
Hierarchical	Learning	for	
Human-Robot	Collabora6on	

Brian	Scassella6	
scaz@cs.yale.edu	

h?p://scazlab.yale.edu	

Sequen6al	Manipula6on	Tasks	

SMDPs	Modeling	Tasks	Are	Complex	

Ini6a6on	
States	

Ini6a6on	
States	

Ini6a6on	
States	

Goal	
States	

Goal	
States	

Goal	
States	

SMDPs	Modeling	Tasks	Are	Complex	

Ini6a6on	
States	

Ini6a6on	
States	

Ini6a6on	
States	

Goal	
States	

Goal	
States	

Goal	
States	

There’s	an	execu6on	
policy	in	here	
somewhere…	

Near-Term	Assis6ve	Scenarios	

Changes	as	we	consider			
Collabora6ve	Manufacturing	

•  Keep	many	of	our	pillars	
– Observa6ons	of	sequen6al	manipula6on	tasks	
– Exis6ng	methods	for	learning	from	demonstra6on	
– Focus	on	execu6on	policies	

•  Adapt	to	collabora6ve	seVng	
– Move	away	from	flat	representa6ons	
– Move	away	from	divide-and-conquer	planning	
mechanisms	

– Consider	collabora6on	in	a	broad	sense	

Changes	as	we	consider			
Collabora6ve	Manufacturing	

•  Keep	many	of	our	pillars	
– Observa6ons	of	sequen6al	manipula6on	tasks	
– Exis6ng	methods	for	learning	from	demonstra6on	
– Focus	on	execu6on	policies	

•  Adapt	to	collabora6ve	seVng	
– Move	away	from	flat	representa6ons	
– Move	away	from	divide-and-conquer	planning	
mechanisms	

– Consider	collabora6on	in	a	broad	sense	

Benefits	of	Hierarchical	Structure	

•  Benefits	of	hierarchical	structure:	
– Reduce	dimensionality	of	policy	search	space	

Leverage	Hierarchical	Structure	

Hierarchical	structure	within	the	SMDP	can	be	used	to	make	the	policy	search	more	tractable	

Leverage	Hierarchical	Structure	

Hierarchical	structure	within	the	SMDP	can	be	used	to	make	the	policy	search	more	tractable	

Much	easier	
policy	to	find!	

Much	easier	
policy	to	find	

when	
segmented!	

Benefits	of	Hierarchical	Structure	

•  Benefits	of	hierarchical	structure:	
– Reduce	dimensionality	of	policy	search	space	
– Mul6-agent	task	alloca6on	

•  Parallel	execu6on	
•  Preferen6al	alloca6on		

Robot	Only	

Human	Only	

Either	

Requires	Both	

Mixed	

Task	
(G	|	E)	->	H	

G	
A	|	B	

B	
a	->	C	

A	
b	->	e	->	d	

b	 e	 a	
Human:	10sec	

C	d	

e	c	

H	
a	->	D	

a	 D	
hammer	

b	e	

g	

Augmenting Hierarchical Plans with Social Metadata

Required	Roles	 Sequencing	and	
Ordering	Constraints	

Resource	
Requirements	

(tools)	

Timing		
(per	agent)	

Benefits	of	Hierarchical	Structure	

•  Benefits	of	hierarchical	structure:	
– Reduce	dimensionality	of	policy	search	space	
– Mul6-agent	task	alloca6on	

•  Parallel	execu6on	
•  Preferen6al	alloca6on		

– Transparency	
•  Similarity	of	cogni6ve	models	
•  Ability	to	leverage	communica6on		

Benefits	of	Hierarchical	Structure	

•  Benefits	of	hierarchical	structure:	
– Reduce	dimensionality	of	policy	search	space	
– Mul6-agent	task	alloca6on	

•  Parallel	execu6on	
•  Preferen6al	alloca6on		

– Transparency	
•  Similarity	of	cogni6ve	models	
•  Ability	to	leverage	communica6on		

•  Disadvantages:	
– How	do	we	build	the	hierarchy	from	observa6on?	

Building	Hierarchical	Structure	from	
Sequen6al	Observa6ons	

Unpackage	
RAM	

Place	RAM	
in	

workspace	
Orient	
laptop	

Open	
memory	
housing	

Remove	old	
RAM	

Place	old	
RAM	in	
recycling	
area	

Insert	new	
RAM	

Replace	
memory	
housing	

Orient	
laptop	

Orient	
laptop	

Open	
memory	
housing	

Unpackage	
RAM	

Place	RAM	
in	

workspace	
Remove	old	

RAM	
Insert	new	

RAM	

Place	old	
RAM	in	
recycling	
area	

Replace	
memory	
housing	

Orient	
laptop	

Performance by worker “A”

Performance by worker “B”

Upgrade	
Laptop	RAM	

Prepare	RAM	

Unpackage	
RAM	

Place	RAM	in	
workspace	

Prepare	
Laptop	

Orient	laptop	 Open	memory	
housing	

Replace	RAM	

Remove	old	
RAM	

Place	old	RAM	
in	recycling	

area	
Insert	new	

RAM	

Finalize	Laptop	

Replace	
memory	
housing	

Orient	laptop	

SMDP	of	“A?ach	Front	Frame”	Subtask	

Have	L.Peg	
…	

Have	R.Peg	
…	
	

Placed	
R.Peg	
…	

Placed	
L.Peg	
…	

Have	R.Peg	
Placed	
L.Peg	
…	

Placed	Pegs	
…	

Have	L.Peg	
Placed	
R.Peg	
…	

Have	
Frame	

Placed	Pegs	
…	

Front	
frame	
a?ached	

Hierarchical View

Get	R.Peg	

Get	L.Peg	
Place	L.Peg	

Place	R.Peg	
Get	L.Peg	

Get	R.Peg	

Place	R.Peg	
Place	L.Peg	

Get	Frame	
Place	Frame	

State	

Ac6on	

(Hayes & Scassellati, IROS 2014)

SMDP-Conjugate	of	“A?ach	Front	Frame”	
Subtask	

SMDP Conjugate: Actions
become vertices and
required state is described
on edges as a composition
of motor primitives.

Edges are labeled with
transition requirements – A
composition of motor
primitives describing the
world state required to use
that edge.

Vertices contain motor
primitives that can be
executed only upon arriving
in the node.

State	

Ac6on	

Get	
L.Peg	

Get	
R.Peg	

Place	
L.Peg	

Place	
R.Peg	

Get	
Frame	

Place	
Frame	

Goal	

{				}	

{				}	

{Have	L.Peg}	

{Have	R.Peg}	

{Place	L.Peg}	o	
{Get	L.Peg}	

{Place	R.Peg}	o	
{Get	R.Peg}	

{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	R.	Peg}	o	
{Get	R.	Peg}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Building	Hierarchical	Structure	

Task Hierarchy

State	

Ac6on	

Get	
L.Peg	

Get	
R.Peg	

Place	
L.Peg	

Place	
R.Peg	

Get	
Frame	

Place	
Frame	

Goal	

{				}	

{				}	

{Have	L.Peg}	

{Have	R.Peg}	

{Place	L.Peg}	o	
{Get	L.Peg}	

{Place	R.Peg}	o	
{Get	R.Peg}	

{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	R.	Peg}	o	
{Get	R.	Peg}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Step	1:	Find	Cliques	(0)	

A?ach	
Frame	

Get	L.Peg	 Place	
L.Peg	 Get	R.Peg	 Place	

R.Peg	
Get	

Frame	
Place	
Frame	

Building	Hierarchical	Structure	

Task Hierarchy

State	

Ac6on	

Get	
L.Peg	

Get	
R.Peg	

Place	
L.Peg	

Place	
R.Peg	

Get	
Frame	

Place	
Frame	

Goal	

{				}	

{				}	

{Place	L.Peg}	o	
{Get	L.Peg}	

{Place	R.Peg}	o	
{Get	R.Peg}	

{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	R.	Peg}	o	
{Get	R.	Peg}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Step	2:	Find	Chains	(2)	

A?ach	
Frame	

Get	L.Peg	 Place	
L.Peg	 Get	R.Peg	 Place	

R.Peg	

Get	Frame	 Place	
Frame	

Building	Hierarchical	Structure	

Task Hierarchy

State	

Ac6on	

Get	
Frame	

Place	
Frame	

Goal	

{				}	

{				}	

{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	R.	Peg}	o	
{Get	R.	Peg}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Step	1:	Find	Cliques	(1)	

A?ach	
Frame	

Get	L.Peg	 Place	
L.Peg	 Get	R.Peg	 Place	

R.Peg	

Get	
Frame	

Place	
Frame	

Building	Hierarchical	Structure	

Task Hierarchy

State	

Ac6on	

Get	
Frame	

Place	
Frame	

Goal	

{				}	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Step	2:	Find	Chains	(1)	

A?ach	
Frame	

Get	L.Peg	 Place	
L.Peg	 Get	R.Peg	 Place	

R.Peg	

Get	
Frame	

Place	
Frame	

Changes	as	we	consider			
Collabora6ve	Manufacturing	

•  Keep	many	of	our	pillars	
– Observa6ons	of	sequen6al	manipula6on	tasks	
– Exis6ng	methods	for	learning	from	demonstra6on	
– Focus	on	execu6on	policies	

•  Adapt	to	collabora6ve	seVng	
– Move	away	from	flat	representa6ons	
– Move	away	from	divide-and-conquer	planning	
mechanisms	

– Consider	collabora6on	in	a	broad	sense	

Suppor6ve	Behaviors	

Human figures out how and when
the robot can be helpful

 Quickly enables useful, helpful actions.

 Does not scale with task count!
 Requires human expert

Robot figures out how and when
it can be helpful

•  Allows for novel behaviors to be discovered
•  Enables deeper task comprehension and action

understanding

Demonstration-based
Methods

Planner-based
Methods

25

Can we do better than LfD-based Methods?

Perspective Taking Symbolic planning Motion planning

Autonomously	Generated	Suppor6ve	Behaviors	

26

Generating Supportive Behaviors

Suppor6ve	Behavior	Planning	

Lead	Agent	
Planner	Model	 Policies	

Hypothe6cal	
Environment	
Generator	

Current	
State	

Policies	

Ini$al	State	

Goal	State	Goal	
Predicates	

Policy	
Weigh6ng	
Func6on	

Support	
Policy	

Current	State	

Mul6-Agent	
Plan	Evalua6on	

Support	Agent	
Planner	

Ini$al	State	

Goal	State	

Suppor6ve	Behavior	Planning	

•  Hypothesize	future	world	states	based	on	their	plans	

Lead	Agent	
Planner	Model	 Policies	

Hypothe6cal	
Environment	
Generator	

Current	
State	

Policies	

Ini$al	State	

Goal	State	Goal	
Predicates	

Policy	
Weigh6ng	
Func6on	

Support	
Policy	

Current	State	

Mul6-Agent	
Plan	Evalua6on	

Support	Agent	
Planner	

Ini$al	State	

Goal	State	

Suppor6ve	Behavior	Planning	

•  Hypothesize	future	world	states	based	on	their	plans	
•  Predict	lead	agent	behavior	using	a	user	model	

Lead	Agent	
Planner	Model	 Policies	

Hypothe6cal	
Environment	
Generator	

Current	
State	

Policies	

Ini$al	State	

Goal	State	Goal	
Predicates	

Policy	
Weigh6ng	
Func6on	

Support	
Policy	

Current	State	

Mul6-Agent	
Plan	Evalua6on	

Support	Agent	
Planner	

Ini$al	State	

Goal	State	

Suppor6ve	Behavior	Planning	

•  Hypothesize	future	world	states	based	on	their	plans	
•  Predict	lead	agent	behavior	using	a	user	model	
•  Plan	suppor6ve	ac6ons	that	would	simplify	achieving	this	

world	state	(or	prevent	sub-op6mal	plans)	

Lead	Agent	
Planner	Model	 Policies	

Hypothe6cal	
Environment	
Generator	

Current	
State	

Policies	

Ini$al	State	

Goal	State	Goal	
Predicates	

Policy	
Weigh6ng	
Func6on	

Support	
Policy	

Current	State	

Mul6-Agent	
Plan	Evalua6on	

Support	Agent	
Planner	

Ini$al	State	

Goal	State	

Suppor6ve	Behavior	Planning	

•  Hypothesize	future	world	states	based	on	their	plans	
•  Predict	lead	agent	behavior	using	a	user	model	
•  Plan	suppor6ve	ac6ons	that	would	simplify	achieving	this	

world	state	(or	prevent	sub-op6mal	plans)	
•  Evaluate	mul6-agent	plan	

Lead	Agent	
Planner	Model	 Policies	

Hypothe6cal	
Environment	
Generator	

Current	
State	

Policies	

Ini$al	State	

Goal	State	Goal	
Predicates	

Policy	
Weigh6ng	
Func6on	

Support	
Policy	

Current	State	

Mul6-Agent	
Plan	Evalua6on	

Support	Agent	
Planner	

Ini$al	State	

Goal	State	

Simplified	manipula6on	task	

Suppor6ve	Ac6on	for	Bench	Assembly		

Simplified	Vision,	Control	

Failure	Recovery	

Preferences	in	Task	Assignment	

Changes	as	we	consider			
Collabora6ve	Manufacturing	

•  Keep	many	of	our	pillars	
– Observa6ons	of	sequen6al	manipula6on	tasks	
– Exis6ng	methods	for	learning	from	demonstra6on	
– Focus	on	execu6on	policies	

•  Adapt	to	collabora6ve	seVng	
– Move	away	from	flat	representa6ons	
– Move	away	from	divide-and-conquer	planning	
mechanisms	

– Consider	collabora6on	in	a	broad	sense	

38

Application Domain: SnapCircuits

•  “Construct a switched circuit with a power source and an LED”

•  Many valid solutions

•  Many suboptimal solutions exist

•  Rigid, easily identified components

39

Application Domain: SnapCircuits

•  Resource utilization

•  Circuit board space utilization

•  Role assignment

•  Subtask parallelization

Suppor6ve	Behavior	Planning	

•  Hypothesize	future	world	states	based	on	their	plans	
•  Predict	lead	agent	behavior	using	a	user	model	
•  Plan	suppor6ve	ac6ons	that	would	simplify	achieving	this	

world	state	(or	prevent	sub-op6mal	plans)	
•  Evaluate	mul6-agent	plan	

Lead	Agent	
Planner	Model	 Policies	

Hypothe6cal	
Environment	
Generator	

Current	
State	

Policies	

Ini$al	State	

Goal	State	Goal	
Predicates	

Policy	
Weigh6ng	
Func6on	

Support	
Policy	

Current	State	

Mul6-Agent	
Plan	Evalua6on	

Support	Agent	
Planner	

Ini$al	State	

Goal	State	

Choose the support policy (ξ ∈ Ξ) that minimizes the
expected execution duration of the leader’s policy (π ∈ Π)

to solve the TAMP problem T from the current state (sc)

•  Duration estimate must account for
•  Resource conflicts (shared utilization/demand)
•  Spatial constraints (support agent’s avoidance of lead)

41

Plan Evaluation

Choose the support policy (ξ ∈ Ξ) that minimizes the
expected execution duration of the leader’s policy (π ∈ Π)

to solve the TAMP problem T from the current state (sc)

•  Duration estimate must account for
•  Resource conflicts (shared utilization/demand)
•  Spatial constraints (support agent’s avoidance of lead)

42

Plan Evaluation

Weighting function makes
a big difference!

= 1

43

Uniform Weighting Functions

Weight plans proportional to similarity vs. the best-known solution

p

p=2

Plan
Weight

Plan Duration : Best Known Plan Duration

44

Optimality-Proportional Weighting

45

Optimality-Proportional Weighting

f(π)	
αwπ	

46

Error Mitigation Weighting

Plans more optimal than some cutoff ε are treated normally,
per f.

Suboptimal plans are negatively weighted, encouraging
active mitigation behavior from the supportive robot.

 is a normalization term to avoid harm due to
 plan overlap

47

Error Mitigation Weighting

Brad
Hayes

Alessandro
Roncone

Olivier
Mangin

Francesca
Stramandinoli

People	who	did	all	the	work	

Thanks	to…	

