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Sketches: Encode data as vector; use linear projections 
to compress the data while preserving properties.   

Extensive theory with connections to compressed 
sensing, metric embeddings; widely applicable since 
parallelizable and suitable for stream processing.

Many positive results such as distinct elements, 
entropy, frequency moments, quantiles, histograms...
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Previously at the workshop...

Problem in Sketch SpaceRegression Problem
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Underlying Idea: Reduce large instance to small instance 
and solve in sketch space.  Sketches are natural fit for 
linear algebra problems since linear operations on 
sketches correspond to operations on original data.



Is it possible to analyze richer 
combinatorial and group-theoretic 

structure via linear sketches?

Can we make compression 
“homomorphic” in a more 

general sense and run 
algorithms on sketched data?
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Problem: Sketch each row of nxn adjacency matrix such 
that we can check connectivity using sketches.

Theorem: Sketches of size O(polylog n) bit suffice!

Surprising? Seems impossible if there are bridge edges.

First Result...



“The quick brown
fox jumped

 over the lazy dog.”

“quick brown fox 
jumped over the 
lazy dog. The”

CYCLIC SHIFT

FINGERPRINT OPERATION

Second Result...

Problem: Sketch files such that we can test if files are 
close under some cyclic rotation. 

Theorem: Sketches of size ≈ no. of divisors of n suffice.

Surprising? Sketch size isn’t monotonic in file size!



II. MisalignmentI. ConnectivityI. Connectivity

a) Connectivity via O(polylog n) bit Fingerprints
b) Extension to Estimating Cuts and Eigenvalues 

Joint work with Kook Jin Ahn and Sudipto Guha
with Michael Crouch and Daniel Stubbs



Sketches for Connectivity

• Theorem: Can check connectivity with high probability using 
a O(polylog n) bit fingerprint of each adjacency list.

• Corollary: Can monitor connectivity of dynamic graph 
streams where edges both inserted and deleted. 

• e.g., [Feigenbaum, Kannan, McGregor, Suri, Zhang 2004, 2005], [McGregor 2005]
• [Jowhari, Ghodsi 2005], [Zelke 2008], [Sarma, Gollapudi, Panigrahy 2008, 2009]
• [Ahn, Guha 2009, 2011], [Konrad, Magniez, Mathieu 2012], [Goel, Kapralov, Khanna 2012]

• More recently: Estimating cut sizes and spectral properties 
from short linear sketches and processing sliding windows.

• [Crouch, McGregor, Stubbs 2013], [Ahn, Guha, McGregor 2012, 2013]

http://www.informatik.uni-trier.de/~ley/pers/hd/m/Magniez:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Magniez:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mathieu:Claire.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mathieu:Claire.html


Plan: Sketch data and emulate connectivity algorithm in 
sketch space. What algorithm should we emulate?
Algorithm (Spanning Forest): 
1. For each node: pick incident edge
2. For each connected comp: pick incident edge
3. Repeat until no edges between connected comp.

Lemma: Find a spanning forest after O(log n) rounds.

Basic Algorithm



Defn: Let ai be ith row of signed vertex-edge matrix

For S⊂V, non-zero entries of          equals E(S,V\S)           

Sketch: Mai where M is a random projection to ℝpolylog N 

such that ∀x, can recover a non-zero entry from Mx.

Utility: Can find an edge across any cut S.

Emulating Algorithm via Sketches
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Sparsification
• Algorithm: Sample each edge uv with probability puv and 

weight sampled edges by 1/puv.

• Theorem (Fung et al.) If puv ≥1/cuv then we (1±ε) approx. all 
cuts where cuv is size of min uv cut. 

• Theorem (Spielman-Srivastava) If puv ≥ruv then we get (1±ε) 
spectral sparsifier where ruv is the effective resistance.

• Lemma: If uv is an edge then 1≤ruv/cuv≤O(n2/3)  

• Theorem: Can sample w/probability t/cuv with Õ(t) sketches. 
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Sampling edges via k-Skeletons

Goal: Sample edge e with probability t/ce.
Connectivity Result: Given Õ(k) bit sketches, can find all 
edges in a cut of ≤ k edges. Call this a “k-skeleton”.
Algorithm (Edge sampling via k-skeletons) 

Let Gi be graph with edges sampled w/p 2-i. 
Return k-skeleton Hi for each Gi where k= 2t

Thm: e=(u,v) is in some Hi with probability at least t/ce

Proof: Let C be edges in min u-v cut in G.
For i= log ce/t, then E[|C∩Gi|]=t and whp |C∩Gi|≤2t. 

Hence e∊Hi iff e∊Gi which happens w/p t/ce 



II. MisalignmentI. Connectivity II. Misalignment

a) Testing Equality with Rotation
b) Matching Lower Bound 

Joint work with Alexandr Andoni, Assaf Goldberger, Ely Porat



Fingerprints for Rotation

• Theorem: There’s a D(n) polylog n bit fingerprint F that is:

‣ Useful: F(a) and F(b) determine if a, b∈ℤn are rotations w.h.p.

‣ Homomorphic: From F(a) can construct F(any rotation of a)
‣ Linear: From F(a) and F(b) can compute F(a+b).

• Theorem: Fingerprints with above properties need D(n) bits. 

• Extension: Extends to case where files aren’t perfect rotations.
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*D(n) is the number of divisors of n



Karp-Rabin: For some p and r, encode a=a0a1a2...an-1 as 

Fermat’s Little Thm: If p=n+1 prime, rn=1 mod p and so,

So, if b is k-shift of a then
Schwartz-Zippel: If r is random and g non-zero: 

Conclusion: No false negatives but likely false positives.

False Start: Fermat’s Little Theorem

P[g(r) = 0]  (n � 1)/p = 1� O(1/n)
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Evaluate g on roots of xn-1 but work in larger field 
xn-1 factorizes as D(n) irreducible polys over rationals:

At least one ɸi has no shared roots with g:
If ɸi shares one root, ɸi divides g (Abel’s Irred. Thm)
Can’t all divide g because g has degree ≤ n-1

Suffices to test g on an arbitrary root of each ɸi 
Bad News: Can’t guarantee g(r) has finite precision.
Good News: Work modulo a random p. Can show ɸi still 
doesn’t share roots with g whp by analyzing resultant.

Beyond Schwartz-Zippel
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Can recover D(n) bits about a from F(a): sum the 
fingerprints of various rotations
To deduce            from

and compare            for all g until matches.
To deduce  

and compare               for all g, g’=α-g until matches.

And so on for other divisors of n...

Lower Bound: Basic Idea
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Thanks!

• Homomorphic Sketches: Compress using sketches such 
that we can run algorithms on compressed data directly. 
Resulting algorithms are parallelizable + streamable.

• Graphs: Dimensionality reduction for preserving 
structural properties. Enables dynamic graph streaming.

• Fingerprinting with Misalignments: Tight bounds on size of 
fingerprint necessary for testing equality up to rotations.




