Carnegie Mellon University

Active learning for multidimensional
experimental spaces of biological
responses

Robert F. Murphy

Ray & Stephanie Lane Professor of Computational
Biology, Biological Sciences, Biomedical Engineering
and Machine Learning

Head, Computational Biology Department,
School of Computer Science




Big problems, Little Data:
Drug Development

Diseases can be extremely heterogeneous and
nased on many factors (e.g., diabetes)

Drug effects can be very different depending
on the patient and disease

ldeally, need to know how all drugs will affect
all diseases in all patients

Too many combinations to measure
everything



Further...

* Leading cause of drug failures in early
development is not lack of effectiveness but
safety concerns (and in late development,
discovery of undesirable side effects)

* Drug development is not just about finding
compounds that hit a desired target-also
about finding compounds that miss all other
targets



Big problems, Little Data:
Basic Biological Research

Cells/Tissues/Organisms are complex systems
without rules/laws

Every process/cell type/organelle/protein may
be affected by drugs, gene variation,
environment

Need to learn all of these changes

Millions of potential perturbations/gene
variations, tens of thousands of proteins,
hundreds of cell types



Predictive modeling

Need to learn a complete matrix/tensor to
show whether a particular drug affects a
particular target in a particular genotype

Same for which genes affect which metabolic
processes, etc.

Try to learn the matrix without doing all
experiments

Measure some and build a predictive model
for the rest

But which measurements should be done?



Current practice: consider each target separately
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Can set up a Sparse, Matrix Factorization/Completion Problem
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Three considerations

 How much/what data is missing?

— Little: matrix completion (passive learning)

— None for some, all for others: matrix factorization

— Most/all: not addressed (need active learning)
* Any basis for ab initio predictions?

— Yes, features for drugs/targets

* e.g., chemical fingerprints

— No
 What are we predicting?

— Real values or binary values (all prior work)

— Classes




Retrospective Studies

* Widely used for demonstrating “real world-
applicability” of methods

* Always concern about generalizability of
results due to possibility of making model
choices using testing data

* |n drug effects space, mostly done with small
datasets (50-500 drugs, 20-700 targets) for
which complete data was available



Use Curated Drug Interaction Datasets

DATA ND NT INTERACTIONS
NR 54 26 90
GPCR 223 05 635

ION CHANNEL 210 204 1476
ENZYME 445 665 2926

Previous studies (e.g., Gonen 2012)
tested ability to predict for 20% of
drugs using training with 80%
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Active Learning of 80% compared to
random or clustering by features

Goenen results Pre-clustering AL
Dataset AUC (%) AUC (%) AUC (%)
NR 824 84.0
GPCR 85.7 86.4
IC 799 85.3
Enz 83.2 85.8




Use subset of PubChem Data

Assays: 177

Unique Protein Targets: 133
Compounds: 20,000

Experiments: ~1,000,000 (30% coverage)

Use features to measure similarity between
drugs and between targets

Compare discovery rate across different
methods
— Discovery: a drug-protein pair whose |rank score| > 80



Sparse model

Need model that can be built from very
limited data during initial acquisition

Used LASSO models for each target and for
each drug, average predictions from each

Used 50% greedy/50% uncertainty hybrid

Used “memory limitation” to focus learning
models from recently acquired data
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* These methods are based on

— having estimates of similarity among drugs and/or
targets (normally both), typically from descriptive
features

* permits predictions to be made about drugs or targets
for which few or no experiments have been done

— having binary or real-valued experimental outputs
* What do we do when
— features are not reliable, or not possible

— outputs are multidimensional?



Proteins

Example: image-based screening
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Feature Component 2

Consider each experiment in a Feature Space

Feature Component 1



Cluster to form Phenotypes
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How do we form Predictions for Unobserved Experiments?
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Identify Proteins with Similar Responses to Drugs
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|dentify Drugs with Similar Effects on Proteins
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Use Similarities to Predict (matrix factorization without prior kernels)
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These considerations lead to a predictive model
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How do we choose the next experiments?
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Which experiments test equivalences?
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Impact of falsification of equivalence
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Identify an Informative Batch of Experiments to Perform Next
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Naik, Kangas, Sullivan, Murphy, eLife 2016
Testing Prospectively

* Learning the effects of many compounds
(drugs) on the subcellular localization of many
proteins



NIH-3T3
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Underlying Experiment Space: 48 Proteins x 48 Drugs
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Since no information available
on what effects to expect, need
some way to evaluate
effectiveness of active learning.
- Use “hidden” duplication of
drugs and proteins
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96 Proteins
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96 Proteins
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96 Proteins

Starting data: All 96 Proteins with No Drug
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Actively Sampled 30 Batches (=28% of the 96x96 experiment space)
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The 30 Batches covered 72% of the 48x48 space
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Performed remaining unique (protein, drug) combinations

<

OO

48 Drugs

0]0)
oo O
o O
O O O
o O
0000

O O
O 00O

o000 O

@)
@)
O

@)
@)

—
)
O

o 0000

O

48x48 space filled in data



How well did it learn? Measure generalization performance
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Automated, Prospective Active Learning
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Knowing when to stop AL

When evaluating retrospectively, can calculate
accuracy of any model using full data to
decide how well we are doing

In any prospective application, can’t do that
Need stopping criterion

Past proposals of single criterion, typically
based upon consistency/confidence of
predictions

We propose a machine learned criterion
based on active learning trajectory



Characterizing experimental spaces

e Basis of both matrix factorization and active
learning is presence of correlations (low rank)

e Sparseness of interactions influences ability to
learn correlations

* Define uniqueness as probability that all drugs
and targets have different responses (100% =
full rank)

* Define responsiveness as probability that any
drug will affect any target (low%=sparse)



Active learning simulations for
different experimental spaces
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Learning a stopping criterion

* Assuming a parameterization of an experimental
space (such as unigueness and responsiveness),
perform many simulations over that space and
record features for each active learning run (e.g.,
number of phenotypes observed, consistency of
new experiments with predictions, number of
conditions that differ within a target)

* Learn a regression function over all simulations to
predict accuracy of model from these features



Learning the stopping criterion
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Estimating accuracy during active learning
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Reduced number of experiments
chosen by stopping criterion

Goenen results With stopping rule
Dataset AUC (%) AUC(%) experiments (%)
NR 824 81.7 529
GPCR 85.7 816 39.3
IC 799 83.8 44
Enz 83.2 778 29.7

Stopping when estimated

accuracy = 90%



Summary

* Empirical results for value of active learning
for “large” heterogeneous experimental
spaces starting with little data

* First prospective demonstration of active
learning driven experimentation for unknown
phenotypes

* Machine learning approach for learning
stopping criteria
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