Corralling a Band of Bandit Algorithms

Alekh Agarwal¹, Haipeng Luo¹, Behnam Neyshabur², Rob Schapire¹

¹Microsoft Research, New York ²Toyota Technological Institute at Chicago

Contextual Bandits in Practice

Personalized news recommendation in MSN:

Contextual Bandits in Practice

Personalized news recommendation in MSN:

- EXP4
- Epoch-Greedy
- LinUCB
- ILOVETOCONBANDITS
- BISTRO, BISTRO+

• ...

So many existing algorithms, which one should I use ??

So many existing algorithms, which one should I use ??

• no one single algorithm is guaranteed to be the best

So many existing algorithms, which one should I use ??

• no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

So many existing algorithms, which one should I use ??

• no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

• inefficient, wasteful, nonadaptive

So many existing algorithms, which one should I use ??

• no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

• inefficient, wasteful, nonadaptive

Hope: create a master algorithm that

• selects base algorithms automatically and adaptively on the fly

So many existing algorithms, which one should I use ??

no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

• inefficient, wasteful, nonadaptive

Hope: create a master algorithm that

- selects base algorithms automatically and adaptively on the fly
- performs closely to the best in the long run

Full information setting:

• "expert" algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Full information setting:

• "expert" algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Bandit setting:

• use a multi-armed bandit algorithm (e.g. EXP3 (Auer et al., 2002))?

Full information setting:

• "expert" algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Bandit setting:

• use a multi-armed bandit algorithm (e.g. EXP3 (Auer et al., 2002))?

Serious flaw in this approach:

• regret guarantee is only about the actual performance

Full information setting:

• "expert" algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Bandit setting:

• use a multi-armed bandit algorithm (e.g. EXP3 (Auer et al., 2002))?

Serious flaw in this approach:

- regret guarantee is only about the actual performance
- but the performance of base algorithms are significantly influenced due to lack of feedback

An example:

when run separately

An example:

when run separately

when run with a master

An example:

when run separately

when run with a master

Right objective:

perform almost as well as the best base algorithm if it was run on its own

An example:

when run separately

when run with a master

Right objective:

perform almost as well as the best base algorithm if it was run on its own

Difficulties:

 $\bullet \ \text{worse performance} \leftrightarrow \text{less feedback}$

An example:

when run separately

when run with a master

Right objective:

perform almost as well as the best base algorithm if it was run on its own

Difficulties:

- worse performance \leftrightarrow less feedback
- requires better tradeoff between exploration and exploitation

Maillard and Munos (2011) studied similar problems

• EXP3 with higher amount of uniform exploration

Maillard and Munos (2011) studied similar problems

- EXP3 with higher amount of uniform exploration
- if base algorithms have \sqrt{T} regret, master has $T^{2/3}$ regret

Maillard and Munos (2011) studied similar problems

- EXP3 with higher amount of uniform exploration
- if base algorithms have \sqrt{T} regret, master has $T^{2/3}$ regret

Our results:

- a novel algorithm: more active and adaptive exploration
 - almost same regret as base algorithms

Maillard and Munos (2011) studied similar problems

- EXP3 with higher amount of uniform exploration
- if base algorithms have \sqrt{T} regret, master has $T^{2/3}$ regret

Our results:

- a novel algorithm: more active and adaptive exploration
 - almost same regret as base algorithms
- two major applications:
 - exploiting easy environments while keeping worst case robustness

Maillard and Munos (2011) studied similar problems

- EXP3 with higher amount of uniform exploration
- if base algorithms have \sqrt{T} regret, master has $T^{2/3}$ regret

Our results:

- a novel algorithm: more active and adaptive exploration
 - almost same regret as base algorithms
- two major applications:
 - exploiting easy environments while keeping worst case robustness
 - selecting correct model automatically

for t = 1 to T do

Environment reveals some side information $x_t \in \mathcal{X}$

for t = 1 to T do

Environment reveals some side information $x_t \in \mathcal{X}$

```
Player picks an action \theta_t \in \Theta
```

for t = 1 to T do

Environment reveals some side information $x_t \in \mathcal{X}$

```
Player picks an action \theta_t \in \Theta
```

Environment decides a loss function $f_t : \Theta \times \mathcal{X} \mapsto [0, 1]$

for t = 1 to T do

Environment reveals some side information $x_t \in \mathcal{X}$

Player picks an action $\theta_t \in \Theta$

Environment decides a loss function $f_t : \Theta \times \mathcal{X} \mapsto [0, 1]$

Player suffers and observes (only) the loss $f_t(\theta_t, x_t)$

for t = 1 to T do

Environment reveals some side information $x_t \in \mathcal{X}$ Player picks an action $\theta_t \in \Theta$ Environment decides a loss function $f_t : \Theta \times \mathcal{X} \mapsto [0, 1]$ Player suffers and observes (only) the loss $f_t(\theta_t, x_t)$

Example: contextual bandits

• x is context, $\theta \in \Theta$ is a policy, $f_t(\theta, x) = \text{loss of arm } \theta(x)$

for t = 1 to T do

Environment reveals some side information $x_t \in \mathcal{X}$ Player picks an action $\theta_t \in \Theta$ Environment decides a loss function $f_t : \Theta \times \mathcal{X} \mapsto [0, 1]$ Player suffers and observes (only) the loss $f_t(\theta_t, x_t)$

Example: contextual bandits

• x is context, $\theta \in \Theta$ is a policy, $f_t(\theta, x) = \text{loss of arm } \theta(x)$

• environment: i.i.d., adversarial or hybrid

for t = 1 to T do

Environment reveals some side information $x_t \in \mathcal{X}$ Player picks an action $\theta_t \in \Theta$ Environment decides a loss function $f_t : \Theta \times \mathcal{X} \mapsto [0, 1]$ Player suffers and observes (only) the loss $f_t(\theta_t, x_t)$

Example: contextual bandits

• x is context, $\theta \in \Theta$ is a policy, $f_t(\theta, x) = \text{loss of arm } \theta(x)$

• environment: i.i.d., adversarial or hybrid

(Pseudo) Regret: REG = sup_{\theta \in \Theta} \mathbb{E} \left[\sum_{t=1}^{T} f_t(\theta_t, x_t) - f_t(\theta, x_t) \right]

Suppose given *M* base algorithms $\mathcal{B}_1, \ldots, \mathcal{B}_M$.

Suppose given *M* base algorithms $\mathcal{B}_1, \ldots, \mathcal{B}_M$.

At each round *t*, receive suggestions $\theta_t^1, \ldots, \theta_t^M$.

Suppose given *M* base algorithms $\mathcal{B}_1, \ldots, \mathcal{B}_M$.

At each round *t*, receive suggestions $\theta_t^1, \ldots, \theta_t^M$.

Hope: create a master s.t.

loss of master \approx loss of best base algorithm if run on its own

Suppose given M base algorithms $\mathcal{B}_1, \ldots, \mathcal{B}_M$.

At each round *t*, receive suggestions $\theta_t^1, \ldots, \theta_t^M$.

Hope: create a master s.t.

loss of master \approx loss of best base algorithm if run on its own

How to formally measure?

Goal

Suppose running \mathcal{B}_i alone gives

 $\operatorname{REG}_{\mathcal{B}_i} \leq \mathcal{R}_i(T)$
Suppose running \mathcal{B}_i alone gives

$\operatorname{REG}_{\mathcal{B}_i} \leq \mathcal{R}_i(T)$

When running master with all base algorithms, want

 $\operatorname{REG}_{\mathcal{M}} \leq \mathcal{O}(\operatorname{poly}(M)\mathcal{R}_i(T))$

Suppose running \mathcal{B}_i alone gives

$\operatorname{REG}_{\mathcal{B}_i} \leq \mathcal{R}_i(T)$

When running master with all base algorithms, want

$\operatorname{REG}_{\mathcal{M}} \leq \mathcal{O}(\operatorname{poly}(M)\mathcal{R}_i(\mathcal{T}))$

Example: for contextual bandits

Algorithm	REG	environment
ILOVETOCONBANDITS (Agarwal et al., 2014)	\sqrt{T}	i.i.d.
BISTRO+ (Syrgkanis et al., 2016)	$T^{2/3}$	hybrid

Suppose running \mathcal{B}_i alone gives

$\operatorname{REG}_{\mathcal{B}_i} \leq \mathcal{R}_i(T)$

When running master with all base algorithms, want

$\operatorname{REG}_{\mathcal{M}} \leq \mathcal{O}(\operatorname{poly}(M)\mathcal{R}_i(T))$

Example: for contextual bandits

Algorithm	REG	environment
Master	\sqrt{T}	i.i.d.
Master	$T^{2/3}$	hybrid

Suppose running \mathcal{B}_i alone gives

$\operatorname{REG}_{\mathcal{B}_i} \leq \mathcal{R}_i(T)$

When running master with all base algorithms, want

 $\operatorname{REG}_{\mathcal{M}} \leq \mathcal{O}(\operatorname{poly}(\mathcal{M})\mathcal{R}_i(\mathcal{T}))$ impossible in general!

Example: for contextual bandits

Algorithm	REG	environment
Master	\sqrt{T}	i.i.d.
Master	$T^{2/3}$	hybrid

Typical strategy:

- sample a base algorithm $i_t \sim p_t$
- feed importance-weighted feedback to all \mathcal{B}_i : $\frac{f_t(\theta_t, x_t)}{P_{t,i}} \mathbf{1}\{i = i_t\}$

Typical strategy:

- sample a base algorithm $i_t \sim p_t$
- feed importance-weighted feedback to all \mathcal{B}_i : $\frac{f_t(\theta_t, x_t)}{P_{t,i}} \mathbf{1}\{i = i_t\}$

Assume \mathcal{B}_i ensures

 $\operatorname{REG}_{\mathcal{B}_i} \leq \mathcal{R}_i(T)$?

Typical strategy:

- sample a base algorithm $i_t \sim p_t$
- feed importance-weighted feedback to all \mathcal{B}_i : $\frac{f_t(\theta_t, x_t)}{P_{t,i}} \mathbf{1}\{i = i_t\}$

Assume \mathcal{B}_i ensures

$$\operatorname{REG}_{\mathcal{B}_i} \leq \mathbb{E}\left[\max_{t} \frac{1}{p_{t,i}}\right] \mathcal{R}_i(T)$$

Typical strategy:

- sample a base algorithm $i_t \sim p_t$
- feed importance-weighted feedback to all \mathcal{B}_i : $\frac{f_t(\theta_t, x_t)}{\rho_{t,i}} \mathbf{1}\{i = i_t\}$

Assume \mathcal{B}_i ensures

$$\operatorname{REG}_{\mathcal{B}_i} \leq \mathbb{E}\left[\left(\max_t \frac{1}{p_{t,i}}\right)^{\alpha_i}\right] \mathcal{R}_i(T)$$

Typical strategy:

- sample a base algorithm $i_t \sim p_t$
- feed importance-weighted feedback to all \mathcal{B}_i : $\frac{f_t(\theta_t, x_t)}{P_{t,i}} \mathbf{1}\{i = i_t\}$

Assume \mathcal{B}_i ensures

Want

$$\begin{split} & \operatorname{REG}_{\mathcal{B}_i} \leq \mathbb{E}\left[\left(\max_t \frac{1}{p_{t,i}}\right)^{\alpha_i}\right] \mathcal{R}_i(\mathcal{T}) \\ & \operatorname{REG}_{\mathcal{M}} \leq \mathcal{O}(\operatorname{poly}(\mathcal{M}) \mathcal{R}_i(\mathcal{T})) \end{split}$$

Typical strategy:

- sample a base algorithm $i_t \sim p_t$
- feed importance-weighted feedback to all \mathcal{B}_i : $\frac{f_t(\theta_t, x_t)}{P_{t,i}} \mathbf{1}\{i = i_t\}$

Assume \mathcal{B}_i ensures

Want

$$\begin{aligned} \operatorname{REG}_{\mathcal{B}_i} &\leq \mathbb{E}\left[\left(\max_t \frac{1}{p_{t,i}}\right)^{\alpha_i}\right] \mathcal{R}_i(\mathcal{T}) \\ \operatorname{REG}_{\mathcal{M}} &\leq \mathcal{O}(\operatorname{poly}(\mathcal{M}) \mathcal{R}_i(\mathcal{T})) \end{aligned}$$

Note: EXP3 still doesn't work

Outline

1 Introduction

Intuition 1: want $\frac{1}{p_{t,i}}$ to be small

Intuition 1: want $\frac{1}{p_{t,i}}$ to be small

Mirror Map	$1/p_{t,i} pprox$
Shannon Entropy (EXP3)	$exp(\eta \cdot loss)$

Intuition 1: want $\frac{1}{p_{t,i}}$ to be small

Mirror Map	$1/p_{t,i} pprox$
Shannon Entropy (EXP3)	$exp(\eta \cdot loss)$
Log Barrier: $-\frac{1}{\eta}\sum_{i} \ln p_i$ (Foster et al., 2016)	$\eta \cdot loss$

Intuition 1: want $\frac{1}{p_{t,i}}$ to be small

Mirror Map	$1/p_{t,i} pprox$
Shannon Entropy (EXP3)	$exp(\eta \cdot loss)$
Log Barrier: $-\frac{1}{\eta}\sum_{i} \ln p_i$ (Foster et al., 2016)	$\eta \cdot loss$

In some sense, this provides the least extreme weighting

An Increasing Learning Rates Schedule

Intuition 2: Need to learn faster if a base algorithm has a low sampled probability

An Increasing Learning Rates Schedule

Intuition 2: Need to learn faster if a base algorithm has a low sampled probability

Solution:

• individual learning rates: $\sum_{i} \frac{-\ln p_i}{\eta_i}$ as mirror map

An Increasing Learning Rates Schedule

Intuition 2: Need to learn faster if a base algorithm has a low sampled probability

Solution:

• individual learning rates: $\sum_{i} \frac{-\ln p_i}{\eta_i}$ as mirror map

• increase learning rate η_i when $\frac{1}{p_{t,i}}$ is too large

initial learning rates $\eta_i = \eta$, initial thresholds $\rho_i = 2M$

initial learning rates $\eta_i = \eta$, initial thresholds $\rho_i = 2M$ for t = 1 to T do Observe x_t and send x_t to all base algorithms Receive suggested actions $\theta_t^1, \ldots, \theta_t^M$ Sample $i_t \sim p_t$, predict $\theta_t = \theta_t^{i_t}$, observe loss $f_t(\theta_t, x_t)$

Construct unbiased estimated loss $f_t^i(\theta, x)$ and send it to \mathcal{B}_i

initial learning rates $\eta_i = \eta$, initial thresholds $\rho_i = 2M$ for t = 1 to T do Observe x_t and send x_t to all base algorithms Receive suggested actions $\theta_t^1, \ldots, \theta_t^M$ Sample $i_t \sim \boldsymbol{p}_t$, predict $\theta_t = \theta_t^{i_t}$, observe loss $f_t(\theta_t, x_t)$ Construct unbiased estimated loss $f_t^i(\theta, x)$ and send it to \mathcal{B}_i Update $\boldsymbol{p}_{t+1} \leftarrow \text{LOG-BARRIER-OMD}(\boldsymbol{p}_t, \frac{f_t(\theta_t, x_t)}{\rho_{t,i_t}} \boldsymbol{e}_{i_t}, \eta)$

initial learning rates $\eta_i = \eta$, initial thresholds $\rho_i = 2M$ for t = 1 to T do Observe x_t and send x_t to all base algorithms Receive suggested actions $\theta_t^1, \ldots, \theta_t^M$ Sample $i_t \sim \mathbf{p}_t$, predict $\theta_t = \theta_t^{i_t}$, observe loss $f_t(\theta_t, x_t)$ Construct unbiased estimated loss $f_t^i(\theta, x)$ and send it to \mathcal{B}_i Update $\boldsymbol{p}_{t+1} \leftarrow \text{Log-Barrier-OMD}(\boldsymbol{p}_t, \frac{f_t(\theta_t, x_t)}{p_{t+1}} \boldsymbol{e}_{i_t}, \eta)$ for i = 1 to M do if $\frac{1}{\rho_{i+1,i}} > \rho_i$ then update $\rho_i \leftarrow 2\rho_i, \eta_i \leftarrow \beta\eta_i$

Regret Guarantee

Theorem

If for some environment there exists a base algorithm \mathcal{B}_i such that:

$$\operatorname{REG}_{\mathcal{B}_i} \leq \mathbb{E}\left[\rho_{\mathcal{T},i}^{\alpha_i}\right] \mathcal{R}_i(\mathcal{T})$$

then under the same environment CORRAL ensures:

$$\operatorname{REG}_{\mathcal{M}} = \widetilde{\mathcal{O}}\left(\frac{M}{\eta} + T\eta - \frac{\mathbb{E}[\rho_{\mathcal{T},i}]}{\eta} + \mathbb{E}[\rho_{\mathcal{T},i}^{\alpha_{i}}]\mathcal{R}_{i}(\mathcal{T})\right)$$

Application

Contextual Bandits:

Algorithm	REG	environment
ILOVETOCONBANDITS (Agarwal et al., 2014)	\sqrt{T}	i.i.d.
BISTRO+ (Syrgkanis et al., 2016)	$T^{2/3}$	hybrid

Application

Contextual Bandits:

Algorithm	REG	environment
Corral	\sqrt{T}	i.i.d.
Corral	T ^{3/4}	hybrid

Outline

1 Introduction

- 2 Formal Setup
- 3 Main Results

Conclusion

We resolve the problem of creating a master that is almost as well as the best base algorithm if it was run on its own.

- least extreme weighting: LOG-BARRIER-OMD
- increasing learning rate to learn faster
- applications for many settings

Conclusion

We resolve the problem of creating a master that is almost as well as the best base algorithm if it was run on its own.

- least extreme weighting: LOG-BARRIER-OMD
- increasing learning rate to learn faster
- applications for many settings

Open problems:

• inherit exactly the regret of base algorithms ?

 $\operatorname{REG}_{\mathcal{M}} \leq \mathcal{O}(\operatorname{poly}(M)\mathcal{R}_i(T))$

Conclusion

We resolve the problem of creating a master that is almost as well as the best base algorithm if it was run on its own.

- least extreme weighting: LOG-BARRIER-OMD
- increasing learning rate to learn faster
- applications for many settings

Open problems:

• inherit exactly the regret of base algorithms ?

 $\operatorname{REG}_{\mathcal{M}} \leq \mathcal{O}(\operatorname{poly}(M)\mathcal{R}_i(\mathcal{T}))$

• dependence on *M*: from polynomial to logarithmic?