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Laplace (1749-1827) 
trained his telescope 
where “the discrepancy 
between prediction and 
observation [was] large 
enough to give a high 
probability that there is 
something new to be 
found.” 
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Structure for Messy Data 
! Structured 

Single Index 
Models 

E[y|x] = g(xTw) 
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Figure 3: Top panel is the layout of our deployment in the field. Depths
below ground are indicated on the diagram. Light rectangle corresponds to
a full suite of 7 ISEs, and dark rectangle corresponds to 1 temperature and 1
moisture sensor. Bottom panel is an image of a pylon without a lid deployed
in the rice paddy in Bangladesh.

Pylon Design In addition to choosing sensors for our
deployment, we had to design an enclosure for the mote
system, implement the software, and test the hardware and
software that we would deploy. The first challenge was to
design an enclosure that would protect the motes from the
environment, be easy to deploy, and minimize disturbance
of the soil during the deployment process. At each location,
we wanted to deploy a full suite of sensors at 3 different
depths, in order to characterize the chemistry above, in
middle, and below an iron band that the scientists suspected
was located at an approximate depth of 3 feet. We designed
and deployed the PVC enclosure which houses all the
networking hardware needed for three depths and sits on top
of a column (Figure 3). One suite of sensors included the 7
ISEs listed above and temperature and moisture sensors. The
layout of the sensors and pylons is in Figure 3.
Initially our plan was to deploy all sensors in a single

hole beneath the pylon column. However, placing sensors
at multiple depths disturbed the soil too much, making it
hard to pack down. Thus, we settled on deploying a single
depth of sensors in a hole, and placing the holes as close
together as possible. We could not fit more than 4 ISEs in
one hole, and the moisture sensors were isolated so that
their electromagnetic radiation would not interfere with the
electric potential measured by the ISEs. Thus, we dug three
holes per depth to accommodate a full suite of sensors. When
the pylon is deployed, the sensor cables come out from the
bottom of the pylon and extend to the satellite holes.
To aid in ease of deployment, we are developing javelin

pylons [4] to replace the pylons we used in Bangladesh.

These pylons are even easier to deploy as the pylon column
itself contains the sensors. The javelin narrows at the bottom
so that it can be driven into the ground, minimizing the
impact on the soil and avoiding the need to dig holes for the
sensors or for the pylon structure itself.

Networking The enclosure of the pylon housed the
networking and sensor-related hardware. We used Mica2
motes connected to a MDA300 sensor-board to collect data
from the sensors in the pylon. The base-station, a Stargate6
powered by a car battery, collected data from the network.
We used the Extensible Sensing System [5] for our network
stack; this included multihop data collection at a centralized
sink, time synchronization, a network debugging tool [6],
and a disruption tolerant networking layer [3] based on delay
tolerant networking [8].
Since improving the quantity of data is especially

important for rapid deployments, the disruption tolerant
networking layer was critical for our success. While
this layer does not provide end-to-end reliability, it
can handle longer-term route disruptions that MAC-layer
retransmissions cannot. If a valid route to the base station
is not present or the MAC layer fails to successfully transmit
a packet to its next hop, the disruption tolerant networking
layer saves the packet to local storage [3]. Writing data to
local flash consumes power, but the additional reliability
justified the tradeoff in practice. For example, many nights
we were not able to deploy our base station due to
security issues (even the car battery was vulnerable to theft)
and various software problems. However, we lost minimal
data as a result of these issues or any other base station
outages, eventually receiving 76% of the expected packets—
a relatively high yield in the spectrum of sensor network
deployments [19].

4 CALIBRATION AND TESTING
Before deploying our sensor network in Bangladesh we
spent 2 months in the lab calibrating and testing our system.
Calibration is the process of mapping a sensor’s measured
output to an estimate of the property being sensed. The
calibration process for the ISEs is the most involved of all the
sensors we used in Bangladesh, so we focus our discussion
on them.
Mistakes in the process of calibrating the sensor can result

in large margins of error when translating sensor readings.
Thus, proper pre-deployment calibration is a critical step in
enhancing a user’s confidence in the subsequent collected
data.
The accuracy requirements of the application must be

considered during this step. As described in Section 3, the
purpose of our deployment was to collect data to learn more
about the groundwater chemistry in the shallow soil of the
rice paddies. We were interested in diurnal behavior of the
ionic content. Thus, we needed a good characterization of
the sensor’s response to changing ionic concentrations.

6All of our networking hardware is manufactured by Crossbow, Inc.
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! Matrix 
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streaming data 

! PCA with heteroscedastic data 

! Union of 
subspace 
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Subspace Representations 
Sense a length-n vector: 

n temperature sensors 

n router monitors 

n image pixels or features 



Subspace Representations 
ordered singular values 
(normalized) 
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Union of subspaces 
Data are often modeled well by a low-dimensional 
subspace. 

In some ML problems, however, we need a mixture of 
these spaces. 

 

 



Union of subspaces 



Union of subspaces 



Union of subspaces 

Unsupervised methods to cluster these data include:  
!  Sparse subspace clustering [Elhamifar Vidal 2013, Soltanolkotabi Candes 

2012, Wang Xu 2013, Wang Wang Singh 2016] 
!  Threshold Subspace Clustering [Heckel Bolcskei 2013] 

! Greedy Subspace Clustering [Park Caramanis Sanghavi 2014] 

 

They get classification errors ranging from 8% (SSC 
for ten Yale faces) to 31% (GSC for ten MNIST 
digits).  



Union of subspaces 

 

They get classification errors ranging from 8% (SSC 
for ten Yale faces) to 31% (GSC for ten MNIST 
digits).  
 
This is still significantly worse than the “Oracle UoS” 
error of <1% (for ten Yale faces) and 7% (for ten 
MNIST digits).  
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Which 
labels you 
select in 
what order 
has a major 
impact. 

Active label selection 



Guarantees 

Most algorithms (SSC, GSC, TSC) output an affinity 
matrix and then use spectral clustering. 
 
Their guarantees build on a clean affinity matrix for 
spectral clustering. However regularized spectral 
clustering is now known to succeed provably for input 
SBM affinity matrices with a sufficient spectral gap in 
expectation [Coja-Oghlan 2010, Mossel Neeman Sly 2014, Le Levina Vershynin 2017] 
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" The Union of Subspaces Model 

" Subspace Margin 

" Subspace Clustering with Pairwise Active 
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Clustering: unsupervised 

Classification (binary or multi-class): supervised, semi-
supervised, or actively supervised 

 

 

Clustering: metrics for in-class cohesiveness and between-
class disparity 

Classification: metrics for between-class separation 

Clustering v. Classification 



Classifier margin 
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Subspace margin 
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This allows us to prove that for random 
points, the points near the intersection of 
the two subspaces have lower margin. 
 
It is well known that near-intersection 
points are the ones that confound 
subspace clustering algorithms. 



Principal Angles 

ϕ1 = 0 
ϕ2 = 30° 

Two d-dimensional 
subspaces share d 
principal angles. 



Corollary 

Algorithm 1 SUPERPAC

Input: X = {x1, x2, . . . , xN

}: data, K: number of clusters, d: subspace

dimension, A: a�nity matrix, maxQueries: maximum number of pairwise

comparisons

Estimate Labels: ˆ

C  SpectralClustering(A,K)

Initialize Certain Sets: Initialize Z = {Z1, · · · , Znc} and numQueries via

UoS-Explore

while numQueries < maxQueries do
Obtain Test Point: select x

T

 arg max

x2X µ(x)

Assign x

T

to Certain Set: Sort {Z1, · · · , Znc} in order of most likely

must-link (according to UoS model), query x

T
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Z

k
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c
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where c depends only on D, d, and the variance of the additive noise.
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Querying Pairwise Constraints 

•  The users may not 
know the labels 

•  The users may use 
different languages 



SUPERPAC 
SUbsPace clustERing with Pairwise Active Constraints 
 
! Init: Affinity matrix from unsupervised clustering. 
! Init: “Certain Sets” where each set has only 

examples from a true cluster. 

Select Test Point

xT = argminx 1-μ(x)
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! Algorithms for Comparison to SUPERPAC-R: 

! URASC: Uncertainty Reducing Active 
Spectral Clustering 
! Same as our algorithm with no PCA and a different metric 

for choosing the best query. 

! SUPERPAC-A 
! Use a query technique based off the affinity matrix only and 

not subspace projections 

! Random 
! Select next query pair completely at random. 

! Oracle UoS 
! Using oracle labels, compute PCA and then reassign points 

by closest subspace. 
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Computation time 

11

Algorithm
Yale, K = 5
N = 320

D = 2016, d = 9

Yale, K = 10
N = 640

D = 2016, d = 9

Yale, K = 38
N = 2432

D = 2016, d = 9

COIL, K = 20
N = 1440

D = 1024, d = 9

COIL, K = 100
N = 7200

D = 1024, d = 9

USPS, K = 10
N = 9298

D = 256, d = 15
SUPERPAC-R 1.40 (1.38/1.43) 2.78 (2.76/2.79) 10.42 (9.57/10.98) 0.44 (0.37/0.48) 5.78 (5.53/6.02) 0.19 (0.17/0.20)
SUPERPAC-A 1.37 (1.35/1.39) 2.73 (2.71/2.76) 9.36 (8.72/9.91) 0.30 (0.23/0.34) 1.68 (1.50/1.79) 0.05 (0.05/0.06)

URASC-N 0.11 (0.08/0.13) 0.28 (0.23/0.40) 6.38 (5.35/7.22) 4.61 (2.58/5.55) 252.97 (110.63/356.49) 155.02 (53.19/190.86)

TABLE 3: Average computation time (in seconds) per query required by PCC query selection algorithms on real datasets
with 5th/95th quantiles given in parentheses.
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Fig. 8: Misclassification rate for Sonar, Balance, and Leaf datasets with comparison to Active Random query selection.
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Fig. 9: Misclassification rate for Yale and MNIST datasets with comparison to Active Random query selection. Left-to-right,
top-to-bottom: YaleB K = 5, Yale B K = 10, MNIST K = 5, MNIST K = 10.

additionally develop techniques for learning from unlabeled
data whether the union of subspace model or a standard
clustering approach is more appropriate.

APPENDIX A
PROOF OF THEOREM 1

The proof relies on theorem 5.2.1 from [43], restated below.

SUPERPAC is efficient with large N, small D 
URASC is more efficient with large D, small N 
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Cluster jumps: COIL 

0 200 400 600
0

2

4

6

8

10

12

14

16
COIL-20

number of pairwise comparisons
0 2000 4000

5

10

15

20

25

30

COIL-100

0 50 100 150
0

5

10

15

COIL-20 Smoothing

m
is

s
c

la
s

s
if

ic
a

ti
o

n
 %

SUPERPAC-R
SUPERPAC-A
URASC-N
Random
SUPERPAC-S
Oracle UoS



More experiments 
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Conclusion 

" Low-rank signal structure helps in many 
problems  

" (and does not seem to hurt) 

" Subspace margin provides 
a metric for nearness to 
subspace intersection 

" Algorithm theory? 



Thank you!  
 
Questions? 


