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Sequential Manipulation Tasks



SMDPs Modeling Tasks Are Complex
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Near-Term Assistive Scenarios



Changes as we consider
Collaborative Manufacturing

* Keep many of our pillars
— Observations of sequential manipulation tasks
— Existing methods for learning from demonstration

— Focus on execution policies

* Adapt to collaborative setting
— Move away from flat representations

— Move away from divide-and-conquer planning
mechanisms

— Consider collaboration in a broad sense
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Benefits of Hierarchical Structure

* Benefits of hierarchical structure:
— Reduce dimensionality of policy search space



Leverage Hierarchical Structure

Hierarchical structure within the SMDP can be used to make the policy search more tractable




Leverage Hierarchical Structure
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Benefits of Hierarchical Structure

* Benefits of hierarchical structure:
— Reduce dimensionality of policy search space
— Multi-agent task allocation

* Parallel execution
* Preferential allocation



Augmenting Hierarchical Plans with Social Metadata
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Benefits of Hierarchical Structure

* Benefits of hierarchical structure:
— Reduce dimensionality of policy search space
— Multi-agent task allocation

 Parallel execution
* Preferential allocation
— Transparency
* Similarity of cognitive models
* Ability to leverage communication



Benefits of Hierarchical Structure

* Benefits of hierarchical structure:
— Reduce dimensionality of policy search space
— Multi-agent task allocation

* Parallel execution
* Preferential allocation

— Transparency
* Similarity of cognitive models
* Ability to leverage communication

* Disadvantages:

— How do we build the hierarchy from observation?



Building Hierarchical Structure from
Sequential Observations
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SMDP of “Attach Front Frame” Subtask

Hierarchical View
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SMDP-Conjugate of “Attach Front Frame”
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SMDP Conjugate: Actions
become vertices and
required state is described
on edges as a composition
of motor primitives.

Edges are labeled with
transition requirements — A
composition of motor
primitives describing the
world state required to use
that edge.

Vertices contain motor
primitives that can be
executed only upon arriving
in the node.




Building Hierarchical Structure

Task Hierarchy
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Building Hierarchical Structure
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Supportive Behaviors



Can we do better than LfD-based Methods?
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_ Allows for novel behaviors to be discovered

Enables deeper task comprehension and action
understanding

Planner-based
Methods —




Perspective Taking

Generating Supportive Behaviors

6o to object bx

GOTOB(bx)

Preconditions: TYPE(bx,0BJECT),(3rx)[INRODM(bx,rx) a INROOM(ROBOT,rx)]
Deletions: AT(ROBOT,$1,$2), NEXTTO(ROBOT,$1)

Additions: *NEXTTO(ROBOT ,bx)

Go to door dx.

GOTOD(dx)

Preconditions: TYPE(dx,DDOR),(3rx)(3ry) [INRDDH(ROBOT,rx) A CONNECTS(dx,rx,ry)]
Deletions: AT(ROBOT,$1,$2), NEXTTO(ROBOT,$1)

Additions: *NEXTTO(ROBOT,dx)

Go to coordinate location (x,y).
GOTOL(x,y)

Preconditions: (3arx)[INROOH(ROBOT,rx) a LOCINROOM(x,y,rx)]
Deletions: AT(ROBOT,$1,$2), NEXTTO(ROBOT,$1)
Additions: *AT(ROBOT,x,y)

Go through door dx into room rx.

GOTHRUDR(dx,rx)

Preconditions: TYPE(dx,DOOR), STATUS(dx,0PEN), TYPE(rx,ROOH),
NEXTTO(ROBOT,dx) (3rx)[INROOM(ROBOT,ry) a CONNECTS(dx,ry,rx)]

Deletions: AT(ROBOT,$1,$2), NEXTTO(ROBOTS$1), INROOM(ROBOT,$1)

Additions: *INROOM(ROBOT,rx)

Symbolic planning

Motion

planning

26

Autonomously Generated Supportive Behaviors




Supportive Behavior Planning
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Simplified manipulation task



Supportive Action for Bench Assembly



Simplified Vision, Control



Failure Recovery



Preferences in Task Assighment



Changes as we consider
Collaborative Manufacturing

* Keep many of our pillars
— Observations of sequential manipulation tasks
— Existing methods for learning from demonstration

— Focus on execution policies

* Adapt to collaborative setting
— Move away from flat representations

— Move away from divide-and-conquer planning
mechanisms

— Consider collaboration in a broad sense



Application Domain: SnapCircuits

“Construct a switched circuit with a power source and an LED”
Many valid solutions
Many suboptimal solutions exist

Rigid, easily identified components



Application Domain: SnapCircuits

Resource utilization
Circuit board space utilization
Role assignment

Subtask parallelization
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Plan Evaluation

Choose the support policy (§ € =) that minimizes the

expected execution duration of the leader’s policy (mr € M)
to solve the TAMP problem T from the current state (s,)

« Duration estimate must account for
« Resource conflicts (shared utilization/demand)
« Spatial constraints (support agent’s avoidance of lead)

min w, * duration(7', 7, &, S¢, Y)
=
mellp



Plan Evaluation

Choose the support policy (§ € =) that minimizes the

expected execution duration of the leader’s policy (mr € M)
to solve the TAMP problem T from the current state (s,)

 Duration esti
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Uniform Weighting Functions = 1



Optimality-Proportional Weighting

min duration(T, 7,0, sg, f(z) = 1) P
mellr

duration(7’, 7, 0, sg, f(x) = 1)

W —

Weight plans proportional to similarity vs. the best-known solution

p=2

Plan
Weight

Plan Duration : Best Known Plan Duration



Optimality-Proportional Weighting



Error Mitigation Weighting

B fm) ; duration(T, 7,0, sg, f(z) =1) <€
Yr =\ — aw, ; otherwise

Plans more optimal than some cutoff € are treated normally,
per f.

Suboptimal plans are negatively weighted, encouraging
active mitigation behavior from the supportive robot.

IS a normalization term to avoid harm due to
plan overlap



Error Mitigation Weighting
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