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G
iven: U

nlabeled data, interactive label queries 

Find: G
ood prediction rule using few

 label queries

N
o assum

ptions on data distribution

W
hat m

akes A
ctive Learning H

ard?

Statistically inconsistent!
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an other kinds of queries help active learning?

T
his talk:

1. W
eak and strong labelers

2.  A
bstaining labelers
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odel
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A
gnostic A
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M
ethods for A

gnostic A
ctive Learning

•
D

isagreem
ent-based A

ctive Learning [C
A

L94, BBL06, 
H

07, D
H

M
07, m

any others]

•
M

argin/C
onfidence-based A

ctive Learning [BZ
07, BL13, 

A
BL14, Z

C
14]

•
C

lustering-based A
ctive Learning [D

H
08, U

W
B13]

T
his w

ork: based on disagreem
ent-based active learning



D
isagreem

ent-based A
ctive Learning 

1. M
aintain candidate set  V

 (that contains best c in C
)

2. For unlabeled x, if there exist c
1 , c

2  in V
 s.t

Q
uery label of x, and update V

c
1

c
2

V

x

[C
A

L94, BBL06, D
H

M
07,

H
07, BD

L09, BH
LZ

10, …
]

c

1 (
x
)6=

c

2 (
x
)

then, x is in disagreem
ent region of V
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e have auxiliary inform
ation?

..as an extra oracle
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W
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cheap, som
etim

es w
rong
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Form
al M

odel Im
plications

W
eak labeler W

 m
ay be biased

Labels by O
Labels by W

y
O

 =
 1

y
O

 =
 -1

y
W

 =
 1

y
W

 =
 -1



Previous W
ork

[U
BS12]  Explicit assum

ptions on w
here W

 and O
 differ 

(close to decision boundaries)

[M
C

R
14] N

o explicit assum
ptions, but applies to online 

selective classification and robust regression

T
his talk: G

eneral learning strategy from
 W

 and O
w

ith no explicit assum
ptions
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1. D
raw

 x
1 ,..,x

m . For each x
i , query O

 and W
. Set:

3. R
un standard disagreem

ent based active learning 
algorithm

 A
. If A

 queries the label of x then:

y
i,D  =

 1    if                y
i,O

      y
i,W

6=

if h(x) =
 1, query O

, else query W

2. Train difference classifier h in H
 on { (x

i , y
i,D ) }

Is this statistically consistent?
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m . For each x
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 and W
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3. R
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ent based active learning 
algorithm

 A
. If A

 queries the label of x then:

y
i,D  =
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i,O

      y
i,W

6=

if h(x) =
 1, query O

, else query W

T
heorem

:  T
his is statistically consistent
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 on { (x

i , y
i,D ) }

w
ith false negative (FN

) rate 

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W
hat about label com

plexity?

Label com
plexity =

 #
label queries to O
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 target excess error)
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#
labels to train difference classifier

⇡
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✓
d
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◆

C
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 =

 disagreem
ent region of current confidence set

N
eed

⇡
Õ

✓
d
0P

r(R
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✏

◆
labels

Problem
: R

 keeps changing,
so have to retrain

N
eed to learn difference 

classifier w
ith FN

 rate


✏/
P
r(R

)
over R

R

Input space
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H
 =
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 V

C
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For epochs 1, 2, 3, …
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C
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k , w
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D
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                                   sam
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1 ,..,x
m

 from
 D

IS(V
k ). 

Õ
(d

0P
r(D

I
S
(V

k ))/✏
k )

Q
uery O

 and W
 for each x

i and train a difference classifier h.

R
un disagreem

ent based active learning algorithm
 A

 to target
excess error     . If A

 queries the label of x then:
if h(x) =

 1, query O
, else query W

✏
k



Label C
om

plexity: D
efinitions

D
isagreem

ent R
egion D

IS(V
) of a set V

:

A
ll x such that there exist c

1  and c
2  in V

 s.t.  
c

1 (
x
)6=

c

2 (
x
)

D
isagreem

ent C
oefficient:

(R
ate of change of disagreem

ent
region as r changes)

r
B

D (c*, r)
c*

✓(r)
=

su
p

r
0�

r

P
r(D

IS
(B

D
(c ⇤,r 0))

r 0



Label C
om

plexity

H
ow

 m
any labels for the rest of active learning?

Total #
labels to train difference classifier

⇡
Õ

✓
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⇤
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✏

◆



Label C
om

plexity: A
ssum

ptions

For any r, t,  there is a h in H
 such that:

P
r(
h
(
x
)
=

�
1
,
x
2
D
I
S
(
B
(
c ⇤
,
r)
,
y

O
6=

y

W
)

t

(Low
 FN

 over disagreem
t region)

P
r(
h
(
x
)
=

1
,
x
2
D
I
S
(
B
(
c ⇤
,
r))

↵
(
r
,
t)

(Low
 positives)

N
ote:

↵
(r,t)

P
r(D

IS
(B

(c ⇤,r))
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plexity

#
labels for active learning

⇡
Õ

✓
d
�
(⌫

⇤)
2

✏
2

◆

w
here: 

�
⇡

↵
(2
⌫
⇤
+

✏,O
(✏))

2⌫
⇤
+

✏


✓

#
labels for disagreem

t based active learning: ⇡
Õ

✓
d
✓(⌫

⇤)
2

✏
2

◆

#
labels to train difference classifier ⇡

Õ

✓
d
0✓(⌫

⇤
+
✏)

✏

◆

C
om

pare:
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C
an w
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W
hen abstention rates increase 

close to decision boundary
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lgorithm
: B

inary Search

N
oisy R

esponse:  Q
uery m

ultiple tim
es, average to 

get ground truth label w
ith high confidence

Interval 
containing c*

+ + - - +

Increasing noise rate:  M
ake an adaptive #

queries 
till high confidence [BR

16]
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A
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e direction
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does not decrease closer to boundary

C
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 does not know
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W
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P
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Sum
m

ary

A
bstentions m

ay help if rate of abstentions 
increase close to decision boundary

W
ork in Progress: PA

C
 m

odel

A
lgorithm

s for thresholds and sm
ooth boundary 

fragm
ents [C

N
08]



C
onclusion

•
M

ore com
plex feedback helps active learning under 

certain conditions

•
N

eed m
ore sophisticated algorithm

s 
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hank You!
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