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Well, what’s the answer?
YES, randomness solves problems

BUT the randomness (probably) doesn’t have to be random to 
solve problems.  



What do we mean by a problem?  What is a 
solution?

For our purposes, a computational problem has the following form:

Input:  Can be represented as a binary sequence x.  We define n to 
be the length of x, the number of bits needed to write x.

Output: also coded as binary sequence y

Correctness:  Some mathematical relationship holds between x and y

Algorithm:  A series of well defined computational steps that, on input 
x, produces such a y

Time complexity:  The number of steps the algorithm makes, as a 
function of n



Randomized algorithms vs. Deterministic algorithms
A randomized algorithm has an instruction:  Pick a bit b at random, equally likely to 
be 0 or 1, as well as all of the standard operations that a deterministic algorithm 
can perform.  

It is equivalent to pick a supply of random bits r=r_1...r_T at the start, and say that 
r_i will be the result of the i’th call to the ``coin flip’’ operation.  So we can think of a 
randomized algorithm R(x) as a deterministic algorithm A applied to two inputs,

The real input x, and the random input r

R(x)= A(x,r) for a 



When would randomness always solve a problem?
We could consider randomness  ESSENTIAL to solve a problem in the worst-case

If there were a problem and a randomized algorithm that has high success 
probability on every instance and  is much faster on large inputs than ANY 
deterministic algorithm for the same problem.  

To formalize this, we let BPP be the class of problems solvable by randomized 
algorithms in time that is polynomial (n, n^2, n^3 etc) in the input size, and gets the 
right answer with high probability on every instance, and P the similar class for 
deterministic algorithms.

Randomness helps if BPP is a strict superset of P



When would randomness solve some instances?
Instead of only looking at algorithms that solve all instances of a problem,

We could look at algorithms that solve some instances but not others.  We let 
Promise-BPP be the class of problems and subsets of instances where a 
randomized algorithm can solve the problem in poly time with high probability of 
correctness on those instances, and Promise-P the same.  

Then Promise-BPP is a strict superset of Promise-P if there are some instances of 
some problems where randomized algorithms out-perform deterministic ones.



Helping for some instances
If Promise BPP= Promise-P, then BPP=P, but the other direction isn’t known.



Why would anyone think randomness might help?
Stanislaw Ulam was a physicist who worked for 
the Manhattan Project.  While recovering from 
surgery, he  was in the hospital for a number of 
weeks.  



While he was in the hospital he killed time 
playing canfield, a complex solitaire game



He first tried to figure out the odds of winning canfield mathematically, but got 
frustrated and decided that it would be easier to simulate thousands of games on 
a computer.   (The Manhattan Project had one of the first general purpose 
computers.)   Later, when the Manhattan Project needed to perform calculations 
involving huge numbers of possible interactions of atomic particles, he’d 
remember this idea.  



His colleague, Nicholas Metropolis, dubbed this algorithmic technique ``The Monte Carol method’’, 
after an uncle who loved to go to Monte Carlo to gamble.  



Monte Carlo integration

One way to view the Monte Carlo technique is as  a form of numerical integration 
for irregular high-dimensional functions.  Measuring a bursty function at random 
times is more accurate than measuring at fixed intervals.  



Circuit Approximate Probability Problem
CAPP is a discrete version of the ``bursty function’’ problem.

A  Boolean circuit is a fixed sequence of Boolean operations (and, or , not) 
performed on input bits and intermediate gates.  For example,

(x and y) or ( z and not x) is one Boolean circuit, with three inputs and three 
operations. Given a circuit, C(x_1,..x_n), CAPP asks for an estimate of

Prob[ C(x_1,..x_n)=1]  for randomly chosen x_i’s, which is accurate to within an 
additive error of say .1  (The exact number doesn’t matter)  



Completeness of CAPP
CAPP can be solved with high probability by the randomized algorithm that picks 
several random x’s and outputs the average value of C(x).

CKR observed that CAPP is ``Promise-BPP-complete’’, in that we can solve 
CAPP deterministically if and only if Promise-BPP=Promise-P.

(The idea is to code the behaviour of any probabilistic algorithm on any fixed input 
as a circuit; estimating the probability this circuit outputs 1 gives the most likely 
output for the randomized algorithm on this input.)  



Metropolis algorithm
Nicholas Metropolis also gave his name (if nothing else) to the Metropolis 
algorithm (actually due to Arianna and Marshall Rosenbluth, and Augusta and 
Edward Teller, pictured below). With many variants such as simulated annealing, 
Metropolis is a highly successful optimization heuristic. Here the goal is to search 
through a huge number of possible solutions to a problem to find the best one, 
according to an objective function. Such problems are typically NP-complete.



Why the Metropolis algorithm is useful
The Metropolis algorithm balances greedy optimization, going in directions that 
improve the objective, with random moves that might make the solution worse, but 
allow the algorithm to escape local optima that are not global optima.  It works well 
on many but not all instances of optimization problems.



Primality testing
A new flavor of randomized algorithms became prominent in the mid-70’s. Testing 
whether an integer is prime was one of the most important ``unclassified’’ 
problems, and the obvious approach (factoring a composite number) is still 
believed computationally difficult.  But another way to show a number is not prime 
is to show that the conclusion of Fermat’s little theorem, x^{p-1} mod p = x mod p 
for all primes p.  



Randomized primality testing
Miller: ERH implies Primality is deterministic polynomial time decidable

Rabin, Solovay-Strassen:  Unconditionally, primality is randomized polynomial 
time decideable



Derandomized primality testing

But in 2002, Agrawal, Kayal and Saxena ``derandomized’’ a related randomized 
polynomial testing algorithm, showing primality testing is also in P



Polynomial identity testing
Schwartz, Zippel, and DeMillo and Lipton introduced another classical randomized 
algorithm at the same time as primality testing.  While less glamorous, PIT is 
probably more useful.   

Given an equation where both sides are polynomials in several variables (thought 
of as taking real values), is the equation always true?   The equation can be given 
as an algebraic circuit, like a Boolean circuit, but using addition and multiplication 
rather than ands and ors.  



PIT randomized algorithm
There are two random steps: Plug in random values for the variables, then check 
to the equation mod a random number (to keep the values of sub-expressions 
from blowing up.)  

While some special cases of PIT have been derandomized (and in fact AKS was 
based on derandomizing a special case of PIT), there is no non-trivial 
deterministic algorithm for the general cases.  



Random self-reducibility
Another general use of randomness is  to make a worst-case instance look like a 
typical instance.  This method is used frequently in computational geometry, 
where some algorithms break down if say, three points are very close to being on 
a line.  Perturbing the input randomly can put points in general position while 
preserving relevant features. 



Intuitions about when randomness helps
Depending on which type of randomized algorithm people use, their intuitions 
about when randomness should be helpful vary.

A real enthusiast might think randomness is helpful for all instances of all hard 
problems.  Let’s call this position the zealot’s view.

Someone who primarily uses random self-reducibility arguments might think that 
randomness helps make the worst-case look like an easier typical case. We could 
call this position the averaging view.  



More intuitions
Someone using randomness for heuristics might think that randomness is useful 
for the typical case of hard problems, but not the worst-case.  Let’s call this the 
heuristic view.

Someone using randomness for algebraic problems might think that problems 
where randomness is useful are the highly structured problems, so randomness 
might be useful for many instances of some problems, but not useful for generic 
hard problems.  Let’s call this the structured view.  

Finally, someone might think randomness is never actually needed, that we can 
derandomize every algorithm.    Let’s call this the skeptical view.



Ruling out the middle positions.
While all but the zealot’s position seem plausible to me, we haven’t  ruled out 
either of the extreme positions.  It is  still possible that EXP=BPP, so all 
exponentially hard problems can be solved using randomness, an extreme zealot 
position.  It is very likely (and I’ll say why in a while) that the skeptic’s position is 
true, ie., Promise-BPP= Promise-P.  But at least some formalizations of the most 
moderate positions-- the structuralist and the heuristic -- have been proved false!



Are randomized algorithms randomized?
While randomized algorithms have been used since the dawn of computing, 
randomness has almost never been used in algorithms.  

Instead, pseudo-random sequences, series of bits generated deterministically or 
from a small ``seed’’, have been used to supply the supposedly random choices of 
the algorithms.  This started in the Manhattan Project, with von Neumann 
suggesting a pseudo-random generator based on the middle digits of the squares 
of numbers.



What makes a pseudo-random generator good?

While identifying ``bad’’ properties of pseudo-random sequences is an interesting 
combinatorial problem, it isn’t clear when a generator is strong enough to fool any 
algorithm.  Yao, building on work by Shamir, Blum, and Micali, gave the first 
complexity-theoretic definition of strong PRG, and designed one based on 
cryptographic hardness assumptions.



Yao’s criteria 
Yao’s criteria is similar to ``taste tests’’, or the 
Turing test.  If you can’t tell two things apart, then 
whatever one is useful for the other is useful for.  

Say you have a pseudo-random generator G that 
takes a very small seed s and produces a 
pseudo-random string z=G(s).  Then if there’s no 
circuit C so that |Prob[C(G(s)=1] - Prob[C(r)=1]| is 
non-negligible, then it immediately follows that G 
can be used to solve CAPP and hence every 
Promise-BPP problem.



Non-constructive existence proofs
Another use of randomness in TCS is in 
non-constructive proofs that some objects exist.  This 
probabilistic method was developed in combinatorics 
by Paul Erdos.

In particular, Riordan and Shannon used it to prove 
that most Boolean functions require very large 
circuits to compute, exponential in the input size, by 
comparing the number of such functions to the 
number of small circuits.  



Explicit hard functions
While most functions are exponentially hard for circuits, until last year the best 
lower bound we had for a function in EXP was a 1984 3n lower bound by N. Blum.

In a dramatic breakthrough, the new lower bound proved by GHKK’16 is 

(3.012) n.   

While particular functions have been shown to have large circuit complexity, such 
functions themselves have high complexity.  The smallest classes we have lower 
bounds for are in the second level of the exponential hierarchy, stronger than 
NEXP, the analog of NP at the exponential level.  



Derandomization and explicit hard functions
Since most functions are hard, picking one at random would be a method to find a 
hard function, whereas a similar deterministic method for finding a hard function 
would put that function in EXP.  

So we can view the quest for a constructive hard function as a derandomization 
question.  Over the years, we’ve discovered tighter and tighter formal connections 
between these problems, to the extent that progress on one inevitably entails 
progress on the other.



Hardness vs. Randomness
Nisan and Wigderson made the break-through connection in one direction.

As later improved by BFNW and IW,  if there are any functions in time

2^{O(n)} that require exponential circuit size, then we can use them to construct 
strong pseudo-random generators in the Yao sense, and 
Promise-BPP=PromiseP.

So if the skeptic viewpoint is wrong, then circuits can speed up EVERY 
exponentially hard problem!  In other words, the ``off-line’’ difficulty of problems, 
where you are allowed to spend lots of time to optimize your algorithm for a 
particular size, is always much better than ``on-line’’ computation.  



Average-case simulations of probabilistic algorithms
Combining the NW hardness to randomness paradigm with random 
self-reducibility ideas and ``program correctness checking’’, IW show that 
randomized algorithms are either super-powerful, or can be derandomized on 
``typical instances’’.

Either EXP=BPP (extreme zealot position)  or there’s a sub-exponential time 
deterministic simulation of any randomized algorithm that works on ``typical 
instances’’.  (In fact, it is computationally hard to find instances on which the 
simulation fails!). 



Interpretation
To me, this result rules out the strong versions of the heuristic and structuralist 
view.   Both possibilities apply to any type of problem, structured or not.  Either 
randomness helps every hard problem, or it can be removed for any problem on 
all but hard to find inputs.  

If randomness is needed, it is either needed everywhere, or only on  extremely 
rare instances.  So it is not really possible that randomness only helps typical 
instances, as the heuristic view would suggest. 

So those are two very plausible views that have been eliminated, whereas some 
rather implausible ones remain.  



Implications of derandomization
In the other direction, using some rather strange indirect arguments, IKW show 
that derandomization of CAPP implies that problems in NEXP require 
super-polynomial circuit size.  So any progress on derandomizing Promise-BPP 
entails progress on the circuit lower bound question, and vice versa.



Consequences for derandomizing PIT
Perhaps even more surprising, KI, CIKK show that derandomizing the classic PIT 
algorithm would imply a similar arithmetic circuit lower bound.  This explains why 
progress on derandomizing PIT has been much slower than derandomizing 
primality testing.  (There are also results in the other direction; algebraic circuit 
lower bounds would partially derandomize important cases of PIT)  So again, 
derandomization is inherently tied to proving lower bounds.



Conclusion
While we don’t absolutely know that randomized algorithms can be all 
derandomized, if not, the consequences are incredibly surprising (to me, at least).

But to make substantial improvements in either general derandomization or circuit 
lower bounds, we have to make substantial improvements in both! 

This is both a challenge and an opportunity.  


