LSE

Packing degenerate graphs using pseudorandomness

Julia Bottcher

London School of Economics

Simons Institute, "Proving and Using Pseudorandomness”
March 2017



Fifteen young ladies in a school walk
out three abreast for seven days in
succession: it is required to arrange
them daily so that no two shall walk
twice abreast.

LADY’S AND GENTLEMAN'S
DIARY,




LADY’S AND GENTLEMAN'S

Fifteen young ladies in a school walk
out three abreast for seven days in
succession: it is required to arrange
them daily so that no two shall walk
twice abreast.

Definition STEINER SYSTEM S(t, k, n)
n-element set S and
a family of k-element subsets of S called blocks

with the property that each f-element subset of S
is contained in exactly one block.




Fifteen young ladies in a school walk
out three abreast for seven days in
succession: it is required to arrange
them daily so that no two shall walk
twice abreast.

Definition

n-element set S and

a family of k-element subsets of S called blocks

LADY’S AND GENTLEMAN'S
D

with the property that each f-element subset of S

is contained in exactly one block.

STEINER SYSTEM S(t, k, n)

(vertices)

(complete t-graph)

(hyperedges)



LADY’S AND GENTLEMAN'S
D

Fifteen young ladies in a school walk
out three abreast for seven days in
succession: it is required to arrange
them daily so that no two shall walk
twice abreast.

Definition STEINER SYSTEM S(t, k, n)

n-element set S and (vertices)
a family of k-element subsets of S called blocks  (complete {-graph)

with the property that each t-element subset of S (hyperedges)
is contained in exactly one block.

Kirkman asks if there is a Steiner system S(2, 3, 15)



LADY’S AND GENTLEMAN'S
D

Fifteen young ladies in a school walk
out three abreast for seven days in
succession: it is required to arrange
them daily so that no two shall walk
twice abreast.

Definition STEINER SYSTEM S(t, k, n)

n-element set S and (vertices)
a family of k-element subsets of S called blocks  (complete {-graph)

with the property that each t-element subset of S (hyperedges)
is contained in exactly one block.

Kirkman asks if there is a Steiner system S(2, 3, 15)
but we need more: parallel classes which are themselves partitions of

the vertices into disjoint blocks (resolvable)
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Kirkman’s problem asks for a partition of the edges of K, into triangles.

RAY-CHAUDHURI, WILSON '71

Theorem
Resolvable Steiner systems S(2, 3, n) exist iff nis congruent 3 mod 6.

Divisibility conditions:

(3) needs to be divisible by 3
n — 1 needs to be even (every triangle uses 2 edges at each of its

vertices)
n also needs to be divisible by 3

Ray-Chaudhuri and Wilson show an analogous result for S(2, k, n) for
all k.



Ro6dl established the existence of near-Steiner systems



R&dl established the existence of near-Steiner systems
K,St): complete t-graph on n vertices

Theorem RoDL '85

Forevery 1 <t < k,e >0, and n large:
There is a partition of K,st) into edge-disjoint K,Et)
and a leftover edge-set of size < en'.



R&dl established the existence of near-Steiner systems

K,St): complete t-graph on n vertices

Theorem RoDL '85

Forevery 1 <t < k,e >0, and n large:
There is a partition of K,st) into edge-disjoint K,Et)
and a leftover edge-set of size < en'.

Proof idea: select K,Et)-copies randomly



R&dl established the existence of near-Steiner systems

K,St): complete t-graph on n vertices

Theorem RoDL '85

Forevery 1 <t < k,e >0, and n large:
There is a partition of K,st) into edge-disjoint K,Et)
and a leftover edge-set of size < en'.

Proof idea: select K,Et)-copies randomly ( )



R&dl established the existence of near-Steiner systems
K,St): complete t-graph on n vertices

Theorem RoDL '85

Forevery 1 <t < k,e >0, and n large:
There is a partition of K,st) into edge-disjoint K,Et)
and a leftover edge-set of size < en'.

Proof idea: select K,Et)-copies randomly ( )

Raédl nibble:
(1)

in a first round choose few K, ’-copies randomly
and of these select only those without overlaps

delete the edges in the selected copies
continue with a second round in the remainder, and so on
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Breakthrough:

Theorem KEEVASH

For large n, if the obvious divisibility conditions are satisfied,
then a Steiner system S(t, k, n) exists.

Divisibility conditions: (§~7) should divide (7~]) for 1 <i<t—1
The absorbing method: (its basic philosophy)

with a random process we will have a leftover

so let’s be prepared for this:
before starting the process, find some clever structure that can
absorb any leftover

Keevash’s proof is a very sophisticated variation on this idea, using a lot of
algebraic structure.

Recently: alternative proof and more GLOGK, KUHN, Lo, OSTHUS
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perfect packing: >-7 , e(T;) = (3) I
W
/



Conjecture GYARFAS & LEHEL '76

Any family Ty, Ty, ..., T, of trees with v(T;) = i packs into K.

Conjecture RINGEL 63

For every tree T on n+ 1 vertices, there is a packing of 2n+ 1 copies of T
into Kop1.




Conjecture GYARFAS & LEHEL '76

Any family Ty, Ty, ..., T, of trees with v(T;) = i packs into K.

Conjecture RINGEL 63

For every tree T on n+ 1 vertices, there is a packing of 2n+ 1 copies of T
into Kop1.

also gives a perfect packing
bipartite versions of these packing conjectures exist
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Definition GRACEFUL LABELLING

An injection f: V(H) — {1,...,e(H) + 1} is graceful if
the induced edge labels |f(x) — f(y)| for xy € E(H) are distinct.

If H can be labelled gracefully, there is a packing of k copies of H into
the complete graph K for any k > 2v(H) — 1.
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Conjecture GYARFAS & LEHEL '76

Any family Ty, Tp, ..., T, of trees with v(T;) = i packs into K.

paths & stars; all but two trees are stars GYARFAS & LEHEL '76
Tn_27 Tn_1 5 Tn HoBBS, BOURGEOIS & KASIRAJ '87
all but three trees are stars RoDITTY '8
Ty,..., Tswith s < Ln/\@J BOLLOBAS '83
trees of small diameter which have

a vertex with many leaf-children DoBSON '97,02,07
Tn, ceey Tn_1170n1 /4 into Kn+1 BALOGH & PALMER

Conjecture RosA ‘67

Every tree is graceful.

paths and caterpillars, firecrackers, banana trees, olive trees, ...
trees of diameter at most 7
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near-perfect packing: uses all but a small proportion of the host graph.

Theorem B,HLADKY,PIGUET, TARAZ '16

Foralle > 0, A € N there is ng € N such that for n > ng:
Let Tq,..., T; be a family of trees with

v(Ti) <n,

i1 e(T) < (3),
A(T) < A.

Then Ty, ..., T; pack into K(1+€),,.

Also gives near-perfect version for the conjecture of Ringel:

2n+ 1 copies of atree T with v(T) = n+ 1 pack into Kap41.



Let T be a tree, G a host graph.

even layers of T:
odd layers of T: secondary vertices

Random process:

map primary vertices randomly to V(G),

map secondary vertices randomly into
neighbourhoods
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Near-perfect packing results:

almost spanning bounded degree graphs from any nontrivial

minor-closed family MESSUTI, RODL AND SCHACHT '16

spanning instead of almost spanning FERBER, LEE AND MOUSSET

almost spanning trees with maximum degree O(n/ log n),

spanning trees with maximum degree O(n'/®log~® n) Fersen, Savoriy

any class of bounded degree graphs KiM, KOHN, OSTHUS AND TYOMKYN
Breakthrough:

Theorem Joos, Kim, KUHN AND OSTHUS

For A fixed and n sufficiently large, the Tree Packing Conjecture holds for
trees To, ..., T, of maximum degree at most A.

Near-graceful labelings: for trees with maximum degree O(n/ log n)

ADAMASZEK, ALLEN, GROSU AND HLADKY
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combine a blow-up lemma for packing
with an iterative absorption
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BIOW'Up Lemma KoML&S, SARKOZY, SZEMEREDI, '97

For A fixed, in an (e, d)-superregular pair ( V4, V»), we can embed any
bipartite H with classes Xi and Xz with | X;| = |V;| and max. degree < A.

Packing version: analogous result for near-perfect packing of such H
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For packing Gy, ..., Gt in H:
embed G; first, then G in the remainder, then G5 ...
for embedding G;, choose natural order xi, ..., xn of V(G;) and:

first embed xq, then xo, ...

for x; we need to choose an image v; that currently is an H-neighbour
of all previously embedded G;-neighbours of x;

among all possible such v;, choose one randomly

Hope: after embedding some G;,
remainder of H is quasirandom H
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G is D-degenerate if its vertices can be ordered xj, ..., X, such that x; has
at most D neighbours among x1, ..., x;_1 for all /.

Theorem ALLEN, B, HLADKY, PIGUET

Foralle > 0, D € N there are ¢ > 0 and ny € N such that for n > ng:
Let Gy, ..., G; be a family of D-degenerate graphs with

V( G,) < n,

25:1 e(Gi) < (1- 5)(2)’
A(Gj) < cn/logn.

Then Gy, ..., G; pack into K.

covers more general graph class than all previous near-perfect
packing results
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use the natural random packing process to pack almost spanning G|
show that quasirandomness is preserved

Definition QUASIRANDOM

His (v, L)-quasirandom if for every S C V(H) with |S| < L we have
[Nu(S)| = (1 & a)pl®ln.

also show that, when embedding one G;,
common neighbourhoods in the host graph are used “fairly”

we need to control sequential dependencies
for extending each G; to a copy of G;:

before starting the process, reserve %s(g) random edges H* of K,
choose G/ \ G; as independent set
use a matching argument to show G/ can be completed in H*



Lemma

Let
Q) be a finite probability space,
(Fo, Fi1,- .., Fn) be partitions of Q, with F; refining Fj_1.
Y; be nonnegative random variables, constant on each part of F;.

£ be an event.
Suppose that almost surely, either

& does not occur, or

ST ElYi|Fica] =ptv, Y Var [Yi|Fisi] <02 and0< Y, <R
Then

2

§Zexp( 97)

n
P|Eand Y Vi #p(v+o) ~ 5572

i=1
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We use a natural random packing process.

Can this packing strategy be combined with iterative absorption?
What about very high degrees?

Hypergraph versions?

Many thanks!




