p$
- $[m] = A_0 \sqcup T_1 \sqcup T_2 \sqcup \cdots \sqcup T_q$ and
- positive integers n_1, n_2, \ldots, n_p and m_1, m_2, \ldots, m_q
- with $\sum_i n_i = \sum_j m_j = n$

\[
\begin{align*}
x_e &= 0 \quad \forall e \in A_0 \\
\sum_{e \in S_i} x_e &= n_i \quad \forall i \in [p] \\
\sum_{e \in T_j} x_e &= m_j \quad \forall i \in [q]
\end{align*}
\]
For any face F there exist

- $[m] = A_0 \sqcup S_1 \sqcup S_2 \sqcup \cdots \sqcup S_p$
- $[m] = A_0 \sqcup T_1 \sqcup T_2 \sqcup \cdots \sqcup T_q$ and

positive integers n_1, n_2, \ldots, n_p and m_1, m_2, \ldots, m_q

with $\sum_i n_i = \sum_j m_j = n$

\[
\begin{align*}
x_e &= 0 \quad \forall e \in A_0 \\
\sum_{e \in S_i} x_e &= 0 \quad \forall i \in [p] \\
\sum_{e \in T_j} x_e &= 0 \quad \forall i \in [q]
\end{align*}
\]
Discussion

● For what other polytopes this approach would work?
For what other polytopes this approach would work?

Matchings in General graphs.
Discussion

- For what other polytopes this approach would work?
- Matchings in General graphs.
- NP-complete problems?