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Active Learning M

Laplace (1749-1827)
trained his telescope
where “the discrepancy
between prediction and
observation [was] large
enough to give a high
probability that there is
something new to be
found.”

Images courtesy nih.gov, ras.org.uk, wikipedia



O
— o -
u . .....
— LA S
C )
)

-

e .
S ...oooso
a o .....
-t .’
Y]

O




Structure for Messy Data

—
Idealized ISE response
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& Structured
Single Index
Models

E[y|x] = g(x'w)
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& PCA with heteroscedastic data
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& Matrix _
completion or
factorization with

streaming data

& Union of
subspace
data with
missing
entries
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Outline M

<-The Union of Subspaces Model
<Subspace Margin

<>Subspace Clustering with Pairwise Active
Constraints (SUPERPAC)

<-Empirical results



Subspace Representations M

Sense a length-n vector:
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Subspace Representations M
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Union of subspaces M

Data are often modeled well by a low-dimensional
subspace.

In some ML problems, however, we need a mixture of
these spaces.
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Union of subspaces M
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Union of subspaces




Union of subspaces M
e

Unsupervised methods to cluster these data include:

€ Sparse subspace clustering [Elhamifar Vidal 2013, Soltanolkotabi Candes
2012, Wang Xu 2013, Wang Wang Singh 2016]

€ Threshold Subspace Clustering [Heckel Bolcskei 2013]
L 4 Greedy Subspace Clustering [Park Caramanis Sanghavi 2014]

They get classification errors ranging from 8% (SSC
for ten Yale faces) to 31% (GSC for ten MNIST
digits).



Union of subspaces M
e

They get classification errors ranging from 8% (SSC

for ten Yale faces) to 31% (GSC for ten MNIST
digits).

This is still significantly worse than the “"Oracle UoS”

error of <1% (for ten Yale faces) and 7% (for ten
MNIST digits).



Active label selection M

Yale, K=5 Yale, K=10

* SUPERPAC-R
x SUPERPAC-A
o URASC-N

v Random
---Oracle UoS
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Most algorithms (SSC, GSC, TSC) output an affinity
matrix and then use spectral clustering.

Their guarantees build on a clean affinity matrix for
spectral clustering. However regularized spectral
clustering is now known to succeed provably for input
SBM affinity matrices with a sufficient spectral gap in
EXPECtatiOn [Coja-Oghlan 2010, Mossel Neeman Sly 2014, Le Levina Vershynin 2017]
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<Subspace Margin



Clustering v. Classification M

Clustering: unsupervised

Classification (binary or multi-class): supervised, semi-
supervised, or actively supervised

Clustering: metrics for in-class cohesiveness and between-
class disparity

Classification: metrics for between-class separation



=
(@)
el
©
&
—
L

Classif

o
5 @oo 5 o
O O 0 o
@OOQU@ O
0 CL® 5
o g B
o ol0 0% ® QG
0 B
(@) @OO%@O
0O 0000 ©f
© o (o
o} o6 o
o O 0
o % o
© OO
O @ o
00 © o0ge’g oo
©) mmu O e)
g 8&0_®
0O 0 0.0 & ®C 4
o, 0" g0 o ©
0 0&4H
o o o fs
o} 4
o _©
@)
| U | | | |
10 - 10 S) ) 0
A © Q@ \

2.5

1.5

0.5

-0.5

-1.5

-2.5



Subspace margin




Subspace margin

For a subspace S; with orthogonal projection matrix Py, let the distance of a
point to that subspace be

dist(z, Sk) = ||z — P/, -

Let £* be the index of the true subspace for a point x € X. Then the margin
of x is defined as
dist(z, Sk;*)
1 —max —
08| j#k* dist(x, S;)

—1— p(x). (1)




Behavior of subspace margin IV

Theorem 1. Consider two d-dimensional subspaces Si,Sy C RP with corre-
sponding orthogonal projection matrices Py and P,. Lety = x+n, where x € &1

and n ~ N(0,0%Ip). Then we have

(1—¢)y/o2(D —d)

(14002 (D —d) + 2 — Paal*

< u(y) <

(1+€)y/o2(D —d)
(1—&)y/oX(D —d) + |z — Poa’

with probability at least 1 — 4e—ce’ (D —d) where ¢ is an absolute constant.
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This allows us to prove that for random
points, the points near the intersection of
the two subspaces have lower margin.

It is well known that near-intersection
points are the ones that confound
subspace clustering algorithms.




Principal Angles M

Two d-dimensional
subspaces share d
principal angles.

¢, = 30°



Corollary M

Corollary 2. Let ¢;, 1 = 1,...,d be the principal angles between d-dimensional
subspaces S1,Sy C RP. Let v; = sin®(¢;) and for 1 € Sy fix

;|
HP2LZU1H2 =7 +0 (d § %’)
i=1

for some small 6. Let o € 81 be drawn uniformly from S1 and y; = x; +n; be
observations of x1,xo with Gausstan additive noise. Then

1 —p(y1) <1— p(y2)

with high probability if
0 <

3| Ot
|
3| =

and ;
1 /(1
< Z _E :
71+CT<di1%>

where ¢ depends only on D,d, and the variance of the additive noise.
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<-Subspace Clustering with Pairwise Active
Constraints (SUPERPAC)



Querying Pairwise Constraints M

« The users may not
know the labels

°
°
« The users may use
different languages ° °
° °
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SUPERPAC M

SUbsPace clustERing with Pairwise Active Constraints

& Init: Affinity matrix from unsupervised clustering.
& Init: “"Certain Sets” where each set has only
examples from a true cluster.

Form Affinity Matrix

o

Run PCAQ on Clusters Select Test Point

Spectral &
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<-Empirical results



& Algorithms for Comparison to SUPERPAC-R:

® URASC: Uncertainty Reducing Active

Spectral Clustering

€ Same as our algorithm with no PCA and a different metric
for choosing the best query.

¢ SUPERPAC-A

€ Use a query technigue based off the affinity matrix only and
not subspace projections

¢®Random

& Select next query pair completely at random.

& Oracle UoS

# Using oracle labels, compute PCA and then reassign points
by closest subspace.



missclassification %
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Computation time M

Yale, K =5 Yale, K = 10 Yale, K = 38 COIL, K =20 COIL, K =100 USPS, K =10
Algorithm N =320 N =640 N = 2432 N = 1440 N = 17200 N = 9298
D =2016,d=9 | D=2016,d=9 | D=2016,d=9 | D=1024,d=9 D =1024,d=9 D =256,d =15
SUPERPAC-R 1.40 (1.38/1.43) 2.78 (2.76/2.79) 10.42 (9.57/10.98) 0.44 (0.37/0.48) 5.78 (5.53/6.02) 0.19 (0.17/0.20)
SUPERPAC-A 1.37 (1.35/1.39) 2.73 (2.71/2.76) 9.36 (8.72/9.91) 0.30 (0.23/0.34) 1.68 (1.50/1.79) 0.05 (0.05/0.06)
URASC-N 0.11 (0.08/0.13) 0.28 (0.23/0.40) 6.38 (5.35/7.22) 4.61 (2.58/5.55) 252.97 (110.63/356.49) | 155.02 (53.19/190.86)

with 5th/95th quantiles given in parentheses.

TABLE 3: Average computation time (in seconds) per query required by PCC query selection algorithms on real datasets

SUPERPAC is efficient with large N, small D
URASC is more efficient with large D, small N




missclassification %

N
($)]

N
o

« SUPERPAC-R
x SUPERPAC-A |-
o URASC-N

v Random

- Oracle UoS

0 500

1000 1500 2000
number of pairwise comparisons




Cluster jumps: COIL M
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More experiments

missclassification %

Balance

SUPERPAC-R
URASC-N
Active Random
Random

L L 2 y 0 AR 0 L
0 100 200 300 0 500 1000 0 500 100
number of pairwise comparisons




Conclusion M

<-Low-rank signal structure helps in many
problems

<»(and does not seem to hurt)

<-Subspace margin provides
a metric for nearness to
subspace intersection

<-Algorithm theory?




Thank you!

Questions?



