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Two Aspects of Coping with Big Data

Efficiency: design algorithms for enormous inputs
- low memory, fast processing time, etc.

Robustness: handle adverse conditions
- inputs may be chosen to try to break the algorithm

Can we achieve both?



Algorithmic paradigm: Linear Sketches

Applications: Compressed sensing, data streams,
distributed computation, numerical linear algebra

Unifying idea:
Small number of linear measurements applied to data

Data vector x in R"

Output | Sketch
E y = AXin R' Linear map A

r<<n



“For each” correctness

For each x: Pr { Alg(x) correct } >1—1/poly(n)

Pr over randomly chosen matrix A

Does this imply correctness on many in

Only under modeling assumption:
Inputs are non-adaptively chosen

No guarantee if input x, depends

outs?

on Alg(x,) for earlier input x,  VWhy not?



Example: Johnson-Lindenstrauss Sketch

* Goal: estimate |x|? from |Ax|?

* JL Sketch:if Ais a k x n matrix of i.i.d. N(O, 1/k) random variable
with k > log n, then Pr[|Ax|% = (1+1/2)|x|?] > 1-1/poly(n)

o Attack:
1. Query x = g;and x = e; + g, for all standard unit vectors e; and e,
e Learn |A[% |A|% |A + A2 so learn <A, A>

2. Hence, learn AT A, and learn kernel of A

3. Query a vector x 2 kernel(A)



Example: Dynamic Connectivity

e Goal: given a dynamic stream of edges to a graph G, find a spanning forest of G

e Connectivity Sketch [AGM]: If x is the characteristic vector of edges in {0,1}”2/2,
there is a random O~(n) x n%/2 matrix A with entries in {-1, 0, 1} so that from
AX, can recover a spanning forest of G

e Sketch is correct for poly(n) non-adaptive queries in a stream

o Attack:
1. Let Gin G(n,1/2)

2. Test if edge e in G:

- Given Ax, delete edges in the spanning forest returned. Repeat until the
returned forest is empty or contains e

3. Can recover G, which has entropy n(n-1)/2. But Ax has entropy n log n.



Correlations arise in nearly any

realistic setting
Benign/Natural Adversarial
Monitor traffic using DoS attack on network

sketch, re-route traffic monitoring unit
based on output, affects
future inputs.

Can we prove Can we thwart

correctness? the attack?

In this work: Strong impossibility results




Benchmark Problem

GapNorm(B): Given X € R"decide if
(YES) [Ix]|2 = B
(NO) ||x 1

N NN N
IAN IV

Goal: Show impossibility for very basic problem.

Easily solvable for B = 1+€ using “for each”
guarantee by sketch with O(log n/€?) rows using JL.



Main Result

Theorem. For every B, given oracle access to a
linear sketch using dimension r - n —log(Bn), we
can find in time poly(r,B) a distribution over
inputs on which sketch fails to solve GapNorm(B)

Efficient attack (rules out crypto), even slightly
non-trivial sketching dimension impossible

Corollary. Same result for any /,-norm.

Corollary. Same result even if algorithm uses
internal randomness on each query.



Application to Compressed Sensing

12/12 recovery: on input X, output x” for which:
1X — x"|I2 < Cl[Xtailck) 2

Theorem. No linear sketch with o(n/C?) rows
gurantees 12/12 sparse recovery with
approximation factor C on a polynomial
number of adaptively chosen inputs.

Note: possible with “for each” guarantee with r = k log(n/k).

[Gilbert-Hemenway-Strauss-W-Wootters12] some positive results



Outline

* Proof of Main Theorem for GapNorm
— Proved using “Reconstruction Attack”

e Sparse Recovery Result

— By Reduction from GapNorm
— Not in this talk



1. Sketches Ax and U'x are equivalent,
where UT has orthonormal rows and
row-span(UT) = row-span(A)

2. Sketch UTx equivalent to P, x = UUT x

f(x) =f(Pux)
for some subspace U CR", dim(U) =r
Why?

Sketch has unbounded computational power
on top of P x



Algorithm (Reconstruction Attack)

Input: Oracle access to sketch f using unknown
subspace U of dimension r

Put V, = {0}, subspace of 0 dimension
Fort=1tot=r:

(Correlation Finding) Find vectors x,,...,x,,
weakly correlated with unknown subspace U,
orthogonal to V, ,

(Boosting) Find single vector x strongly
correlated with U, orthogonal to V, ,

(Progress) Put V, = span{V, ,, x}
Output: Subspace V,



(Correlation Finding) Find vectors x,,...,x,,
weakly correlated with unknown subspace U




Conditional Expectation Lemma

Lemma. Given d-dimensional sketch f, we
can find using poly(d) queries a
distribution g such that:

E[IPugll® 1 f(9) =1] 2 EllPugll® + A

Moreover,

1. A 2 poly(1/d)

2. g = N(0,0)" for a carefully

chosen o unknown to sketching algorithm



Simplification
Fact: If g is Gaussian, then P ,g = UU'g is
Gaussian as well

Hence, can think of query distribution as
choosing random Gaussian g to be inside
subspace U.

We drop the P, projection operator for
notational simplicity.



The three step intuition

(Symmetry) Since the queries are random
Gaussian inputs g with an unknown variance, by
spherical symmetry, sketch f learns nothing
more about query distribution than norm |g|

(Averaging) If |g]| is larger than expected, the
sketch is “more likely” to output 1

(Bayes) Hence, by sort-of-Bayes-Rule,
conditioned on f(g)=1, expectation of |g| is
likely to be larger



Def. Let p(s) =Pr{fly)=1}

y in U uniformly random with |y|?=s

Fact. If g is Gaussian with E|g|?=t, then,

Pr{f(9)=1} = [, p(s)ve(s)ds

[

density of
x2-distribution with expectation t
and d degrees of freedom




By correctness

of sketch
p(s) = Pr(fly) = 1)

y in U unif. random

with |y|2A= S
y I S— c==sazpae
| p(s)ve(s)ds
[ p(s)Ve(s)ds + 5
0 5 ,
| t | Norm s

1 B
E[1IPugli? 1£(9) = 1] = EllPugll? + A



Sliding x?-distributions

* ¢(s)=5S,°(s-t) v(s) dt

If this were instead at least
1/poly(d), we'd be done

0.2+

0.1 ¢

0.0

* ¢(s)<0unlesss>B-0(BY?log B)
* s, ¢(s)ds=s,"s,B(s-t) v,(s) dt ds =0



Averaging Argument

Recall p(s) = Pr[f(y) = 1] given uniformly
random |y|%2=s

Correctness:
— For small s, p(s) ¥4 0, while for large s, p(s) ¥4 1

So' p(s) ¢(s) ds , d

By a calculation, E[|g.|% | f(g,) =1] ,t+ ¢



(Correlation Finding) Find vectors x,,...,x,,
weakly correlated with unknown subspace U

(Boosting) Find single vector x strongly
correlated with U




Boosting small correlations

1. Sample poly(d) vectors
using CokEx Lemma

M = n
2. Compute top singular
vector x of M X4
X)
Lemma: | - polytd)
[P x| > 1-poly(1/d) .

Proof: Discretization +
Concentration



Implementation in poly(r) time

 W.l.og. can assume n =r + O(log nB)

— Restrict host space to first r + O(log nB)

coordinates
* Matrix M is now O(r) x poly(r)

e Singular vector computation poly(r) time



Iterating previous steps

Generalize Gaussian to “subspace Gaussian” =
Gaussian vanishing on maintained subspace V,

Intuition:
Each step reduces sketch dimension by one.

After r steps:

1. Sketch has no dimensions left!

2. Host space still has n —r > O(log nB)
dimensions



Problem

Top singular vector not exactly contained in U
Formally, sketch still has dimension r

Can fix this by adding small amount of Gaussian
noise to all coordinates




Algorithm (Reconstruction Attack)

Input: Oracle access to sketch f using unknown
subspace U of dimension r

Put V, = {0}, empty subspace
Fort=1tot=r:

(Correlation Finding) Find vectors x,,...,x,,
weakly correlated with unknown subspace U,
orthogonal to V, ,

(Boosting) Find single vector x strongly
correlated with U, orthogonal to V, ,

(Progress) Put V, =V, , + span{x}
Output: Subspace V,



Open Problems

* Achievable polynomial dependence still open

e Can efficient linear sketches which tolerate a
sufficient polynomial number of adaptive
qgueries be built for interesting problems?

* |f you need C adaptive queries, when can you
do better than independently repeating the
sketch C times?



