How Robust are Linear Sketches to Adaptive Inputs?

Moritz Hardt, David P. Woodruff
IBM Research Almaden

Two Aspects of Coping with Big Data

Efficiency: design algorithms for enormous inputs

- low memory, fast processing time, etc.

Robustness: handle adverse conditions

- inputs may be chosen to try to break the algorithm

Can we achieve both?

Algorithmic paradigm: Linear Sketches

Applications: Compressed sensing, data streams, distributed computation, numerical linear algebra

Unifying idea:

Small number of *linear measurements* applied to data

r << n

"For each" correctness

For each x: Pr { Alg(x) correct } > 1 - 1/poly(n)

Pr over randomly chosen matrix A

Does this imply correctness on many inputs?

Only under **modeling assumption**: Inputs are non-adaptively chosen

No guarantee if input x_2 depends on $Alg(x_1)$ for earlier input x_1

Why not?

Example: Johnson-Lindenstrauss Sketch

- Goal: estimate |x|² from |Ax|²
- JL Sketch: if A is a k x n matrix of i.i.d. N(0, 1/k) random variable with k > log n, then $Pr[|Ax|^2 = (1\pm 1/2)|x|^2] > 1-1/poly(n)$
- Attack:
 - 1. Query $x = e_i$ and $x = e_i + e_j$ for all standard unit vectors e_i and e_j
 - Learn $|A_i|^2$, $|A_j|^2$, $|A_i + A_j|^2$, so learn $|A_i|^2$
 - 2. Hence, learn A^T A, and learn kernel of A
 - 3. Query a vector x 2 kernel(A)

Example: Dynamic Connectivity

- Goal: given a dynamic stream of edges to a graph G, find a spanning forest of G
- Connectivity Sketch [AGM]: If x is the characteristic vector of edges in $\{0,1\}^{n^2/2}$, there is a random O⁽ⁿ⁾ x n²/2 matrix A with entries in $\{-1,0,1\}$ so that from Ax, can recover a spanning forest of G
 - Sketch is correct for poly(n) non-adaptive queries in a stream
- Attack:
 - 1. Let G in G(n,1/2)
 - 2. Test if edge e in G:
 - Given Ax, delete edges in the spanning forest returned. Repeat until the returned forest is empty or contains e
 - 3. Can recover G, which has entropy n(n-1)/2. But Ax has entropy n log n.

Correlations arise in nearly any realistic setting

Benign/Natural

Monitor traffic using sketch, re-route traffic based on output, affects future inputs.

Can we prove correctness?

Adversarial

DoS attack on network monitoring unit

Can we thwart the attack?

In this work: Strong impossibility results

Benchmark Problem

GapNorm(B): Given
$$x \in \mathbb{R}^n$$
 decide if
(YES) $||x||_2^2 \ge B$
(NO) $||x||_2^2 \le 1$

Goal: Show impossibility for very basic problem.

Easily solvable for B = 1+ ϵ using "for each" guarantee by sketch with O(log n/ ϵ ²) rows using JL.

Main Result

Theorem. For every B, given oracle access to a linear sketch using dimension $r \cdot n - \log(Bn)$, we can find in time poly(r,B) a distribution over inputs on which sketch fails to solve GapNorm(B)

Efficient attack (rules out crypto), even slightly non-trivial sketching dimension impossible

Corollary. Same result for any I_p -norm.

Corollary. Same result even if algorithm uses internal randomness on each query.

Application to Compressed Sensing

12/12 recovery: on input x, output x' for which:

$$||x - x'||_2 \le C||x_{\text{tail}(k)}||_2$$

Theorem. No linear sketch with $o(n/C^2)$ rows gurantees |2/|2| sparse recovery with approximation factor C on a polynomial number of adaptively chosen inputs.

Note: possible with "for each" guarantee with $r = k \log(n/k)$.

[Gilbert-Hemenway-Strauss-W-Wootters12] some positive results

Outline

- Proof of Main Theorem for GapNorm
 - Proved using "Reconstruction Attack"

- Sparse Recovery Result
 - By Reduction from GapNorm
 - Not in this talk

- Sketches Ax and U^Tx are equivalent, where U^T has orthonormal rows and row-span(U^T) = row-span(A)
- 2. Sketch U^Tx equivalent to $P_U x = UU^T x$

function

عا ۱۱ و ۱۱ک

$$f(x) = \overline{f(P_U x)}$$

for some subspace $U \subseteq \mathbb{R}^n$, dim(U) = r Why?

Sketch has unbounded computational power on top of P_Ux

Algorithm (Reconstruction Attack)

Input: Oracle access to sketch *f using unknown subspace U of dimension r*

Put $V_o = \{0\}$, subspace of 0 dimension

For t = 1 **to** t = r:

(Correlation Finding) Find vectors $x_1,...,x_m$ weakly correlated with unknown subspace U, orthogonal to V_{t-1}

(Boosting) Find single vector x strongly correlated with U, orthogonal to V_{t-1}

(Progress) Put $V_t = span\{V_{t-1}, x\}$

Output: Subspace V_r

Algorithm (Reconstruction Attack)

Input: Oracle access to sketch *f using unknown subspace U of dimension r*

Put $V_0 = \{0\}$, empty subspace

For t = 1 to t = r:

(Correlation Finding) Find vectors $x_1,...,x_m$ weakly correlated with unknown subspace U orthogonal to V_{t-1}

(Boosting) Find single vector x strongly correlated with U, orthogonal to V_{t-1}

(Progress) Put $V_t = V_{t-1} + \text{span}\{x\}$

Output: Subspace V_r

Conditional Expectation Lemma

Lemma. Given d-dimensional sketch f, we can find using poly(d) queries a distribution g such that:

$$\mathbb{E}\left[\|P_{U}g\|^{2} |f(g)=1\right] \geq \mathbb{E}\|P_{U}g\|^{2} + \Delta$$

Moreover,

- 1. Δ ≥ poly(1/d)
- 2. $g = N(0,\sigma)^n$ for a carefully chosen σ unknown to sketching algorithm

"Advantage over random"

Simplification

Fact: If g is Gaussian, then $P_Ug = UU^Tg$ is Gaussian as well

Hence, can think of query distribution as choosing random Gaussian g to be inside subspace U.

We drop the P_U projection operator for notational simplicity.

The three step intuition

(Symmetry) Since the queries are random Gaussian inputs g with an unknown variance, by spherical symmetry, sketch f learns nothing more about query distribution than norm |g|(Averaging) If |g| is larger than expected, the sketch is "more likely" to output 1 (Bayes) Hence, by sort-of-Bayes-Rule, conditioned on f(g)=1, expectation of |g| is likely to be larger

Def. Let $p(s) = Pr\{f(y) = 1\}$ y in U uniformly random with $|y|^2 = s$

Fact. If g is Gaussian with $E|g|^2 = t$, then,

$$\Pr\{f(g) = 1\} = \int_0^\infty p(s)\nu_t(s)ds$$

density of χ²-distribution with expectation t and d degrees of freedom

Sliding χ^2 -distributions

• $\phi(s) = s_1^B (s-t) v_t(s) dt$

If this were instead at least 1/poly(d), we'd be done

- $\phi(s) < 0 \text{ unless } s > B O(B^{1/2} \log B)$
- $s_0^1 \phi(s) ds = s_0^1 s_1^B (s-t) v_t(s) dt ds = 0$

Averaging Argument

 Recall p(s) = Pr[f(y) = 1] given uniformly random |y|² = s

- Correctness:
 - For small s, p(s) $\frac{1}{4}$ 0, while for large s, p(s) $\frac{1}{4}$ 1
- $s_0^1 p(s) \phi(s) ds_1 d$

• By a calculation, $E[|g_t|^2 | f(g_t) = 1]$, $t + \phi$

Algorithm (Reconstruction Attack)

Input: Oracle access to sketch *f using unknown subspace U of dimension r*

Put $V_0 = \{0\}$, empty subspace

For t = 1 to t = r:

(Correlation Finding) Find vectors $x_1,...,x_m$ weakly correlated with unknown subspace U orthogonal to V_{t-1}

(Boosting) Find single vector x strongly correlated with U, orthogonal to V_{t-1}

(Progress) Put $V_t = V_{t-1} + \text{span}\{x\}$

Output: Subspace V_r

Boosting small correlations

- 1. Sample *poly(d)* vectors using CoEx Lemma
- 2. Compute top singular vector x of M

Lemma:

$$|P_Ux| > 1$$
-poly $(1/d)$

Proof: Discretization + Concentration

Implementation in poly(r) time

- W.l.og. can assume n = r + O(log nB)
 - Restrict host space to first r + O(log nB)coordinates
- Matrix M is now O(r) x poly(r)
- Singular vector computation poly(r) time

Iterating previous steps

Generalize Gaussian to "subspace Gaussian" = $Gaussian \ vanishing \ on \ maintained \ subspace \ V_t$

Intuition:

Each step reduces sketch dimension by one.

After *r* steps:

- 1. Sketch has no dimensions left!
- 2. Host space still has $n r > O(\log nB)$ dimensions

Problem

Top singular vector not <u>exactly</u> contained in U Formally, sketch still has dimension *r*

Can fix this by adding small amount of Gaussian noise to all coordinates

Algorithm (Reconstruction Attack)

Input: Oracle access to sketch *f using unknown subspace U of dimension r*

Put $V_o = \{0\}$, empty subspace

For t = 1 **to** t = r:

(Correlation Finding) Find vectors $x_1,...,x_m$ weakly correlated with unknown subspace U, orthogonal to V_{t-1}

(Boosting) Find single vector x strongly correlated with U, orthogonal to V_{t-1}

(Progress) Put $V_t = V_{t-1} + \text{span}\{x\}$

Output: Subspace V_r

Open Problems

Achievable polynomial dependence still open

 Can efficient linear sketches which tolerate a sufficient polynomial number of adaptive queries be built for interesting problems?

 If you need C adaptive queries, when can you do better than independently repeating the sketch C times?