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Motivation

So many existing algorithms, which one should | use 77

@ no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

o inefficient, wasteful, nonadaptive

Hope: create a master algorithm that

@ selects base algorithms automatically and adaptively on the fly

@ performs closely to the best in the long run

19
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A Closer Look

Full information setting:

@ ‘“expert” algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Bandit setting:

@ use a multi-armed bandit algorithm (e.g. EXP3 (Auer et al., 2002))?

Serious flaw in this approach:
@ regret guarantee is only about the actual performance

@ but the performance of base algorithms are significantly influenced
due to lack of feedback

19
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Difficulties

An example:

Algy: VIV XS XX XX KX XX XX XSS XX XX
Algy: XXV XXX XA KNS AANNAAANNNANNSAA

when run separately

Algy: VIV XI XX XX XX XX XX XSS XX XS X
Algy: XXV XXX XI XSS XS XX XSS XX XX XX XSS
when run with a master

Right objective:
perform almost as well as the best base algorithm if it was run on its own

Difficulties:
@ worse performance < less feedback

@ requires better tradeoff between exploration and exploitation
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Related Work and Our Results

Maillard and Munos (2011) studied similar problems

o EXP3 with higher amount of uniform exploration

o if base algorithms have /T regret, master has T2/3 regret

Our results:
@ a novel algorithm: more active and adaptive exploration

> almost same regret as base algorithms

@ two major applications:
» exploiting easy environments while keeping worst case robustness

» selecting correct model automatically

19
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A General Bandit Problem

fort=1to T do
Environment reveals some side information x; € X
Player picks an action §; € ©
Environment decides a loss function f; : © x X — [0, 1]

Player suffers and observes (only) the loss f;(6;, x¢)

Example: contextual bandits
@ x is context, € © is a policy, (6, x) = loss of arm 6(x)

@ environment: i.i.d., adversarial or hybrid

(Pseudo) Regret:  REG = supyeo E |31 fi(6:, xt) — f(0, xt)
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Base Algorithms

Suppose given M base algorithms By, ..., By.

M
oM

At each round t, receive suggestions 0}, ..
Hope: create a master s.t.

loss of master =~ loss of best base algorithm if run on its own

How to formally measure?
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Goal

Suppose running B; alone gives

REGg, < 'R;( T)

When running master with all base algorithms, want

REGum < O(poly(M)R;(T)) impossible in general!

Example: for contextual bandits

Algorithm REG | environment
Master VT i.i.d.
Master T2/3 hybrid

10/19
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A Natural Assumption

Typical strategy:
@ sample a base algorithm i; ~ p;

o feed importance-weighted feedback to all B;: %l{i =it}
Assume B; ensures

REGg <E [(mtax o )al}Ri(T)

t,i

Want REGMm < O(poly(M)Ri(T))

Note: EXP3 still doesn’t work
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to be small

Intuition 1: want 1

Pt,i

Mirror Map

1/Pt,i ~

Shannon Entropy (EXP3)

exp(n - loss)
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A Special OMD

Intuition 1: want pi- to be small
Mirror Map 1/pei~
Shannon Entropy (EXP3) exp(n - loss)
Log Barrier: —% > ;i In pj (Foster et al., 2016) 7 - loss

In some sense, this provides the least extreme weighting
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An Increasing Learning Rates Schedule

Intuition 2: Need to learn faster if a base algorithm has a low sampled
probability

Solution:

e individual learning rates: > . %

j as mirror map

i

@ increase learning rate n; when ﬁ is too large
N
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Our Algorithm: CORRAL

initial learning rates n; = n, initial thresholds p; = 2M
fort=1to T do
Observe x; and send x; to all base algorithms
Receive suggested actions 6}, ...,6M
Sample i; ~ p;, predict 6; = 0?, observe loss f(0;, xt)
Construct unbiased estimated loss £/ (6, x) and send it to B;
Update p; 11 <+ LOG-BARRIER-OMD(py, ft(e"’“)e,t, n)
for i=1to M do )

i then update p; < 2p;, n; + Bn;

i 1
Pt+1
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Regret Guarantee

Theorem

If for some environment there exists a base algorithm B; such that:

REG, < E [p%,] Ri(T)

then under the same environment CORRAL ensures:

/M E[pr; _
REGy = O (n 4 Tn— [’;7“ ] +E[p‘;'7,]7z,-(r)>
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Application

Contextual Bandits:

Algorithm REG | environment
CORRAL VT i.i.d.
CORRAL T3/4 hybrid
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Conclusion

We resolve the problem of creating a master that is almost as well as the
best base algorithm if it was run on its own.

@ least extreme weighting: LOG-BARRIER-OMD
@ increasing learning rate to learn faster

@ applications for many settings

Open problems:
@ inherit exactly the regret of base algorithms 7
REGy < O(poly(M)Ri(T))

@ dependence on M: from polynomial to logarithmic?
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