
Hierarchical	Learning	for	
Human-Robot	Collabora6on	

Brian	Scassella6	
scaz@cs.yale.edu	

h?p://scazlab.yale.edu	





Sequen6al	Manipula6on	Tasks	
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There’s	an	execu6on	
policy	in	here	
somewhere…	



Near-Term	Assis6ve	Scenarios	



Changes	as	we	consider			
Collabora6ve	Manufacturing	

•  Keep	many	of	our	pillars	
– Observa6ons	of	sequen6al	manipula6on	tasks	
– Exis6ng	methods	for	learning	from	demonstra6on	
– Focus	on	execu6on	policies	

•  Adapt	to	collabora6ve	seVng	
– Move	away	from	flat	representa6ons	
– Move	away	from	divide-and-conquer	planning	
mechanisms	

– Consider	collabora6on	in	a	broad	sense	
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Benefits	of	Hierarchical	Structure	

•  Benefits	of	hierarchical	structure:	
– Reduce	dimensionality	of	policy	search	space	



Leverage	Hierarchical	Structure	

Hierarchical	structure	within	the	SMDP	can	be	used	to	make	the	policy	search	more	tractable	
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Benefits	of	Hierarchical	Structure	

•  Benefits	of	hierarchical	structure:	
– Reduce	dimensionality	of	policy	search	space	
– Mul6-agent	task	alloca6on	

•  Parallel	execu6on	
•  Preferen6al	alloca6on		
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•  Disadvantages:	
– How	do	we	build	the	hierarchy	from	observa6on?	



Building	Hierarchical	Structure	from	
Sequen6al	Observa6ons	
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SMDP	of	“A?ach	Front	Frame”	Subtask	
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SMDP-Conjugate	of	“A?ach	Front	Frame”	
Subtask	

SMDP Conjugate: Actions 
become vertices and 
required state is described 
on edges as a composition 
of motor primitives. 
 
Edges are labeled with 
transition requirements – A 
composition of motor 
primitives describing the 
world state required to use 
that edge. 
 
Vertices contain motor 
primitives that can be 
executed only upon arriving 
in the node. 

State	

Ac6on	

Get	
L.Peg	

Get	
R.Peg	

Place	
L.Peg	

Place	
R.Peg	

Get	
Frame	

Place	
Frame	

Goal	

{				}	

{				}	

{Have	L.Peg}	

{Have	R.Peg}	

{Place	L.Peg}	o	
{Get	L.Peg}	

{Place	R.Peg}	o	
{Get	R.Peg}	

{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	R.	Peg}	o	
{Get	R.	Peg}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	



Building	Hierarchical	Structure	

Task Hierarchy 

State	

Ac6on	

Get	
L.Peg	

Get	
R.Peg	

Place	
L.Peg	

Place	
R.Peg	

Get	
Frame	

Place	
Frame	

Goal	

{				}	

{				}	

{Have	L.Peg}	

{Have	R.Peg}	

{Place	L.Peg}	o	
{Get	L.Peg}	

{Place	R.Peg}	o	
{Get	R.Peg}	

{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	R.	Peg}	o	
{Get	R.	Peg}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Step	1:	Find	Cliques	(0)	

A?ach	
Frame	

Get	L.Peg	 Place	
L.Peg	 Get	R.Peg	 Place	

R.Peg	
Get	

Frame	
Place	
Frame	



Building	Hierarchical	Structure	

Task Hierarchy 

State	

Ac6on	

Get	
L.Peg	

Get	
R.Peg	

Place	
L.Peg	

Place	
R.Peg	

Get	
Frame	

Place	
Frame	

Goal	

{				}	

{				}	

{Place	L.Peg}	o	
{Get	L.Peg}	

{Place	R.Peg}	o	
{Get	R.Peg}	

{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	R.	Peg}	o	
{Get	R.	Peg}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Step	2:	Find	Chains	(2)	

A?ach	
Frame	

Get	L.Peg	 Place	
L.Peg	 Get	R.Peg	 Place	

R.Peg	

Get	Frame	 Place	
Frame	



Building	Hierarchical	Structure	

Task Hierarchy 

State	

Ac6on	

Get	
Frame	

Place	
Frame	

Goal	

{				}	

{				}	

{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	R.	Peg}	o	
{Get	R.	Peg}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Step	1:	Find	Cliques	(1)	

A?ach	
Frame	

Get	L.Peg	 Place	
L.Peg	 Get	R.Peg	 Place	

R.Peg	

Get	
Frame	

Place	
Frame	



Building	Hierarchical	Structure	

Task Hierarchy 

State	

Ac6on	

Get	
Frame	

Place	
Frame	

Goal	

{				}	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

{Place	Frame}	o	
{Get	Frame}	o	
{Place	L.	Peg}	o	
{Have	L.Peg}	o	
{Place	R.	Peg}	o	
{Get	R.	Peg}	

Step	2:	Find	Chains	(1)	

A?ach	
Frame	

Get	L.Peg	 Place	
L.Peg	 Get	R.Peg	 Place	

R.Peg	

Get	
Frame	

Place	
Frame	



Changes	as	we	consider			
Collabora6ve	Manufacturing	

•  Keep	many	of	our	pillars	
– Observa6ons	of	sequen6al	manipula6on	tasks	
– Exis6ng	methods	for	learning	from	demonstra6on	
– Focus	on	execu6on	policies	

•  Adapt	to	collabora6ve	seVng	
– Move	away	from	flat	representa6ons	
– Move	away	from	divide-and-conquer	planning	
mechanisms	

– Consider	collabora6on	in	a	broad	sense	



Suppor6ve	Behaviors	



 
Human figures out how and when  
the robot can be helpful 
 

 Quickly enables useful, helpful actions. 
 

 Does not scale with task count! 
 Requires human expert 

 
 
Robot figures out how and when 
it can be helpful 
 
•  Allows for novel behaviors to be discovered 
•  Enables deeper task comprehension and action 

understanding 

Demonstration-based 
Methods 

Planner-based 
Methods 

25 

Can we do better than LfD-based Methods? 



Perspective Taking Symbolic planning Motion planning 

Autonomously	Generated	Suppor6ve	Behaviors	
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Generating Supportive Behaviors 
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Suppor6ve	Behavior	Planning	
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Simplified	manipula6on	task	



Suppor6ve	Ac6on	for	Bench	Assembly		



Simplified	Vision,	Control	



Failure	Recovery	



Preferences	in	Task	Assignment	
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Application Domain: SnapCircuits 

•  “Construct a switched circuit with a power source and an LED” 

•  Many valid solutions 

•  Many suboptimal solutions exist 

•  Rigid, easily identified components 
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Application Domain: SnapCircuits 

•  Resource utilization 

•  Circuit board space utilization 

•  Role assignment 

•  Subtask parallelization 



Suppor6ve	Behavior	Planning	
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Choose the support policy (ξ ∈ Ξ) that minimizes the 
expected execution duration of the leader’s policy (π ∈ Π) 

to solve the TAMP problem T from the current state (sc) 

•  Duration estimate must account for  
•  Resource conflicts (shared utilization/demand) 
•  Spatial constraints (support agent’s avoidance of lead) 

41 

Plan Evaluation 
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Plan Evaluation 

Weighting function makes 
a big difference! 



= 1 
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Uniform Weighting Functions 



Weight plans proportional to similarity vs. the best-known solution 

p

p=2 

Plan 
Weight 

Plan Duration : Best Known Plan Duration 
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Optimality-Proportional Weighting 
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Optimality-Proportional Weighting 



f(π)	
αwπ	
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Error Mitigation Weighting 

Plans more optimal than some cutoff ε are treated normally, 
per  f. 
 
Suboptimal plans are negatively weighted, encouraging 
active mitigation behavior from the supportive robot. 
 

  is a normalization term to avoid harm due to 
  plan overlap 
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Error Mitigation Weighting 
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