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Contextual Bandits in Practice

Personalized news recommendation in MSN:

EXP4

Epoch-Greedy

LinUCB

ILOVETOCONBANDITS

BISTRO, BISTRO+
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Motivation

So many existing algorithms, which one should I use ??

no one single algorithm is guaranteed to be the best

Naive approach: try all and pick the best

inefficient, wasteful, nonadaptive

Hope: create a master algorithm that

selects base algorithms automatically and adaptively on the fly

performs closely to the best in the long run
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A Closer Look

Full information setting:

“expert” algorithm (e.g. Hedge (Freund and Schapire, 1997)) solves it

Bandit setting:

use a multi-armed bandit algorithm (e.g. EXP3 (Auer et al., 2002))?

Serious flaw in this approach:

regret guarantee is only about the actual performance

but the performance of base algorithms are significantly influenced
due to lack of feedback
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Difficulties

An example:

when run separately

when run with a master

Right objective:
perform almost as well as the best base algorithm if it was run on its own

Difficulties:

worse performance ↔ less feedback

requires better tradeoff between exploration and exploitation
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Related Work and Our Results

Maillard and Munos (2011) studied similar problems

EXP3 with higher amount of uniform exploration

if base algorithms have
√
T regret, master has T 2/3 regret

Our results:

a novel algorithm: more active and adaptive exploration

I almost same regret as base algorithms

two major applications:

I exploiting easy environments while keeping worst case robustness

I selecting correct model automatically
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Outline

1 Introduction

2 Formal Setup

3 Main Results

4 Conclusion and Open Problems
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A General Bandit Problem

for t = 1 to T do

Environment reveals some side information xt ∈ X

Player picks an action θt ∈ Θ

Environment decides a loss function ft : Θ×X 7→ [0, 1]

Player suffers and observes (only) the loss ft(θt , xt)

Example: contextual bandits

x is context, θ ∈ Θ is a policy, ft(θ, x) = loss of arm θ(x)

environment: i.i.d., adversarial or hybrid

(Pseudo) Regret: REG = supθ∈Θ E
[∑T

t=1 ft(θt , xt)− ft(θ, xt)
]
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Base Algorithms

Suppose given M base algorithms B1, . . . ,BM .

At each round t, receive suggestions θ1
t , . . . , θ

M
t .

Hope: create a master s.t.

loss of master ≈ loss of best base algorithm if run on its own

How to formally measure?
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Goal

Suppose running Bi alone gives

REGBi ≤ Ri (T )

When running master with all base algorithms, want

REGM ≤ O(poly(M)Ri (T ))

impossible in general!

Example: for contextual bandits

Algorithm REG environment√
T i.i.d.

T 2/3 hybrid
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A Natural Assumption

Typical strategy:

sample a base algorithm it ∼ pt

feed importance-weighted feedback to all Bi : ft(θt ,xt)
pt,i

1{i = it}

Assume Bi ensures
REGBi

Want REGM ≤ O(poly(M)Ri (T ))

Note: EXP3 still doesn’t work
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A Special OMD

Intuition 1: want 1
pt,i

to be small

Mirror Map 1/pt,i ≈

Shannon Entropy (EXP3) exp(η · loss)

Log Barrier: − 1
η

∑
i ln pi (Foster et al., 2016) η · loss

In some sense, this provides the least extreme weighting
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An Increasing Learning Rates Schedule

Intuition 2: Need to learn faster if a base algorithm has a low sampled
probability

Solution:

individual learning rates:
∑

i
− ln pi
ηi

as mirror map

increase learning rate ηi when 1
pt,i

is too large
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Our Algorithm: Corral

initial learning rates ηi = η, initial thresholds ρi = 2M

for t = 1 to T do

Observe xt and send xt to all base algorithms

Receive suggested actions θ1
t , . . . , θ

M
t

Sample it ∼ pt , predict θt = θitt , observe loss ft(θt , xt)

Construct unbiased estimated loss f it (θ, x) and send it to Bi

Update pt+1 ← Log-Barrier-OMD(pt ,
ft(θt ,xt)
pt,it

eit ,η)

for i = 1 to M do

if 1 > ρi then update ρi ← 2ρi , ηi ← βηi
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Regret Guarantee

Theorem

If for some environment there exists a base algorithm Bi such that:

REGBi ≤ E
[
ραi
T ,i

]
Ri (T )

then under the same environment Corral ensures:

REGM = Õ
(
M

η
+ Tη −

E[ρT ,i ]

η
+ E[ραi

T ,i ]Ri (T )

)

16 / 19



Application

Contextual Bandits:

Algorithm REG environment

ILOVETOCONBANDITS (Agarwal et al., 2014)
√
T i.i.d.

BISTRO+ (Syrgkanis et al., 2016) T 2/3 hybrid
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Conclusion

We resolve the problem of creating a master that is almost as well as the
best base algorithm if it was run on its own.

least extreme weighting: Log-Barrier-OMD

increasing learning rate to learn faster

applications for many settings

Open problems:

inherit exactly the regret of base algorithms ?

REGM ≤ O(poly(M)Ri (T ))

dependence on M: from polynomial to logarithmic?
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