
Concurrent	Disjoint	Set	Union	

Robert	E.	Tarjan	
Princeton	University	&	Intertrust	Technologies	
joint	work	with	Siddhartha	JayanB,	Princeton	

Key	messages	
Ideas	and	results	from	sequenBal	algorithms	can	
carry	over	to	concurrent	algorithms,	but	new	
ideas	are	needed:	the	design	space	is	different	

in	interesBng	ways	
Design	and	analysis	of	concurrent	data	

structures	and	algorithms	is	sBll	a	rich	area	to	
explore	

	Concurrency	creates	new	and	subtle	
complicaBons!		

This	Talk	

•  Disjoint	set	union	problem	
•  MoBvaBng	applicaBon:	

Strong	components	for	model	checking	
•  SequenBal	set	union	
•  Concurrency	model	
•  Previous	work		
•  Our	results	

a

b

same-set(a,b)	

unite(a,b)	

same-set(a,b)	 True	

b	

Disjoint	set	union	

False	

Devise	a	data	structure	with	
the	following	operaBons:	
		
	make-set(x)	 		
	same-set(x,	y):	true	if	x,	y		

								in	same	set,	else	false			
	unite(x,	y):	combine	sets	

								containing	x,	y	
	
Each	element	is	in	one	set	(sets	are	disjoint)	

	
	

ApplicaBons	

FORTRAN	compilers:	COMMON	and	
EQUIVALENCE	statements	

Kruskal’s	minimum	spanning	tree	algorithm	
Incremental	connected	components	in	graphs	

PercolaBon	
Finding	dominators	in	flow	graphs	

Finding	strong	components	in	digraphs	
	

Strong	Components	
Strong	Component:	A	
maximal	set	of	mutually	
reachable	verBces	in	a	
directed	graph.	
	
Strong	components	are	
vertex-disjoint	and	can	be	
topologically	ordered:	
numbered	so	no	arc	leads	
from	a	larger	to	a	smaller	
component.	
	
Goal:	Find	components,	and	
a	topological	order.	

Two Topological Orders

Model-checking	for	program	
verificaBon	

	In	a	possibly	huge,	implicitly	defined	digraph,	
discover	whether	certain	sets	of	states	can	be	
visited	infinitely	o\en.		Equivalently,	are	these	
states	in	a	common	strong	component?	
	
Even	though	strong	components	can	be	found	in	
linear	Bme	sequenBally	(via	a	special	case	of	
disjoint	set	union)	this	may	not	be	fast	enough.	

				Can	concurrency	help?	

Disjoint	Sets:	
Compressed-tree	ImplementaBon	

Represent	each	set	by	a	rooted	tree	
•  	 Each	set	element	is	a	tree	node	
•  	 Each	node	x	has	a	parent	x.parent	
•  	 Set	informaBon	(such	as	value)	is	stored	in	the	root	
•  	The	tree	shape	is	arbitrary	

	
c

f g

b

da e

Auxiliary	(internal)	operaBons	

find(x):	Return	the	root	of	the	tree	containing	
node	x.	

Naïve	implementaBon	of	find:	
return	if	x.parent	=	x	then	x	else	return	find(x.p)	
link(x,	y):	Unite	the	trees	with	roots	x	and	y.	

ImplementaBon	of	link:	
make	y	the	parent	of	x	(or	x	the	parent	of	y):	

x.parent	←	y	(or	y.parent	←	x)	
	

A	link	takes	Bme	O(1),	a	find	takes	Bme	
																																						O(depth	of	node	found).			

SequenBal	implementaBon	of	
operaBons	

make-set(x):	x.parent	←	x	
	
same-set(x,	y):	return	find(x)	=	find(y)		
	
unite(x,	y):	if	find(x)	≠	find(y)	then	
																																	link(find(x),	find(y))	
	
A	set	operaBon	takes	O(1)	Bme	plus	two	finds.	

	

Each	link	takes	Bme	O(1),	each	find	takes	Bme	
O(depth	of	node	found).	

	
Goal:	reduce	the	(amorBzed)	Bme	per	find	by	
reducing	node	depths		

	
Improve	links:	link	by	size	or	rank	or	random	
index	

Improve	finds:	compact	find	paths	

Linking	by	size:	maintain	the	number	of	nodes	in	
each	tree	(store	in	root).	Link	root	of	smaller	
tree	to	larger.		Break	a	Be	arbitrarily.	

Linking	by	rank:	Maintain	an	integer	rank	for	
each	root,	iniBally	0.		Link	root	of	smaller	rank	
to	root	of	larger	rank.		If	Be,	increase	rank	of	
new	root	by	1.	

Linking	by	random	index:	Give	each	element	a	
unique	numeric	index	chosen	uniformly	and	
independently	at	random.		Link	root	of	smaller	
index	to	root	of	larger	index.		

Each	of	these	linking	rules	reduces	the	
maximum	path	length	to	O(logn),	where	n	=	
#nodes:	at	most	n/2k	nodes	of	height	k	or	
greater.	

Path	CompacBon	

Compression:	during	each	find,	make	the	root	the	
parent	of	each	node	on	the	find	path.	

Splihng:	During	each	find,	replace	the	parent	of	
each	node	on	the	find	path	by	its	grandparent.	

	
Compression	takes	two	passes	over	the	find	path,	

splihng	only	one.		
	

10	

8	

5	

2	

1	

7	

3	 4	

Compression	
of	find(1)	path	

10	

8	

5	

2	

1	

7	

3	 4	

Splihng	of	
find(1)	path	
	

Original	

A\er	Compression	 A\er	Splihng	

Running	Time	

Assume	n	>	1	make-set	operaBons	are	done	
first,	followed	by	m	≥	n/2	intermixed	same-set	
and	unite	operaBons.	

Define	d,	the	find	density,	to	be	⎡m/n⎤.	
	

With	linking	by	size,	rank,	or	random	index,	and	
compression	or	splihng,	total	Bme	is	

O(mα(n,	d))		
	

Ackermann’s	funcBon	
(Péter	&	Robinson)	

A0(n)	=	n	+	1	
Ak(0)	=	Ak	–	1(1)	if	k	>	0	
Ak(n)	=	Ak	–	1(Ak(n	–	1))	if	k	>	0,	n	>	0	
	
A1(n)	=	n	+	2,	A2(n)	=	2n	+	3,	A3(n)	>	2n,	A4(n)	>	
tower	of	n	2’s,	A4(2)	has	19,729	decimal	digits	

Ak(n)	is	strictly	increasing	in	both	arguments	
	α(n,	d)	=	min{k	>	0|Ak(d)	>	n}		

Computer	model:		
Shared	memory	mulBprocessor	(APRAM)	

p1	 p2	 p3	 ….	 pi	 pk-1	 pk	….	

Shared	Memory	

Local	
Memory	

Local	
Memory	

Local	
Memory	

Local	
Memory	

Local	
Memory	

Local	
Memory	

Asynchronous	–	Arbitrary	delays	between	operaBons	
	

Concurrency	
Anderson	&	Woll,	1994		

Each	set	operaBon	is	done	by	one	process	
Several	operaBons	can	run	concurrently	(different	processes).	
	

Correctness	

Linearizable:	Each	operaBon	can	be	assigned	a	
lineariza<on	<me	during	its	execuBon,	different	
for	each	operaBon,	such	that	the	outcome	of	all	
the	operaBons	is	the	same	as	if	they	were		
executed	instantaneously	at	their	linearizaBon	
Bmes.	
Wait-free:	Each	process	completes	each	of	its	
operaBons	in	a	bounded	number	of	its	own	
steps.				
	

Linearizability	[Herlihy, Wing 1990]
p1

p2

p3

Time

Union(x, y)

Union(z, x)

SameSet(x, y)

Union(w, z)

SameSet(x, w) SameSet(x, y)

Union(w, y) SameSet(z, y)

SameSet(w, y)

Correctness	

Efficiency	

Total	work:	total	number	of	steps	taken	by	all	
processes,	as	a	worst-case	funcBon	of	n,	m,	and	
p	(the	number	of	processes).	
Goal:	Total	work	not	too	much	bigger	than	the	
sequenBal	Bme	bound	and	sublinear	in	p:	then	
concurrency	may	help.		

SynchronizaBon	PrimiBves	for	wait-
freedom	

Compare	&	Swap	
	CAS(x,	y,	z):	if	x	=	y	then	{x	←	z;	return	true}	
																																			else	return	false	

Double	Compare	&	Swap	
DCAS(x,	y,	z,	u,	v,	w):	if	x	=	y	and	u	=	v	
																then	{x	←	z;	u	←	w;	return	true}	
																else	return	false		

Previous	work:	Anderson	&	Woll	1994	

Concurrent	version	of	linking	by	rank	with	splihng	
using	CAS.	
Big	problem:	CAS	seems	too	weak:	linking	by	rank	
requires	changing	a	rank	in	one	node	and	a	pointer	
in	another.	
Their	algorithm	does	not	avoid	rank	Bes.	
Work	bound	is	O(m(α(n,	1)	+	p)):	not	so	good,	and	
“proof”	is	buggy:	they	did	not	account	for	
interacBons	between	different	processors	doing	
splihng	along	overlapping	paths.	
	

Our	goal	

Simple	algorithms	with	good	work	bounds,	
sublinear	in	p	if	possible	
	
Anderson	&	Woll	gave	a	simple	wait-free	
implementaBon	of	find	with	splihng	using	CAS,	
but	their	analysis	is	not	correct.			

Splihng:	can	do	shortcuts	via	CAS	
but	concurrent	threads	can	interfere	

5	

4	

3	

2	

1	

A	CAS	can	fail	because	
another	CAS	does	a	less	
favorable	change:	
	
A	visits	1,	2,	3	then	stalls;	B	
visits	2,	3,	4,	changes	parent	
of	2	to	4;	C	visits	1,	2,	4,	tries	
to	change	parent	of	1	to	4	
but	A	wakes	up,	changes	
parent	of	1	to	3.	

A	 C	

B	

Our	Results		
Two	splihng	algorithms:	
•  1-try	splihng:	try	each	parent	change	once	
before	moving	to	the	next	node		

•  	2-try	splihng:	try	each	parent	change	twice	
before	moving	to	the	next	node	

We	get	slightly	be~er	bounds	for	2-try	splihng		

Linking	

Can	do	unranked	links	using	CAS	
but	DCAS	needed	for	ranked	links	

k

k	

Linking	Algorithms	

Four	concurrent	linking	algorithms:	
•  Linking	by	rank	(DCAS)	
•  Linking	by	random	index	(CAS)	
•  Hybrid	linking	by	rank	via	coin-flipping	(CAS)	
•  Hybrid	linking	by	rank	via	determinisBc	coin-
flipping	(CAS)		

Our	Bounds	
Worst-case	Bme	per	operaBon	

O(logn)	with	or	without	split/compress	
Total	work	with		“1-try”	splihng		

O(m(α(n,	⎡m/(np2)⎤)	+	log(np2/m	+	1)))	
	Total	work	with		“2-try”	splihng		

O(m(α(n,	⎡m/(np)⎤)	+	log(np/m	+	1)))	
	

Bounds	are	worst-case	for	determinisBc	linking,		
Expected	for	randomized	linking	

Hybrid	linking	

link(v,	w):	if	v	and	w	have	equal	rank,	first	
change	the	parent	of	v,	or	the	rank	of	w?	
	
Flip	a	fair	coin	to	decide:	when	trying	to	link	two	
equal-rank	nodes	v	and	w,	with	v	<	w	in	some	
(arbitrary)	total	order,	if	heads	try	to	make	w	
the	parent	of	v;	if	tails,	try	to	add	1	to	the	rank	
of	v	
		

Analysis	
Tree	depth	is	logarithmic	(worst-case	for	linking	
by	rank,	high-probability	for	linking	by	
randomized	index	or	hybrid}.		This	gives	O(logn)	
Bme	per	operaBon.	
Work	bound:	Let	d	=	m/(np)(2-try	splihng)	or	d	
=	m/(np2)	(1-try	splihng).	If	d	≥	1,	the	sequenBal	
analysis	extends	to	give	a	bound	of	O(α(n,	d))	
work	per	find	plus	O(pd)	or	O(p2d)	work	per	
node	(p	or	p2	Bmes	the	sequenBal	bound).		The	
total	work	is	O(mα(n,	d)).	

Work	bound	conBnued	

The	other	case	is	d	<	1.		The	number	of	nodes	of	
rank	at	least	r	is	at	most	n/2r.		We	apply	the	
sequenBal	argument	to	the	nodes	of	rank	at	
least	lg(1/d),	of	which	there	are	at	most	nd.		
These	nodes	account	for	total	work	O(mα(n,	1)	+	
nkd)	=	O(mα(n,	1)).		The	low-rank	nodes	on	find	
paths	account	for	an	addiBonal	O(log(1/d))	work	
per	find.		

Current	Work	

Implement	sets	with	values	and	sets	with	
iteraBon	while	preserving	efficiency:	seems	to	
require	relaxing	linearizaBon.	
Idea:	Allow	subsets	of	unite	operaBons	to	be	
replaced	by	equivalent	subsets,	implement	
using	a	bifurcaBng	queue.		

QuesBons	for	the	future	

Is	our	amorBzed	upper	bound	Bght	for	the	
problem?	

Concurrent	strong	components?	
Other	concurrent	data	structures:	binary	search	

trees?	

Thanks!
	

