Corralling a Band of Bandit Algorithms

Alekh Agarwall, Haipeng Luo!, Behnam Neyshabur2, Rob Schapire1

IMicrosoft Research, New York
2Toyota Technological Institute at Chicago

Contextual Bandits in Practice

Personalized news recommendation in MSN:

Why William and Kate rafely
hold hands
o

Pokémon GO announced its biggest update
yet, including 80 new Pokémon | »

/19

Contextual Bandits in Practice

Personalized news recommendation in MSN:

y

Pokémon GO announced its biggest update
yet, including 80 new Pokémon | »

EXP4

Epoch-Greedy

LinUCB
ILOVETOCONBANDITS
BISTRO, BISTRO+

/19

Motivation

So many existing algorithms, which one should | use 77

/19

Motivation

So many existing algorithms, which one should | use 77

@ no one single algorithm is guaranteed to be the best

19

Motivation

So many existing algorithms, which one should | use 77

@ no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

19

Motivation

So many existing algorithms, which one should | use 77

@ no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

o inefficient, wasteful, nonadaptive

Motivation

So many existing algorithms, which one should | use 77

@ no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

o inefficient, wasteful, nonadaptive

Hope: create a master algorithm that

@ selects base algorithms automatically and adaptively on the fly

19

Motivation

So many existing algorithms, which one should | use 77

@ no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

o inefficient, wasteful, nonadaptive

Hope: create a master algorithm that

@ selects base algorithms automatically and adaptively on the fly

@ performs closely to the best in the long run

19

A Closer Look

Full information setting:

@ ‘“expert” algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

19

A Closer Look

Full information setting:

@ ‘“expert” algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Bandit setting:

@ use a multi-armed bandit algorithm (e.g. EXP3 (Auer et al., 2002))?

19

A Closer Look

Full information setting:

@ ‘“expert” algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Bandit setting:

@ use a multi-armed bandit algorithm (e.g. EXP3 (Auer et al., 2002))?

Serious flaw in this approach:

@ regret guarantee is only about the actual performance

19

A Closer Look

Full information setting:

@ ‘“expert” algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Bandit setting:

@ use a multi-armed bandit algorithm (e.g. EXP3 (Auer et al., 2002))?

Serious flaw in this approach:
@ regret guarantee is only about the actual performance

@ but the performance of base algorithms are significantly influenced
due to lack of feedback

19

Difficulties

An example:

when run separately

5/19

Difficulties

An example:

when run separately

when run with a master

5/19

Difficulties

An example:

Algy: VIS XS XX XXAXXSAL XK XKL XSS XK XA X
Algy: XXV XXV XA XA XIAAAANNNAAAAANNAAAA

when run separately

Algy: VIS XS XX XX XX XX XX XSS XXS XS X
Algy: XXIXXSIXS XS XSS XSXXS XSS XX XX XXX
when run with a master

Right objective:
perform almost as well as the best base algorithm if it was run on its own

/19

Difficulties

An example:

Algy: VXL XK X XX XXISS XK XKL XA X XA XA X
Algs: X X X XALA XA XAAAN XAAAAAAALAAALAAAALLAA

when run separately

Algy: VIV XI XX XX XX XX XX XSS XX XS X
Algy: XXV XXV XS XS XIS XXX XIS XX XX XXX
when run with a master
Right objective:
perform almost as well as the best base algorithm if it was run on its own

Difficulties:

@ worse performance < less feedback

Difficulties

An example:

Algy: VIV XS XX XX KX XX XX XSS XX XX
Algy: XXV XXX XA KNS AANNAAANNNANNSAA

when run separately

Algy: VIV XI XX XX XX XX XX XSS XX XS X
Algy: XXV XXX XI XSS XS XX XSS XX XX XX XSS
when run with a master

Right objective:
perform almost as well as the best base algorithm if it was run on its own

Difficulties:
@ worse performance < less feedback

@ requires better tradeoff between exploration and exploitation

/19

Related Work and Our Results

Maillard and Munos (2011) studied similar problems

o EXP3 with higher amount of uniform exploration

19

Related Work and Our Results

Maillard and Munos (2011) studied similar problems

o EXP3 with higher amount of uniform exploration

o if base algorithms have /T regret, master has T2/3 regret

6/19

Related Work and Our Results

Maillard and Munos (2011) studied similar problems

o EXP3 with higher amount of uniform exploration

o if base algorithms have /T regret, master has T2/3 regret

Our results:
@ a novel algorithm: more active and adaptive exploration

> almost same regret as base algorithms

19

Related Work and Our Results

Maillard and Munos (2011) studied similar problems

o EXP3 with higher amount of uniform exploration

o if base algorithms have /T regret, master has T2/3 regret

Our results:
@ a novel algorithm: more active and adaptive exploration

> almost same regret as base algorithms

@ two major applications:

» exploiting easy environments while keeping worst case robustness

19

Related Work and Our Results

Maillard and Munos (2011) studied similar problems

o EXP3 with higher amount of uniform exploration

o if base algorithms have /T regret, master has T2/3 regret

Our results:
@ a novel algorithm: more active and adaptive exploration

> almost same regret as base algorithms

@ two major applications:
» exploiting easy environments while keeping worst case robustness

» selecting correct model automatically

19

Outline

© Formal Setup
© Main Results

@ Conclusion and Open Problems

7/19

A General Bandit Problem

fort=1to T do

Environment reveals some side information x; € X

19

A General Bandit Problem

fort=1to T do
Environment reveals some side information x; € X

Player picks an action §; € ©

19

A General Bandit Problem

fort=1to T do
Environment reveals some side information x; € X
Player picks an action §; € ©

Environment decides a loss function f; : © x X — [0, 1]

19

A General Bandit Problem

fort=1to T do
Environment reveals some side information x; € X
Player picks an action §; € ©
Environment decides a loss function f; : © x X — [0, 1]

Player suffers and observes (only) the loss f;(6;, x¢)

19

A General Bandit Problem

fort=1to T do
Environment reveals some side information x; € X
Player picks an action §; € ©
Environment decides a loss function f; : © x X — [0, 1]

Player suffers and observes (only) the loss f;(6;, x¢)

Example: contextual bandits

@ x is context, € © is a policy, (6, x) = loss of arm 6(x)

19

A General Bandit Problem

fort=1to T do
Environment reveals some side information x; € X
Player picks an action §; € ©
Environment decides a loss function f; : © x X — [0, 1]

Player suffers and observes (only) the loss f;(6;, x¢)

Example: contextual bandits
@ x is context, € © is a policy, (6, x) = loss of arm 6(x)

@ environment: i.i.d., adversarial or hybrid

19

A General Bandit Problem

fort=1to T do
Environment reveals some side information x; € X
Player picks an action §; € ©
Environment decides a loss function f; : © x X — [0, 1]

Player suffers and observes (only) the loss f;(6;, x¢)

Example: contextual bandits
@ x is context, € © is a policy, (6, x) = loss of arm 6(x)

@ environment: i.i.d., adversarial or hybrid

(Pseudo) Regret: REG = supyeo E |31 fi(6:, xt) — f(0, xt)

19

Base Algorithms

Suppose given M base algorithms By, . ..

7BM-

19

Base Algorithms

Suppose given M base algorithms By, . ..

At each round t, receive suggestions 0}, . ..

7BM-

,0

M

t -

19

Base Algorithms

Suppose given M base algorithms By, ..., By.

9M

At each round t, receive suggestions 0;,...,0M.

Hope: create a master s.t.

loss of master =~ loss of best base algorithm if run on its own

19

Base Algorithms

Suppose given M base algorithms By, ..., By.

M
oM

At each round t, receive suggestions 0}, ..
Hope: create a master s.t.

loss of master =~ loss of best base algorithm if run on its own

How to formally measure?

19

Goal

Suppose running B; alone gives

REGg, < 'R,-(T)

10/19

Goal

Suppose running B; alone gives

REGg, < 'R,-(T)

When running master with all base algorithms, want

REG < O(poly(M)R;(T))

10/19

Goal

Suppose running B; alone gives
REGg, < 'R;(T)
When running master with all base algorithms, want

REG ¢ < O(poly(M)Ri(T))

Example: for contextual bandits

Algorithm REG | environment
ILOVETOCONBANDITS (Agarwal et al., 2014) VT iid.
BISTRO+ (Syrgkanis et al., 2016) T2/3 hybrid

10/19

Goal

Suppose running B; alone gives
REGg, < 'R;(T)
When running master with all base algorithms, want

REG ¢ < O(poly(M)Ri(T))

Example: for contextual bandits

Algorithm REG | environment
Master VT i.i.d.
Master T2/3 hybrid

10/19

Goal

Suppose running B; alone gives

REGg, < 'R;(T)

When running master with all base algorithms, want

REGum < O(poly(M)R;(T)) impossible in general!

Example: for contextual bandits

Algorithm REG | environment
Master VT i.i.d.
Master T2/3 hybrid

10/19

A Natural Assumption

Typical strategy:
@ sample a base algorithm i; ~ p;

e feed importance-weighted feedback to all B;: %l{i =i}

11/19

A Natural Assumption

Typical strategy:
@ sample a base algorithm iz ~ p;

o feed importance-weighted feedback to all B;: %l{i =it}

Assume B; ensures

REGg, < Ri(T)?

11/19

A Natural Assumption

Typical strategy:
@ sample a base algorithm i; ~ p;

e feed importance-weighted feedback to all B;: %l{i =i}
Assume B3; ensures

REGs < E [mtax L }R;(T)

Pe.i

11/19

A Natural Assumption

Typical strategy:
@ sample a base algorithm i; ~ p;

o feed importance-weighted feedback to all B;: %l{i =it}
Assume B; ensures

REGg <E [(mtax pi)al}Ri(T)

t,i

11/19

A Natural Assumption

Typical strategy:
@ sample a base algorithm i; ~ p;

o feed importance-weighted feedback to all B;: %l{i =it}

Assume B; ensures

REGg <E [(mtax o)al}Ri(T)

t,i

Want REGMm < O(poly(M)Ri(T))

11/19

A Natural Assumption

Typical strategy:
@ sample a base algorithm i; ~ p;

o feed importance-weighted feedback to all B;: %l{i =it}
Assume B; ensures

REGg <E [(mtax o)al}Ri(T)

t,i

Want REGMm < O(poly(M)Ri(T))

Note: EXP3 still doesn’t work

11/19

Outline

© Main Results

12/19

A Special OMD

Intuition 1: want ﬁ to be small

13/19

A Special OMD

to be small

Intuition 1: want 1

Pt,i

Mirror Map

1/Pt,i ~

Shannon Entropy (EXP3)

exp(n - loss)

13 /19

A Special OMD

Intuition 1: want pi- to be small
Mirror Map 1/pei~
Shannon Entropy (EXP3) exp(n - loss)
Log Barrier: —% > ;i In pj (Foster et al., 2016) 7 - loss

13 /19

A Special OMD

Intuition 1: want pi- to be small
Mirror Map 1/pei~
Shannon Entropy (EXP3) exp(n - loss)
Log Barrier: —% > ;i In pj (Foster et al., 2016) 7 - loss

In some sense, this provides the least extreme weighting

13 /19

An Increasing Learning Rates Schedule

Intuition 2: Need to learn faster if a base algorithm has a low sampled
probability

14 /19

An Increasing Learning Rates Schedule

Intuition 2: Need to learn faster if a base algorithm has a low sampled
probability

Solution:

e individual learning rates:)_ as mirror map

—lInp;
i

i

14 /19

An Increasing Learning Rates Schedule

Intuition 2: Need to learn faster if a base algorithm has a low sampled
probability

Solution:

e individual learning rates: > . %

j as mirror map

i

@ increase learning rate n; when ﬁ is too large
N

14 /19

Our Algorithm: CORRAL

initial learning rates n; = 1, initial thresholds p; = 2M

15/19

Our Algorithm: CORRAL

initial learning rates n; = 1, initial thresholds p; = 2M
fort=1to T do

Observe x; and send x; to all base algorithms

Receive suggested actions 61, ...,6M

Sample iy ~ p;, predict 0; = 9?, observe loss f(0¢, x¢)

Construct unbiased estimated loss £/(6, x) and send it to B

15/19

Our Algorithm: CORRAL

initial learning rates n; = 1, initial thresholds p; = 2M
fort=1to T do
Observe x; and send x; to all base algorithms
Receive suggested actions 61, ...,6M
Sample iy ~ p;, predict 0; = 9?, observe loss f(0¢, x¢)
Construct unbiased estimated loss £/(6, x) and send it to B

Update pi+1 + LOG-BARRIER-OMD(py, ft(e“xt)e,t,n)

15/19

Our Algorithm: CORRAL

initial learning rates n; = n, initial thresholds p; = 2M
fort=1to T do
Observe x; and send x; to all base algorithms
Receive suggested actions 6}, ...,6M
Sample i; ~ p;, predict 6; = 0?, observe loss f(0;, xt)
Construct unbiased estimated loss £/ (6, x) and send it to B;
Update p; 11 <+ LOG-BARRIER-OMD(py, ft(e"’“)e,t, n)
for i=1to M do)

i then update p; < 2p;, n; + Bn;

i 1
Pt+1

15/19

Regret Guarantee

Theorem

If for some environment there exists a base algorithm B; such that:

REG, < E [p%,] Ri(T)

then under the same environment CORRAL ensures:

/M E[pr; _
REGy = O (n 4 Tn— [’;7“] +E[p‘;'7,]7z,-(r)>

16/19

Application

Contextual Bandits:

Algorithm REG | environment
ILOVETOCONBANDITS (Agarwal et al., 2014) VT iid.
BISTRO+ (Syrgkanis et al., 2016) T2/3 hybrid

17 /19

Application

Contextual Bandits:

Algorithm REG | environment
CORRAL VT i.i.d.
CORRAL T3/4 hybrid

17 /19

Outline

@ Conclusion and Open Problems

18/19

Conclusion

We resolve the problem of creating a master that is almost as well as the
best base algorithm if it was run on its own.

@ least extreme weighting: LOG-BARRIER-OMD
@ increasing learning rate to learn faster

@ applications for many settings

19/19

Conclusion

We resolve the problem of creating a master that is almost as well as the
best base algorithm if it was run on its own.

@ least extreme weighting: LOG-BARRIER-OMD
@ increasing learning rate to learn faster

@ applications for many settings

Open problems:

@ inherit exactly the regret of base algorithms 7

REGp < O(poly(M)R:(T))

19/19

Conclusion

We resolve the problem of creating a master that is almost as well as the
best base algorithm if it was run on its own.

@ least extreme weighting: LOG-BARRIER-OMD
@ increasing learning rate to learn faster

@ applications for many settings

Open problems:
@ inherit exactly the regret of base algorithms 7
REGy < O(poly(M)Ri(T))

@ dependence on M: from polynomial to logarithmic?

19/19

	Introduction
	Formal Setup
	Main Results
	Conclusion and Open Problems

