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Active Learning for Domain Adaptation

Phenomenon: Berlind, U., ICML '15:
Data generation may change

e Developed new learning
method ANDA

e ldea: use active learning
to adapt to distributional
shift

e Error bounds on shifted
task

e Bounds on number of
label queries




Active Nearest Neighbors in Changing Environments

Algorithm ANDA:
Nearest Neighbor query rule + Nearest Neighbor prediction

Input: Labeled source data and unlabeled target data
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Active Nearest Neighbors in Changing Environments

Algorithm ANDA:
Nearest Neighbor query rule + Nearest Neighbor prediction

(k, k")-query rule: query!



(k, k")-Nearest Neighbor Cover

T CX, T finite
k, k" € N with k < K’

A set R is a (k, k")-NN-cover for T, if for every x € T, either
x € R or there are k elements from R among the k' nearest
neighbors of x in T UR, thatis |K'(x, TUR)NR| > k.



ANDA

input: Labeled set S, unlabeled set T, parameters k, k’

e Find T'C T st. SUT!is a (k, k')-NN-cover of T
e Query the labels of points in T’

output: héuT” the k-NN classifier on SU T



Lemma

Let T be a finite set of points in a metric space (X, p) and let R
be a (k, k')-NN-cover for T. Then, for all x € X we have

p(x, xk(x, R)) < 3p(x, xkr41(x, T))

= For every x: the distance to the k nearest labels is at most 3
times the distance to the k' + 1 nearest target points!



Proof of Lemma

For every x: the distance to the k nearest labels is at most 3 times
the distance to the k€’ + 1 nearest target points.
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Proof of Lemma

For every x: the distance to the k nearest labels is at most 3 times
the distance to the k€’ + 1 nearest target points.

Let x ¢ X

Consider k' nearest
neighbors in T

If they contain k labels
= done!

Else let x’ be unlabeled




Proof of Lemma

For every x: the distance to the k nearest labels is at most 3 times
the distance to the k€’ + 1 nearest target points.

o letxe X

e Consider k' nearest
neighbors in T

e |f they contain k labels
= done!

e Else let x’ be unlabeled

e Since X' in T, x’ has to be
covered!




Error bound

Let (X, p) be a metric space and let Pt be a (target) distribution
over X x {0, 1} with A-Lipschitz regression function 7. Then for
all K > k> 10, all € > 0, and any unlabeled sample size m7 and
labeled sequence S = ((x1,¥1),-- ., (Xms, Yms)) With labels y;
generated by 7,

EmT[ET(ANDA(S, T, k,k'))]

T~P;
8 . 2N (X, p) K
< 144/ ) Lr(h")+9he + ——————.
k mrT



Correctness of ANDA does not depend on relatedness assumptions
of source and target marginals



However, the number of queries ANDA makes does depend on a
local relatedness measure.



However, the number of queries ANDA makes does depend on a
local relatedness measure.

Define weight ratio of B C X’:



Query bound

Let § >0, w >0 and C > 1. Let my be some target sample size
with mr > k' = (C 4 1)k for some k that satisfies

k> 9(VC(B)In(2mt) +1In(6/9)). Let the source sample size
satisfy

S > 36 In(6/5)mT In ng
Cw Cw

Then, with probability at least 1 — 26 over samples S of size mg
(i.i.d. from Ps) and T of size my (i.i.d. from D7), ANDA-S on
input S, T, k, k" will not query any points x € T with
,B(BCk,T(X)) > w.



Query bound provides fall-back guarantee for the lucky case:
If source and target are the same (or very similar/have bounded
weight ratio) ANDA will not query at all.



Query consistency

For a fixed target sample size, we show that in the limit of large
source samples, ANDA will not make any queries in the support of
the source distribution.



Lower bound

e Error bound in terms of Lipschitzness A and covering numbers
Ny

e Query guarantee no queries in source covered area Xs N X1

Define source coverage of task: v = Dy (Xs N X71)
C5: DA tasks with source coverage v and Lipschitzness A



Lower bound

Let (X, p) be a metric space, v € [0,1], and A > 0. Then for every
DA learning algorithm A, every source sample size ms and target
sample size m, if A is restricted to making fewer than

(1= v)Qu(X,p)]

1
X

q= 5

label queries, then there exists a pair of distribution (Ps, P7) € C¥
such that

B [Lr(A(S, T)) > ;Dr(Xr\ Xs)

S~PJS, T~DY



Active learning is beneficial to Domain Adaptation

Corollary

No DA learner with a fixed query budget, in particular no passive
DA learner, is consistent on the class C%..

But ANDA is )



Summary

New method for learning under data shift

Finite sample bounds on target generalization error

2N (X, p) k'

mrt

E  [L7(ANDA(S, T, k, k")) < <1+\/f> L7(h*) +9e +

mT
T~Pr

(independent of source/target relatedness)

Adaptability with no prior knowledge of relatedness

Consistency even when target not supported by the source

e No queries at all when source/target are the same (or similar)



Thank you!



Experiments

Unlabeled target Queries made
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Generalization error
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