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• Developed new learning
method ANDA

• Idea: use active learning
to adapt to distributional
shift

• Error bounds on shifted
task

• Bounds on number of
label queries
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Active Nearest Neighbors in Changing Environments

Algorithm ANDA:
Nearest Neighbor query rule + Nearest Neighbor prediction

Input: Labeled source data and unlabeled target data
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Algorithm ANDA:
Nearest Neighbor query rule + Nearest Neighbor prediction

(k, k ′)-query rule: query!



(k , k ′)-Nearest Neighbor Cover

T ⊆ X , T finite
k , k ′ ∈ N with k ≤ k ′

A set R is a (k, k ′)-NN-cover for T , if for every x ∈ T , either
x ∈ R or there are k elements from R among the k ′ nearest
neighbors of x in T ∪ R, that is |k ′(x ,T ∪ R) ∩ R| ≥ k .



ANDA

input: Labeled set S , unlabeled set T , parameters k , k ′

• Find T l ⊆ T s.t. S ∪ T l is a (k , k ′)-NN-cover of T

• Query the labels of points in T l

output: hk
S∪T l , the k-NN classifier on S ∪ T l



Lemma

Let T be a finite set of points in a metric space (X , ρ) and let R
be a (k , k ′)-NN-cover for T . Then, for all x ∈ X we have

ρ(x , xk(x ,R)) ≤ 3ρ(x , xk ′+1(x ,T ))

⇒ For every x : the distance to the k nearest labels is at most 3
times the distance to the k ′ + 1 nearest target points!



Proof of Lemma

For every x : the distance to the k nearest labels is at most 3 times
the distance to the k ′ + 1 nearest target points.

x

x ′

• Let x ∈ X
• Consider k ′ nearest

neighbors in T

• If they contain k labels
⇒ done!

• Else let x ′ be unlabeled

• Since x ′ in T, x ′ has to be
covered!
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Error bound

Let (X , ρ) be a metric space and let PT be a (target) distribution
over X × {0, 1} with λ-Lipschitz regression function η. Then for
all k ′ ≥ k ≥ 10, all ε > 0, and any unlabeled sample size mT and
labeled sequence S = ((x1, y1), . . . , (xmS

, ymS
)) with labels yi

generated by η,

E
T∼PmT

T

[LT (ANDA(S ,T , k , k ′))]

≤

(
1 +

√
8

k

)
LT (h∗) + 9λε+

2Nε(X , ρ) k ′

mT
.



Correctness of ANDA does not depend on relatedness assumptions
of source and target marginals



However, the number of queries ANDA makes does depend on a
local relatedness measure.

Define weight ratio of B ⊆ X :

β(B) := DS(B)/DT (B)
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Query bound

Let δ > 0, w > 0 and C > 1. Let mT be some target sample size
with mT > k ′ = (C + 1)k for some k that satisfies
k ≥ 9 (VC(B) ln(2mT ) + ln(6/δ)). Let the source sample size
satisfy

mS ≥
36 ln(6/δ)mT

C w
ln

(
9mT

C w

)
Then, with probability at least 1− 2δ over samples S of size mS

(i.i.d. from PS) and T of size mT (i.i.d. from DT ), ANDA-S on
input S ,T , k , k ′ will not query any points x ∈ T with
β(BCk,T (x)) > w .



Query bound provides fall-back guarantee for the lucky case:
If source and target are the same (or very similar/have bounded
weight ratio) ANDA will not query at all.



Query consistency

For a fixed target sample size, we show that in the limit of large
source samples, ANDA will not make any queries in the support of
the source distribution.



Lower bound

• Error bound in terms of Lipschitzness λ and covering numbers
N1/λ

• Query guarantee no queries in source covered area XS ∩ XT

Define source coverage of task: ν = DT (XS ∩ XT )
Cνλ: DA tasks with source coverage ν and Lipschitzness λ



Lower bound

Let (X , ρ) be a metric space, ν ∈ [0, 1], and λ > 0. Then for every
DA learning algorithm A, every source sample size mS and target
sample size mT , if A is restricted to making fewer than

q =
b(1− ν)Q 1

λ
(X , ρ)c

2

label queries, then there exists a pair of distribution (PS ,PT ) ∈ Cνλ
such that

E
S∼PmS

S ,T∼DmT
T

[LT (A(S ,T ))] ≥ 1

4
DT (XT \ XS)



Active learning is beneficial to Domain Adaptation

Corollary
No DA learner with a fixed query budget, in particular no passive
DA learner, is consistent on the class C0∞.

But ANDA is :)



Summary

• New method for learning under data shift

• Finite sample bounds on target generalization error

E
T∼P

mT
T

[LT (ANDA(S ,T , k, k ′))] ≤
(
1 +

√
8

k

)
LT (h∗) + 9λε+

2Nε(X , ρ) k ′

mT
.

(independent of source/target relatedness)

• Adaptability with no prior knowledge of relatedness

• Consistency even when target not supported by the source

• No queries at all when source/target are the same (or similar)



Thank you!
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Figure: Imagenet → Caltech256
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