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Purpose of talk (besides...)

To show that the two standard design
principles for stochastic multi-armed

bandits have serious drawbacks beyond
the simplest case

(and offer some alternatives)



Formal model

F A set of actions A (given in advance)

F For each x ∈ A there is a reward distribution Px (unknown)

F In each round you choose At ∈ A

F Observe reward Yt ∼ PAt

F Want to collect as much reward as possible

F The total number of rounds (interactions) is n

Example 1 A = {1, . . . , k} and Yt ∼ B(µAt) with µ ∈ [0, 1]k

Example 2 A ⊂ Rd and Yt = 〈At, θ〉+ ηt with θ ∈ Rd and ηt noise

µx = 〈x, θ〉 and µ∗ = maxx∈A µx and ∆x = µ∗ − µx



d = 2 and k = 3 and A = { , , }

θ

Watermelon is optimal because 〈x, θ〉 ∝ ‖x‖ cos angle(x, θ)



Regret
Regret is the difference between the rewards you expect
with the optimal strategy and what you expect

Rn = nmax
x∈A

µx − E

[
n∑
t=1

µAt

]

= E

[
n∑
t=1

∆At

]
Maximise reward ⇔ minimising regret

Strategy is consistent if Rn = o(np) ∀p > 0

How small can we make the regret?



Optimism for linear bandits
In each round, construct confidence set Ct ⊆ Rd such that

θ ∈ Ct with high probability

Then choose action

At = arg max
x∈A

max
θ̃∈Ct
〈x, θ̃〉

Why it works: with high probability

∆At = 〈x∗ − At, θ〉 = 〈x∗, θ〉 − 〈At, θ〉
≤ 〈At, θ̃〉 − 〈At, θ〉 = 〈At, θ̃ − θ〉︸ ︷︷ ︸

width of confidence set in direction At
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Confidence set construction

Gt =
t−1∑
s=1

AsA
>
s (Gram matrix)

θ̂t = G−1t

t−1∑
s=1

AsYs (Least squares estimator)

w.p>1−δ,∀x, t ≤ n
∣∣∣〈x, θ̂t − θ〉∣∣∣ ≤ c

√
d ‖x‖2G−1

t
log
(n
δ

)
(Confidence)

c > 0 is a universal constant and ‖x‖2G−1
t

= x>G−1t x

OFUL Algorithm (Abbasi-Yadkori, Pál, Szepesvári) chooses:

At = arg max
a∈A

〈x, θ̂t〉+ c

√
d ‖x‖2G−1

t
log
(n
δ

)



Regret bounds for optimistic algorithm

Theorem: (Abbasi-Yadkori, Pál, Szepesvári)

The regret of OFUL is bounded by

Rn = O(d
√
n polylog(n))

Almost matches lower bound by Rusmevichientong and Tsitsiklis

(which is Ω(d
√
n))

Worst-case bound obscures instance-dependent structure



Lower bound (Lattimore & Sz, ’16)
For any consistent strategy:

lim sup
n→∞

log(n) ‖x‖2
Ḡ−1
n
≤ ∆2

x

2
for all x ∈ A ,

where Ḡn = E
[∑n

t=1AtA
>
t

]
. Furthermore,

lim sup
n→∞

Rn

log(n)
≥ c(θ,A)

where

c(θ,A) = inf
α∈[0,∞)k

∑
x∈A

α(x)∆x subject to

‖x‖2
H−1
α
≤ ∆2

x

2
, Hα =

∑
x∈A

α(x)xx>
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Upper bound (Lattimore & Sz, ’16)

There exists a strategy such that

lim sup
n→∞

Rn

log(n)
≤ c(θ,A)



Failure of optimism
d = 2 and k = 3 and A = {e1, e2, x} and θ = e1

θ and e1

e2

x = (1− ε, 2ε)

ε

Learning is very slow once e2
is not played

Need Ω(log(n)/ε2) plays of x
to learn it is sub-optimal

Regret is Ω(log(n)/ε)

Optimal regret isO(log(n))
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Failure of optimism

Optimism fails because it never chooses actions that it has
shown (statistically significantly) to be sub-optimal

But these actions should still be taken if the information
gain about other actions is large relative to the regret

Phenomena not observed in the orthogonal case because
there is no generalisation



Failure of Thompson sampling

Define prior P on θ ∈ Rd

In each round t:

1. Calculate posterior Pt = P (θ|A1, Y1, . . . , At−1, Yt−1)

2. Sample θ̃t ∼ Pt

3. Choose At = arg maxx∈A〈x, θ̃t〉

Theorem (Agrawal & Goyal) Rn = O
(
d3/2

√
n polylog(n)

)

Suffers from exactly the same problem as optimism!

Chooses statistically sub-optimal actions with vanishingly small
probability
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Brace yourselves for the optimal algorithm



A three-phase algorithm
Phase 1 (exploration)

Find a barycentric spanner B ⊆ A
Choose each x ∈ B exactly dlog1/2(n)e times

Phase 2 (anomaly detection)

Compute θ̂ = G−1t
∑t

s=1AsYs and ∆̂x = maxy∈A〈y − x, θ̂〉

Solve S = arg min
S∈[0,∞]k

∑
x∈A

Sx∆̂x subject to

For all x, ‖x‖2H−1
S
≤ ∆̂2

x

2(1 + o(1)) log(n)
HS =

∑
x∈A

Sxxx
>

Loop as long as new observations are not too inconsistent with ∆̂,
choosing arms x played less than Sx times

Phase 3 (recovery) Switch to UCB



Key elements of proof

An optimisation approach to learning

Improved concentration guarantees

Gt =
t−1∑
s=1

AsA
>
s

θ̂t = G−1t

t−1∑
s=1

AsYs

with probability at least 1− δ it holds for all x ∈ A and t ≤ n∣∣∣〈θ̂t − θ, x〉∣∣∣ ≤
√

2 ‖x‖2G−1
t

(
c · d · log log(n) + log

(
1

δ

))
typically Θ(log(n))correct constant

probably tight by
law of iterated logarithm
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Practical optimal algorithms



Finite-time guarantees



Infinite action sets
Shape-dependent regret in contin-
uous case

A (very) few results known in
adversarial setting

Curvature may play a role as it
does in experts setting (Huang,
Lattimore, György & Szepesvári,
NIPS 2016)

Global information also important

Computation becomes interesting



The contextual case

What happens when the action-set is
changing?

Optimisation problem should depend on
future action sets. Seems complicated

Information/regret trade-off still present



Trading regret for information

We don’t know how to do this in a generic way

(lots of interesting attempts though)



Summary

Optimism and Thompson sampling can fail
badly when generalisation is possible

Concerning because both are widely used
(linear bandits, contextual bandits, reinforcement learning,...)

We need new tools (information-theoretic
or optimisation approaches, perhaps)
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