
Interactive language learning from two extremes

Sida I. Wang, Percy Liang, Christopher D. Manning

+ Sam Ginn, Nadav Lidor

Stanford University

Natural language interfaces

1

Natural language interfaces

Stephen Colbert: write the show

SIRI: what would you like to search for?

...

Stephen Colbert: For the love of God, the cameras are on, give me
something!

SIRI: What kind of place are you looking for, camera stores or churches?

2

Engineering goals

we are stuck when these systems misunderstand us

receive feedback from users, and improve through use

3

Engineering goals

we are stuck when these systems misunderstand us

receive feedback from users, and improve through use

• Adapt to users

regular weekday alarm, cancel the friday meeting

3

Engineering goals

we are stuck when these systems misunderstand us

receive feedback from users, and improve through use

• Adapt to users

regular weekday alarm, cancel the friday meeting

• Handle special domains and low resource languages

familiar words take on new meaning

revert to commit 25ad3

order buy red t5 2

3

Engineering goals

we are stuck when these systems misunderstand us

receive feedback from users, and improve through use

• Adapt to users

regular weekday alarm, cancel the friday meeting

• Handle special domains and low resource languages

familiar words take on new meaning

revert to commit 25ad3

order buy red t5 2

• Perform complex actions

move my meeting with Percy to the same time as my meeting with Chris

call Bob every hour until he picks up, stop after 8 tries

3

Research questions

• How to learn from scratch quickly?

• How to learn to perform complex, custom actions?

4

Main outline

• Extreme 1: learning language games from scratch

• Extreme 2: naturalizing a programming language

5

Learning language games

Wittgenstein. 1953. Philosophical Investigations:

Language derives its meaning from use.

’block’ ’pillar’ ’slab’ ’beam’. 6

Interactive language game

• Iterated, cooperative game between human and computer

• The human player
• has a goal, cannot perform actions

• can use language and provide feedback

• The computer player
• does not know goal, can perform the actions

• does not understand language

7

Interactive language game

• Iterated, cooperative game between human and computer

• The human player
• has a goal, cannot perform actions

• can use language and provide feedback

must teach the computer a suitable language, and adapt

• The computer player
• does not know goal, can perform the actions

• does not understand language

must learn language quickly through interaction

7

SHRDLURN

8

SHRDLURN

8

SHRDLURN

remove red

has a goal performs actions

has language does not talk

8

SHRDLURN

remove red

add(leftmost(hascolor(red)),red)

add(red, hascolor(cyan))

remove(hascolor(red))

remove(leftmost(hascolor(red)))

has a goal performs actions

has language does not talk

8

SHRDLURN

remove red

add(leftmost(hascolor(red)),red)

add(red, hascolor(cyan))

remove(hascolor(red))

remove(leftmost(hascolor(red)))

has a goal performs actions

has language does not talk

8

SHRDLURN

remove red

add(leftmost(hascolor(red)),red)

add(red, hascolor(cyan))

remove(hascolor(red))

remove(leftmost(hascolor(red)))

has a goal performs actions

has language does not talk

8

SHRDLURN

把 红的 拿走

add(leftmost(hascolor(red)),red)

add(red, hascolor(cyan))

remove(hascolor(red))

remove(leftmost(hascolor(red)))

has a goal performs actions

has language does not talk

8

SHRDLURN

emoveray edray

add(leftmost(hascolor(red)),red)

add(red, hascolor(cyan))

remove(hascolor(red))

remove(leftmost(hascolor(red)))

has a goal performs actions

has language does not talk

8

SHRDLURN

9

Outline

• Computer: semantic parsing

• Human: 100 Turkers

• Pragmatics

• Updates

10

Semantic parsing

Actions as logical forms:

add(hascolor(red), cyan)

11

Semantic parsing

Actions as logical forms:

add(hascolor(red), cyan)

remove(rightmost(all()))

remove(rightmost(hascolor(orange)))

11

”Parsing” freely

• Generate logical forms

• start from the smallest size

• score them with a model

• use beam search to find longer high-scoring logical forms

• like the floating parser [Pasupat and Liang 2015]

brown

hascolor(brown)

leftmost(hascolor(brown))

diff(all(),leftmost(hascolor(brown))

remove(diff(all(),leftmost(hascolor(brown)))

12

Model

log-linear model with features φ(x, z):

pθ(z | x) ∝ exp(φ(x, z) · θ)

x : add a cyan block to red blocks

z : add(hascolor(red), cyan)

y :

13

Learning from denotations

pθ(z | x) ∝ exp(φ(x, z) · θ)

x : add a cyan block to red blocks

z : add(hascolor(red), cyan)

y :

14

Learning from denotations

pθ(z | x) ∝ exp(φ(x, z) · θ)

pθ(y | x) =
∑
z:Exec(z)=y pθ(z | x)

x : add a cyan block to red blocks

z : add(hascolor(red), cyan)

y :

14

Learning from denotations

pθ(z | x) ∝ exp(φ(x, z) · θ)

pθ(y | x) =
∑
z:Exec(z)=y pθ(z | x)

x : add a cyan block to red blocks

z : add(hascolor(red), cyan)

y :

L1 penalty and update with AdaGrad

14

Background on features/model

Features φ(x, z): arbitrary mapping from x, z to strings

feature: size(x),size(z)

example: ”sizes: 10,5”

weight: -2.5

feature: x ¡=¿ z

example: ”remove red ¡=¿ remove(red)”

weight: 3.1

Parameters θ · φ(x, z): scores a mapping based on its features

pθ(z | x) ∝ exp(φ(x, z) · θ): assigns probabilities to possible mappings

15

Features

add

leftmost

hascolor

red

orange

1 2

m
put orange on the very left red block

16

Features

add

leftmost

hascolor

red

orange

1 2

m
put orange on the very left red block

uni-, bi-, skip- grams
put, orange, on, the

put orange, orange on, ...,

put * on, orange * the, ...,

16

Features

add

leftmost

hascolor

red

orange

1 2

m
put orange on the very left red block

uni-, bi-, skip- grams
put, orange, on, the

put orange, orange on, ...,

put * on, orange * the, ...,

tree-grams
add(leftmost(*), orange)

leftmost(hascolor(*))

λc.(hascolor(c))

16

Features

add

leftmost

hascolor

red

orange

1 2

m
put orange on the very left red block

uni-, bi-, skip- grams
put, orange, on, the

put orange, orange on, ...,

put * on, orange * the, ...,

tree-grams
add(leftmost(*), orange)

leftmost(hascolor(*))

λc.(hascolor(c))

cross product features
(put,add(*,*))

(put orange,add(*,orange))

(put,orange)

16

Outline

• Computer: semantic parsing

• Human: 100 Turkers

• Pragmatics

• Updates

17

Experiments

• 100 Turkers played SHRDLURN
• Got 10223 utterances in total (6 hrs to complete)

18

Experiments

• 100 Turkers played SHRDLURN
• Got 10223 utterances in total (6 hrs to complete)

• Minimal instructions
• no examples provided to avoid bias

• instructed to use any language

18

Experiments

• 100 Turkers played SHRDLURN
• Got 10223 utterances in total (6 hrs to complete)

• Minimal instructions
• no examples provided to avoid bias

• instructed to use any language

• Some players liked the game
• ”That was probably the most fun thing I have ever done on

mTurk.”
• ”This is SO SO cool. I wish there were a way I could better con-

tribute because this research seems to be just insanely interesting
and worthwhile.”

18

Experiments

• 100 Turkers played SHRDLURN
• Got 10223 utterances in total (6 hrs to complete)

• Minimal instructions
• no examples provided to avoid bias

• instructed to use any language

• Some players liked the game
• ”That was probably the most fun thing I have ever done on

mTurk.”
• ”This is SO SO cool. I wish there were a way I could better con-

tribute because this research seems to be just insanely interesting
and worthwhile.”

• performance is measured by the amount of scrolling needed

18

Results: top players (rank 1-20)

precise and consistent:

(3.01)

rem cy pos 1

stack or blk pos 4

rem blk pos 2 thru 5

rem blk pos 2 thru 4

stack bn blk pos 1 thru 2

fill bn blk

stack or blk pos 2 thru 6

rem cy blk pos 2 fill rd blk

(2.72)

Remove the center block

Remove the red block

Remove all red blocks

Remove the first orange block

Put a brown block on the first brown block

Add blue block on first blue block

(2.78)

remove the brown block

remove all orange blocks

put brown block on orange blocks

put orange blocks on all blocks

put blue block on leftmost blue block in top row

19

Results: average players (rank 21-50)

inconsistent or mismatches computer capability:

(9.17)

reinsert pink

take brown

put in pink

remove two pink from second layer

Add two red to second layer in odd intervals

Add five pink to second layer

Remove one blue and one brown from bottom layer

(7.18)

move second cube

double red with blue

double first red with red

triple second and fourth with orange

add red

remove orange on row two

add blue to column two

add brown on first and third

(8.37)

remove red

remove 1 red

remove 2 4 orange

add 2 red

add 1 2 3 4 blue

emove 1 3 5 orange

add 2 4 orange

add 2 orange

remove 2 3 brown

add 1 2 3 4 5 red

remove 2 3 4 5 6

remove 2

add 1 2 3 4 6 red

20

Results: worst players (rank 51-100)

spammy, vague, did not tokenize:

(12.6)

‘add red cubes on center left

center right

far left and far right’

‘remove blue blocks on row two column two

row two column four’

remove red blocks in center left and center right on second row

(14.32)

laugh with me

red blocks with one aqua

aqua red alternate

brown red red orange aqua orange

red brown red brown red brown

space red orange red

second level red space red space red space

(14.15)

holdleftmost

holdbrown

holdleftmost

blueonblue

brownonblue1

blueonorange

holdblue

holdorange2

blueonred2

holdends1

holdrightend

hold2

orangeonorangerightmost

21

Results: interesting players

22

Players adapt

• More consistent
• remove, delete → remove

• More concise
• Remove the red ones → Remove red

• add brown on top of red → add orange on red

• the, a → ε

23

Quantitative results

Memorize

(all)

Half-model

(all)

Full-model

(all)

Full-model

(top 10)

0

10

20

30

40

50

on
lin
e
ac
cu
ra
cy

17.6

27

33.3

48.6

Learning works fairly well, especially for top players

24

Outline

• Computer: semantic parsing

• Human: 100 Turkers

• Pragmatics

• Updates

25

Pragmatics: motivation

delete cardinal

remove(hascolor(red))

26

Pragmatics: motivation

delete cardinal

remove(hascolor(red))

delete cyan

26

Pragmatics: motivation

delete cardinal

remove(hascolor(red))

delete cyan

remove(hascolor(red))

remove(hascolor(cyan))

remove(hascolor(brown))

26

Pragmatics: motivation

delete cardinal

remove(hascolor(red))

delete cyan

remove(hascolor(red))

remove(hascolor(cyan))

remove(hascolor(brown))

Intuition: cooperative communication

26

Pragmatics: model
Paul Grice

[Golland et al. 2010; Frank/Goodman, 2012]

27

Pragmatics: example

Listener (computer):

pθ(z | x): semantic parsing model

remove(red) remove(cyan) others

delete cardinal 0.8 0.1 0.1

delete cyan 0.6 0.2 0.2

28

Pragmatics: example

Speaker (human):

S(x | z) ∝ pθ(z | x)p(x)

(assume p(x) uniform)

remove(red) remove(cyan) others

delete cardinal 0.57 0.33 0.33

delete cyan 0.43 0.67 0.67

29

Pragmatics: example

Listener (computer):

L(z | x) ∝ S(x | z)p(z)

(assume p(z) uniform)

remove(red) remove(cyan) others

delete cardinal 0.46 0.27 0.27

delete cyan 0.24 0.38 0.38

30

Pragmatics: results

No pragmatics

(all)

Pragmatics

(all)

0

10

20

30

40

50

on
lin
e
ac
cu
ra
cy 33.3 33.8

31

Pragmatics: results

No pragmatics

(all)

Pragmatics

(all)

No pragmatics

(top 10)

Pragmatics

(top 10)

0

10

20

30

40

50

on
lin
e
ac
cu
ra
cy 33.3 33.8

48.6
52.8

pragmatics helps top (cooperative, rational) players

31

Outline

• Computer: semantic parsing

• Human: 100 Turkers

• Pragmatics

• Updates

32

The real data

• Data from June 2016 - Feb 2017
• 19k+ examples, 1.2k+ sessions

33

Diverse language in blocks world

34

Learning language games findings

• our system learns from scratch, quickly

• modelling pragmatics is helpful

• people adapts to the computer
• given the chance, people use very diverse language

35

Drawbacks

selection as supervision signal cannot scale very well

• number of logical forms is exponenential in length
(:blk (:loop 4 (:s (:blk (:loop 2 (:s (:blk (:loop

3(:s (: add red here) (:for (call adj top) (:

select)))))(:for (call adj left) (: select))))) (:for

(call adj back) (: select)))))

each user has a private language – and no sharing

• the system does not continue to improve with more users

action space unclear, not communicated to users

• Add x x o x o x red block – remove 2 4 6 8 – lift 1 3 5

36

Main outline

• Extreme 1: learning language games from scratch

• Extreme 2: naturalizing a programming language

37

Goal

• handle more complex actions / programs

• put cols B and D in a scatter plot against col A

• lowercase the first letter of all my bullets

• move all my future meetings with Bob ahead by 1 hour

• street with palm trees 5 spaces apart

• evolve the language through use in a community

• system continues to improve through use

• define and accommodate the action space

38

Motivation

• formal language

• unambiguous, compose tractably

• learning through definitions

• 3 by 4 red square := 3 red columns of height 4

• no need to infer from many examples

• build up complex concepts hiearchically

· · · ”There is in my opinion no important theoretical difference between
natural languages and the artificial languages of logicians”

→ language derives its meaning through definition

39

Naturalization

• seed the system with a core programming language

• expressive and defines action space, but tedious to use

• user teach the system by defining new things

• ”X” means ”Y”

• evolve the language to be more natural to people while accommo-
dating the system action space

learn from how people try to program

40

Shared community learning

• all users teach one system

• initial users need to know some of the core language

• later users can use what initial users taught

• better for new users

• after enough usage, most simple variations are covered

• easier to use for power users

• allowing them to customize and share

41

Voxelurn

• world is a set of objects with relations

• Voxels: (x, y, z, color)

• domain specfic relation: [direction]: left, top, front, etc.

• domain specific actions: add, move

42

Core language

• programming language designed to interpolate with NL

• controls: if, foreach, repeat, while

• lambda DCS for variable-free joins, set ops, etc.

• has color yellow or color of has row 1

• selection to avoid variables

• select left of this

• block-structured scoping

• , [], isolate

43

Core language (domain general)

44

Demo

• explain the definition process

• do palm tree, and cube, add green monster

45

Palm tree example

• define new things in terms of what’s already defined

• everything trace back to the core language

add palm tree:

add brown trunk height 3:

go to top:

add leaves here:

46

Palm tree example

• define new things in terms of what’s already defined

• everything trace back to the core language

add palm tree:

add brown trunk height 3:

add brown top 3 times:

go to top:

add leaves here:

46

Palm tree example

• define new things in terms of what’s already defined

• everything trace back to the core language

add palm tree:

add brown trunk height 3:

add brown top 3 times:

repeat 3 [add brown top]

go to top:

add leaves here:

46

Palm tree example

• define new things in terms of what’s already defined

• everything trace back to the core language

add palm tree:

add brown trunk height 3:

add brown top 3 times:

repeat 3 [add brown top]

go to top:

select very top of all

add leaves here:

46

Palm tree example

• define new things in terms of what’s already defined

• everything trace back to the core language

add palm tree:

add brown trunk height 3:

add brown top 3 times:

repeat 3 [add brown top]

go to top:

select very top of all

add leaves here:

select left or right or front or back; add green
46

Model (now over derivations)

log-linear model with features φ(d, x, u):

pθ(d | x, u) ∝ exp(φ(d, x, u) · θ)

x : add two chairs 5 spaces apart

z : (:blk (:loop ...))

y :

47

Learning from denotations

mainly for handling scoping automatically

pθ(d | x, u) ∝ exp(φ(d, x, u) · θ)

x : add two chairs 5 spaces apart

z : (:blk (:loop ...))

y :

48

Learning from denotations

mainly for handling scoping automatically

pθ(d | x, u) ∝ exp(φ(d, x, u) · θ)

pθ(y | x, u) =
∑
d:Exec(d)=y pθ(d | x, y)

x : add two chairs 5 spaces apart

z : (: blk (: loop...))

y :

48

Learning from denotations

mainly for handling scoping automatically

pθ(d | x, u) ∝ exp(φ(d, x, u) · θ)

pθ(y | x, u) =
∑
d:Exec(d)=y pθ(d | x, y)

x : add two chairs 5 spaces apart

z : (: blk (: loop...))

y :

L1 penalty and update with AdaGrad

48

Derivation

(loop 3 (add red left))

(add red left)

add red left

loop

times

3

3

A A→ N → A N

Derivation: process of deriving the formula from the utterance

• which rules are used

• where each thing comes from

• categories, types, etc.

49

Features

50

Definition

head: ?

(add red left)

add red left

?

times

3

3

? ? ?

body X: (loop 3 (add red left))

loop

repeat

3

3

(add red left)

add red left

N → A → A N A

51

Grammar induction

• Want high precision rules

• low precision: all users see more junk candidates

• low recall: need more definitions

• Use the tree structure of derivation

• instead of just the program

• Use both the derivation AND the utterance of the body

52

Grammar induction

Inputs: x,X, d, chart(x)

• x : add red top times 3

• X : repeat 3 [add red top] (often a sequence)

• d: (loop 3 (add red top)), and how it is derived

• chart(x) : 3, (add red top) and their derivations

Outputs:

• A→ add C D times N : λCDN.repeat N add C D

• A→ A times N : λAN.repeat N [A]

53

Grammar induction

Inputs: x,X, d, chart(x)

• x : add red top times 3

• X : repeat 3 [add red top] (often a sequence)

• d: (loop 3 (add red top)), and how it is derived

• chart(x) : 3, (add red top) and their derivations

Outputs:

• A→ add C D times N : λCDN.repeat N add C D

• A→ A times N : λAN.repeat N [A]

• can be wrong: add red to row 2 times 2

53

Grammar induction

substitude matching derivations by their categories:

λAN.repeat N [A]

A

add red left

term

times

N

3

body: (loop 3 (add red left))

loop

repeat

3

3

(add red left)

add red left

N → A→ A N A

54

Considerations

Simple heuristic would not always work:

• A1: highest coverage of 4 tokens

• A2: largest match

• we extract the best scoring matches instead, inspired by GENLEX
(Zettlemoyer and Collins, 2005)

55

Derivation scoping

put a chair leg

:= brown column of height 3

put 4 chair legs 3 spaces apart
:= put a chair leg; move back 3 spaces; put a chair leg; move right 3
spaces; put a chair leg; move front 3 spaces; put a chair leg

56

Highest scoring packing

• a span is a set of consecutive tokens
• matching if the chart element is in definition

• a packing is a set of non-overlapping matching spans
• maximal packing – no span to be added

• abstract away the highest scoring maximal packing

• solve with a dynamic program

57

Can people do this?

• chair legs of height 3
(:s (:s (:blkr (:s (:loop (number 3) (:s (: add brown

here) (:for (call adj top this) (: select)))) (:loop

(number 3) (:for (call adj bot this) (: select)))))

(:loop (number 3) (:for (call adj left this) (:

select)))) (:s (:s (:s (:s (:blkr (:s (:loop (number

3) (:s (: add brown here) (:for (call adj top this)

(: select)))) (:loop (number 3) (:for (call adj bot

this) (: select))))) (:loop (number 3) (:for (call

adj back this) (: select)))) (:blkr (:s (:loop (number

3) (:s (: add brown here) (:for (call adj top this)

(: select)))) (:loop (number 3) (:for (call adj bot

this) (: select)))))) (:loop (number 3) (:for (call

adj right this) (: select)))) (:blkr (:s (:loop (number

3) (:s (: add brown here) (:for (call adj top this) (:

select)))) (:loop (number 3) (:for (call adj bot this)

(: select)))))))

58

Experiments

• users built great structures?

59

Experiments

• users built great structures! (show leaderboard)

60

Setup

• qualifier: build a fixed structure

• post-qual: over 3 days build whatever they want

• prizes for best structures

• day 1: bridge, house, animal

• day 2: tower, monster(s), flower(s)

• day 3: ship(s), dancer(s), and castle

• prize for top h-index

• a rule (and its author) gets a citation whenever it is used

61

Basic statistics

• 70 workers qualified, 42 participated, 230 structures

• 64075 utterances, 36589 accepts

• each accept leads to a datapoint labeled by derivation(s)

• 2495 definitions, 2817 induced rules (¡100 core)

62

Is naturalization happening

percent utterances using induced rules:

• 58% of all at the end (up from 0 in the beginning)

• 64.3% of all accepted, and 77.9% of the last 10k accepted

• top users naturalized to different extends, but all increasing

63

Expressive power

• cumulative average of string.length in program / # tokens in ut-
terance

• len(z)/len(z) is very stable at 10 for core language

• varies greatly by user

64

Modes of naturalization

short forms:

left, l, mov left, go left, ¡, sel left

br, blk, blu, brn, orangeright, left3

add row brn left 5

:= add row brown left 5

65

Modes of naturalization

syntactic:

go down and right

:= go down; go right

select orange

:= select has color orange

add red top 4 times

:= repeat 4 [add red top]

l white

:= go left and add white

mov up 2

:= repeat 2 [select up]

go up 3

:= go up 2; go up

66

Modes of naturalization

higher level:

add black block width 2 length 2 height 3

:= {repeat 3 [add black platform width 2...

flower petals

:= flower petal; back; flower petals

cube size 5, get into position start, 5 x 5 open green square, brownbase

67

Citations

basic statistics: 1113 cited rules, median 3, mean 46

left 3 : 5820

select up : 4591

right, ... : 2888

go left : 1438

select right 2 : 1268

add b : 975

add red top 4 times : 309

go back and right : 272

select orange : 256

add white plate 6 x 7 : 232

add brown row 3 : 203

mov right 3 : 178
68

Bridge the gap in power

naturalizing a programming language:

• handle complex actions

• shared community learning

to cover more variations

• better for beginners and experts alike?

69

The two extremes

LLG: start from scratch, understands nothing, anything goes

NPL: start with a programming language and its power

70

The two extremes

LLG: start from scratch, understands nothing, anything goes

NPL: start with a programming language and its power

LLG: each user has a private language

NPL: user community has one shared language

• with some user modelling

70

The two extremes

LLG: start from scratch, understands nothing, anything goes

NPL: start with a programming language and its power

LLG: each user has a private language

NPL: user community has one shared language

• with some user modelling

LLG: selection is the supervision

NPL: definition is the supervision

• possible to build up complex actions/concepts

70

The two extremes

LLG: start from scratch, understands nothing, anything goes

NPL: start with a programming language and its power

LLG: each user has a private language

NPL: user community has one shared language

• with some user modelling

LLG: selection is the supervision

NPL: definition is the supervision

• possible to build up complex actions/concepts

LLG: features, learning from denotations do the heavy lifting

• guess any action, language agnostic

NPL: grammar induction do the heavy lifting

• no parse unless well-supported

70

Calendar (with Nadav Lidor)

http://nlp.stanford.edu/blog/interactive-language-learning/

71

We use the same logical language

• delete Thursday’s events
(:foreach (start date (date 2015 11 12)) (: remove))

• change my 3pm meeting to be 30 minutes after my 10:15am meet-
ing

(:s foreach (start time (time 15 00)) (: move

start datetime (call addtime ((reverse end datetime)

(start time (time 10 15))) (number 30 minutes))))

• rename next meeting ”Boring Family Dinner”
(:foreach (call pick first start datetime (call after

start datetime (call now))) (: update title (string

"boring family dinner")))

72

Better communication with computers

73

Extremes of the solution space

• LLG: we can build a system that learn from scratch quickly through
interaction

• NPL: a community of untrained users can use definitions to natu-
ralize a PL

74

Learn from users interactively

Wittgenstein: language derives its meaning through use

Montague: language derives its meaning through definition?

Code, experiments, demo of LLG: shrdlurn.sidaw.xyz

Hmm, wait for us to release the NPL stuff

75

