Hierarchical Learning for
Human-Robot Collaboration

Brian Scassellati
scaz@cs.yale.edu
http://scazlab.yale.edu

Sequential Manipulation Tasks

SMDPs Modeling Tasks Are Complex

Initiation Goal
States States
"(5 . 1
e Goal
* ;;4 2 05 &) N States
/»{ ‘:‘ ' L/f[\
4»»‘ ;'1?“’)(:} “‘;y‘l“); 'i{'
<N F ;“v, R (\ /
.I‘\ A V¢ «w‘ E , Y‘

, ‘I rwf

Goal

‘ States

Initiation
States

Initiation
States

SMDPs Modeling Tasks Are Complex

Initiation Goal
States States
~J

Goal

<i States

Goal
States

Initiation
States

Initiation
States

Near-Term Assistive Scenarios

Changes as we consider
Collaborative Manufacturing

* Keep many of our pillars
— Observations of sequential manipulation tasks
— Existing methods for learning from demonstration

— Focus on execution policies

* Adapt to collaborative setting
— Move away from flat representations

— Move away from divide-and-conquer planning
mechanisms

— Consider collaboration in a broad sense

Changes as we consider
Collaborative Manufacturing

* Keep many of our pillars
— Observations of sequential manipulation tasks
— Existing methods for learning from demonstration

— Focus on execution policies

* Adapt to collaborative setting
— Move away from flat representations

— Move away from divide-and-conquer planning
mechanisms

— Consider collaboration in a broad sense

Benefits of Hierarchical Structure

* Benefits of hierarchical structure:
— Reduce dimensionality of policy search space

Leverage Hierarchical Structure

Hierarchical structure within the SMDP can be used to make the policy search more tractable

Leverage Hierarchical Structure

Much easier
policy to find
when

Hierarchical structure within the SMDP can be used to make the policy search more tractable

Benefits of Hierarchical Structure

* Benefits of hierarchical structure:
— Reduce dimensionality of policy search space
— Multi-agent task allocation

* Parallel execution
* Preferential allocation

Augmenting Hierarchical Plans with Social Metadata

Robot Only <{ Required Roles]

Human Only

Sequencing and
Ordering Constraints

Either

Requires Both

Resource
Requirements
(tools)

D

hammer

Timing
(per agent)
d

Human: 10sec

Benefits of Hierarchical Structure

* Benefits of hierarchical structure:
— Reduce dimensionality of policy search space
— Multi-agent task allocation

 Parallel execution
* Preferential allocation
— Transparency
* Similarity of cognitive models
* Ability to leverage communication

Benefits of Hierarchical Structure

* Benefits of hierarchical structure:
— Reduce dimensionality of policy search space
— Multi-agent task allocation

* Parallel execution
* Preferential allocation

— Transparency
* Similarity of cognitive models
* Ability to leverage communication

* Disadvantages:

— How do we build the hierarchy from observation?

Building Hierarchical Structure from
Sequential Observations

Place old
Unpackage PIaC?nRAM Orient m?rf;r Remove old RAM in Insert new :1ee’:rlwi)cre
RAM nd nd laptop oy K RAM recycling RAM w ory
workspace housing rea housing

Performance by worker “A”

Place old
Orient m%?nec?r Unpackage Plac?nRAM Remove old Insert new RAM in rI:]ee;r):;cre Orient
laptop [md oy g RAM y » RAM » RAM dll recycling ory laptop
housing workspace area housing

Performance by worker “B”

Upgrade

Laptop RAM

Prepare
Laptop

Prepare RAM Replace RAM Finalize Laptop

Place old RAM
in recycling
area

Replace
memory
housing

Insert new
RAM

Remove old
RAM

Unpackage Place RAM in
RAM workspace

Open memory

Orient laptop housing

Orient laptop

SMDP of “Attach Front Frame” Subtask

Hierarchical View

Have L.Peg

Have R.Peg
P I elds d Place Pegs G::a Fr:‘oem Fplr:;eer;?:;;
L.Peg orts)
Place left Place right
peg peg
Have R.Peg Have L.Peg
Placed Placed Pegs
R.Peg GEtpeE p::;(f:ﬁ Getpez p:gI(rigm
support) support)

Front
frame
attached

State

Action

(Hayes & Scassellati, IROS 2014)

SMDP-Conjugate of “Attach Front Frame”

{Have L.Peg} o
{Place R. Peg} o
{Get R. Peg}

Subtask

>
>

{Place L. Peg} o
{Have L.Peg} o
{Place R. Peg} o
{Get R. Peg}

{Place R.Peg} 0 {Have L.Peg}

{Get R.Peg}

{Have R.Peg}

{Place L.Peg} o

{Get L.Peg}

{Place R. Peg} o
{Get R. Peg}o
{Place L. Peg} o
{Have L.Peg}

>
>

{Get Frame} o
{Place L. Peg} o
{Have L.Peg} o
{Place R. Peg} o
{Get R. Peg}

{Have L.Peg} o
{Place R. Peg} o
{Get R. Peg}

A\ 4

{Place Frame} o
{Get Frame} o
{Place L. Peg} o
{Have L.Peg} o
{Place R. Peg} o
{Get R. Peg}

SMDP Conjugate: Actions
become vertices and
required state is described
on edges as a composition
of motor primitives.

Edges are labeled with
transition requirements — A
composition of motor
primitives describing the
world state required to use
that edge.

Vertices contain motor
primitives that can be
executed only upon arriving
in the node.

Building Hierarchical Structure

Task Hierarchy

{Place L. Peg} o

{Have L.Peg} o

{Place R. Peg} o
{Get R. Peg}

/

{Have L.Peg}

{Place R.Peg} o

~ {Place L.Peg} o
{Get R.Peg}

{Get L.Peg}

{Place R. Peg} o
{Get R. Peg}o
{Place L. Peg} o
{Have L.Peg}

Attach
Frame

PeE——. .,
Place Place Get Place
Get L.Peg L.Peg GetR.Peg R.Peg Frame Frame

{Have R.Peg}

{Get Frame} o
{Place L. Peg} o
{Have L.Peg}o
{Place R. Peg} o

{Get R. Peg}

{Place Frame} o

{Get Frame} o
{Place L. Peg} o P I ace
{Have L.Peg} o
{Place R. Peg} o F ra m e
{Get R. Peg}

Step 1: Find Cliques (0)

Building Hierarchical Structure

Task Hierarchy

{Place L. Peg} o

{Have L.Peg} o

{Place R. Peg} o
{Get R. Peg}

/

{Place R.Peg} o
{Get R.Peg}

{Place L.Peg} o
{Get L.Peg}

{Place R. Peg} o Frame

{Get R. Peg}o
{Place L. Peg} o IGEt PR l Place
{Have L.Peg} Frame
\ {Get Frame} o I I Place I I Place
{Place L. Peg} o Gy LPeg CRERAY R.Peg

{Have L.Peg}o
{Place R. Peg} o

{Get R. Peg}

{1

{Place Frame} o
{Get Frame} o

{Place L. Peg} o Place
{Have L.Peg} o

{Place R. Peg} o F ra m e

{Get R. Peg}

Step 2: Find Chains (2)

Building Hierarchical Structure

Task Hierarchy

{Place L. Peg} o

{Have L.Peg} o

{Place R. Peg} o
{GetR. Peg}

/

Attach
Frame
Get Place
Frame Frame
{Get Frame} o
. {Place L. Peg}o

{Have L.Peg}o
{Place R. Peg} o Place Place
Getr.pegy | | L OCHPE § Lpeg | R OCRPE| N e

Step 1: Find Cliques (1)

{Get Frae} o P | ace

{Place L. Peg} o
{Have L.Peg} o

{Place R. Peg} o F ra m e

{Get R. Peg}

Building Hierarchical Structure

Task Hierarchy

Step 2: Find Chains (1)

Changes as we consider
Collaborative Manufacturing

* Keep many of our pillars
— Observations of sequential manipulation tasks
— Existing methods for learning from demonstration

— Focus on execution policies

* Adapt to collaborative setting
— Move away from flat representations

— Move away from divide-and-conquer planning
mechanisms

— Consider collaboration in a broad sense

Supportive Behaviors

Can we do better than LfD-based Methods?

,
7
~_ 7

figures out how and when
the robot can be helpful

)
~
-

~——

r :
| (.
J

Demonstration-based
Methods === Does not scale with task count!

=== Requires human expert

—
§e—)
) —

Q==

—

+ Quickly enables useful, helpful actions.

[

\

figures out how and when
it can be helpful

_ Allows for novel behaviors to be discovered

Enables deeper task comprehension and action
understanding

Planner-based
Methods —

Perspective Taking

Generating Supportive Behaviors

6o to object bx

GOTOB(bx)

Preconditions: TYPE(bx,0BJECT),(3rx)[INRODM(bx,rx) a INROOM(ROBOT,rx)]
Deletions: AT(ROBOT,$1,$2), NEXTTO(ROBOT,$1)

Additions: *NEXTTO(ROBOT ,bx)

Go to door dx.

GOTOD(dx)

Preconditions: TYPE(dx,DDOR),(3rx)(3ry) [INRDDH(ROBOT,rx) A CONNECTS(dx,rx,ry)]
Deletions: AT(ROBOT,$1,$2), NEXTTO(ROBOT,$1)

Additions: *NEXTTO(ROBOT,dx)

Go to coordinate location (x,y).
GOTOL(x,y)

Preconditions: (3arx)[INROOH(ROBOT,rx) a LOCINROOM(x,y,rx)]
Deletions: AT(ROBOT,$1,$2), NEXTTO(ROBOT,$1)
Additions: *AT(ROBOT,x,y)

Go through door dx into room rx.

GOTHRUDR(dx,rx)

Preconditions: TYPE(dx,DOOR), STATUS(dx,0PEN), TYPE(rx,ROOH),
NEXTTO(ROBOT,dx) (3rx)[INROOM(ROBOT,ry) a CONNECTS(dx,ry,rx)]

Deletions: AT(ROBOT,$1,$2), NEXTTO(ROBOTS$1), INROOM(ROBOT,$1)

Additions: *INROOM(ROBOT,rx)

Symbolic planning

Motion

planning

26

Autonomously Generated Supportive Behaviors

Supportive Behavior Planning

Policy
Weighting
Function
Initial State
Lead Agent E
Current State Planner Model Sees

Goal
Predicates

Goal State

Multi-Agent
Plan Evaluation

Current
State

Initial State

Hypothetical
Environment
Generator

Support Agent

Policies
Planner

Goal State

Supportive Behavior Planning

Policy
Weighting
Function
Initial State
Lead Agent E
Current State Planner Model Sees
G(?al Goal State
Predicates

Multi-Agent
Plan Evaluation

Current
State

Initial State

Hypothetical
Environment
Generator

Support Agent

Policies
Planner

Goal State

* Hypothesize future world states based on their plans

Supportive Behavior Planning

Policy
Weighting
Function

Initial State

Lead Agent
Current State Planner Model

Goal
Predicates

Policies

Goal State

Multi-Agent
Plan Evaluation

Current
State

Initial State

Hypothetical
Environment
Generator

Support Agent

Policies
Planner

Goal State

* Hypothesize future world states based on their plans
* Predict lead agent behavior using a user model

Supportive Behavior Planning

Policy
Weighting
Function

Initial State

Lead Agent

Policies

Current State Planner Model

Goal

K Goal State
Predicates

Multi-Agent
Plan Evaluation

Current
State

Initial State

Hypothetical
Environment
Generator

Support Agent

Policies
Planner

Goal State

* Hypothesize future world states based on their plans
* Predict lead agent behavior using a user model

* Plan supportive actions that would simplify achieving this
world state (or prevent sub-optimal plans)

Supportive Behavior Planning

Policy
Weighting
Function

Initial State

Lead Agent
Current State Planner Model

Goal
Predicates

Policies

Goal State

Multi-Agent
Plan Evaluation

Current
State

Initial State

Hypothetical
Environment
Generator

Support Agent

Policies
Planner

Goal State

* Hypothesize future world states based on their plans
* Predict lead agent behavior using a user model

* Plan supportive actions that would simplify achieving this
world state (or prevent sub-optimal plans)

e Evaluate multi-agent plan

Simplified manipulation task

Supportive Action for Bench Assembly

Simplified Vision, Control

Failure Recovery

Preferences in Task Assighment

Changes as we consider
Collaborative Manufacturing

* Keep many of our pillars
— Observations of sequential manipulation tasks
— Existing methods for learning from demonstration

— Focus on execution policies

* Adapt to collaborative setting
— Move away from flat representations

— Move away from divide-and-conquer planning
mechanisms

— Consider collaboration in a broad sense

Application Domain: SnapCircuits

“Construct a switched circuit with a power source and an LED”
Many valid solutions
Many suboptimal solutions exist

Rigid, easily identified components

Application Domain: SnapCircuits

Resource utilization
Circuit board space utilization
Role assignment

Subtask parallelization

Supportive Behavior Planning

Policy
Weighting
Function

Initial State

Lead Agent
Current State Planner Model

Goal
Predicates

Policies

Goal State

Multi-Agent
Plan Evaluation

Current
State

Initial State

Hypothetical
Environment
Generator

Support Agent

Policies
Planner

Goal State

* Hypothesize future world states based on their plans
* Predict lead agent behavior using a user model

* Plan supportive actions that would simplify achieving this
world state (or prevent sub-optimal plans)

e Evaluate multi-agent plan

Plan Evaluation

Choose the support policy (§ € =) that minimizes the

expected execution duration of the leader’s policy (mr € M)
to solve the TAMP problem T from the current state (s,)

« Duration estimate must account for
« Resource conflicts (shared utilization/demand)
« Spatial constraints (support agent’s avoidance of lead)

min w, * duration(7', 7, &, S¢, Y)
=
mellp

Plan Evaluation

Choose the support policy (§ € =) that minimizes the

expected execution duration of the leader’s policy (mr € M)
to solve the TAMP problem T from the current state (s,)

 Duration esti

* Resource ation/demand)

« Spatial cc nt's avoidance of lead)
min w,)* duration(7', 7, &, S¢, Y)
(e

mellp

Uniform Weighting Functions = 1

Optimality-Proportional Weighting

min duration(T, 7,0, sg, f(z) = 1) P
mellr

duration(7’, 7, 0, sg, f(x) = 1)

W —

Weight plans proportional to similarity vs. the best-known solution

p=2

Plan
Weight

Plan Duration : Best Known Plan Duration

Optimality-Proportional Weighting

Error Mitigation Weighting

B fm) ; duration(T, 7,0, sg, f(z) =1) <€
Yr =\ — aw, ; otherwise

Plans more optimal than some cutoff € are treated normally,
per f.

Suboptimal plans are negatively weighted, encouraging
active mitigation behavior from the supportive robot.

IS a normalization term to avoid harm due to
plan overlap

Error Mitigation Weighting

People who did all the work

Brad Alessandro Olivier Francesca
Hayes Roncone Mangin Stramandinoli

Thanks to...

