リIリII informatik

Improved Pseudopolynomial Time Algorithms for Subset Sum

Karl Bringmann

Simons Institute, Berkeley, December 12, 2016

Subset Sum

Given a set Z of n positive integers and a target t, is there a subset Y of Z summing to exactly t ?

$$
\begin{array}{ll}
t=19 & Z=\{2,5,6,11,15\} \\
& Y=\{2,6,11 \quad\} \quad \Sigma(Y)=2+6+11=19
\end{array}
$$

note that $n \leq t$
well-studied, classic NP-hard problem, $O\left(2^{n / 2}\right)$ algorithm [Horowitz,Sahni'72]
at the core of many other problems: knapsack, constraint shortest path, ...

Subset Sum

Given a set Z of n positive integers and a target t, is there a subset Y of Z summing to exactly t ?

pseudopolynomial time algorithm by dynamic programming:
[Bellman'57]

$$
\begin{aligned}
& T[i, s]:=T[i-1, s] \vee T\left[i-1, s-z_{i}\right] \\
& T[0, s]:=[s=0]
\end{aligned}
$$

$$
Z=\left\{z_{1}, \ldots, z_{n}\right\}
$$

then $T[n, t]$ decides the Subset Sum instance (Z, t)
time $O(n t)$, space $O(t)$

Conditional Lower Bounds

Is time $O(n t)$ optimal? Can we prove a conditional lower bound?
any $t^{1-\varepsilon} n^{O(1)}$ algorithm would imply an $2^{(1-\delta) n}(n m)^{O(1)}$ algorithm for Set Cover [CDLMNOPSW' 12$]$
any combinatorial $t^{1-\varepsilon} n^{O(1)}$ algorithm would imply
a combinatorial $O\left(n^{(1-\delta) k}\right)$ algorithm for k-Clique, for some large constant k follows from [Abboud,Lewi,Williams‘14]
conditional lower bound: $t^{1-o(1)}$

Is there an $\tilde{O}(n+t)=\tilde{O}(t)$ algorithm?

Attempts to break O(nt)

use basic Word RAM parallelism, word size w: $O(n t / w)$
consider $s:=\max Z$; we can assume $s \leq t: O(n s)$
[Pisinger'99]
breakthrough: $\widetilde{O}(\sqrt{n} \cdot t)$
[Koiliaris,Xu Arxiv'15/SODA'17]
all previous algorithms are deterministic

$$
\text { Is there an } \tilde{O}(t) \text { algorithm? }
$$

Subset Sum is in randomized time $\tilde{O}(t)$.
[B. SODA'17]
one-sided error probability $1 / n$, time $O\left(t \log t \log ^{5} n\right)$

Preliminaries

Sumset Computation

A, B sets of non-negative integers
sumset: $A \oplus B:=\{a+b \mid a \in A \cup\{0\}, b \in B \cup\{0\}\}$
\boldsymbol{t}-capped sumset: $\quad A \oplus_{t} B:=(A \oplus B) \cap\{0, \ldots, t\}$

Fact: $\quad A \oplus_{t} B$ can be computed in time $O(t \log t)$
(on Word RAM with word size $\Omega(\log t)$)

1) reduce to Boolean convolution: $z_{i}=\vee_{j} x_{j} \wedge y_{i-j}$ for vectors $x, y \in\{0,1\}^{t}$

Boolean conv. of characteristic vectors of A, B yields characteristic vector of $A \oplus B$ capping at t yields $A \oplus_{t} B$
2) reduce Boolean convolution to multiplying polynomials of degree t set $a:=\sum_{i} x_{i} \cdot X^{i}$ and $b:=\sum_{i} y_{i} \cdot X^{i}$, and consider their product $c=\sum_{i} c_{i} \cdot X^{i}$ then we can infer z as $z_{i}=\left[c_{i}>0\right]$
3) polynomial multiplication is in time $O(t \log t)$ on the Word RAM (using FFT)

From Multisets to Sets

Given a set Z of n positive integers and a target t, is there a subset Y of Z summing to exactly t ?
in general Z can be a multiset, i.e., every integer z has some multiplicity in Z
reducing to multiplicities ≤ 2 : $2 k+2$
[Lawler'79]
if $z \in Z$ has multiplicity $2 k+1$
then decrese the multiplicity of z to 1 and increase the multiplicity of $2 z$ by k
this generates the same subset sums
do this for all $z \in Z$ in increasing order
this is a linear time preprocessing that reduces all multiplicities to ≤ 2

From Multisets to Sets

Given a set Z of n positive integers and a target t, is there a subset Y of Z summing to exactly t ?
in general Z can be a multiset, i.e., every integer z has some multiplicity in Z linear time preprocessing that reduces to multiplicities $\leq \mathbf{2}$
reducing to sets:
[Koiliaris,Xu'17]
split Z into two sets Z_{1}, Z_{2} s.t. $Z=Z_{1} \cup Z_{2}$
new goal is to compute: $S(Z, t)=\left\{\sum_{y \in Y} y \mid Y \subseteq Z\right\} \cap\{0, \ldots, t\}$
compute $S\left(Z_{1}, t\right)$ and $S\left(Z_{2}, t\right)$ and combine to $S(Z, t)=S\left(Z_{1}, t\right) \oplus_{t} S\left(Z_{2}, t\right)$
we reduced subset sum on multisets to computing $S(Z, t)$ on sets Z

Warmup: Unbounded Subset Sum

a variant of Subset Sum:
given a set Z of n positive integers and target t
is there any sequence of elements of Z summing to t ?
i.e., each item can be picked multiple times
want to compute $S^{\text {unb }}(Z, t)=\left\{a_{1}+\cdots+a_{k} \mid k \geq 0, a_{1}, \ldots, a_{k} \in Z\right\} \cap\{0, \ldots, t\}$
compute $S^{u n b}(Z, 2 x)$ from $S^{u n b}(Z, x)$ via

$$
S^{u n b}(Z, 2 x)=S^{u n b}(Z, x) \oplus_{2 x} S^{u n b}(Z, x) \oplus_{2 x} Z \quad \text { time } O(x \log x)
$$

proof: each sequence summing to $\leq 2 x$ can be split into two sequences summing to $\leq x$ and at most one additional element

Using Sumset Computation for Subset Sum

$$
\begin{array}{ll}
\text { notation: } & A \oplus_{t} B:=(\{a+b \mid a \in A \cup\{0\}, b \in B \cup\{0\}\}) \cap\{0, \ldots, t\} \quad \text {.. sumset } \\
\Sigma(Y):=\Sigma_{y \in Y} y \quad \text {.. sum of a set } \\
\text { goal is to compute } & S(Z, t)=\{\Sigma(Y) \mid Y \subseteq Z\} \cap\{0, \ldots, t\}
\end{array}
$$

how to use ${ } \oplus_{t}$ ": $\quad Z \oplus_{t} Z$ contains forbidden sums $z+z \oplus$
however, for a partitioning $Z=Z_{1} \cup Z_{2}$:
$Z_{1} \oplus_{t} Z_{2}$ contains only valid subset sums of Z
more generally, if S_{1} and S_{2} contain only valid subset sums of Z_{1} and Z_{2}, then $S_{1} \oplus_{t} S_{2}$ contains only valid subset sums of Z

Algorithm for Subset Sum

1. Color-Coding:
computes all $\Sigma(Y)$ for $Y \subseteq Z$ with $|Y| \leq k$
2. Two-level Partitioning:
computes all $\Sigma(Y)$ for $Y \subseteq Z$, assuming $Z \subseteq[t / m, 2 t / m]$
3. FasterSubsetSum:
computes all $\Sigma(Y)$ for $Y \subseteq Z$

Color-Coding

.. is a technique from FPT algorithms
we use color-coding to detect sums of small subsets:
we want to compute all $\Sigma(Y)$ for $Y \subseteq Z$ with $|Y| \leq k$
consider a random partitioning $Z=Z_{1} \cup \cdots \cup Z_{k^{2}}$
compute $S:=Z_{1} \oplus_{t} \ldots \oplus_{t} Z_{k^{2}}$
then S contains only valid sums of Z
we say that the partitioning splits Y if $\left|Y \cap Z_{i}\right| \leq 1$ for all i
if the partitioning splits Y then S contains $\Sigma(Y)$
since we can choose the element in $Y \cap Z_{i}$ (or 0) in each Z_{i} to obtain $\Sigma(Y)$

Color-Coding

.. is a technique from FPT algorithms
we use color-coding to detect sums of small subsets:
we want to compute all $\Sigma(Y)$ for $Y \subseteq Z$ with $|Y| \leq k$
consider a random partitioning $Z=Z_{1} \cup \cdots \cup Z_{k^{2}}$
compute $S:=Z_{1} \oplus_{t} \ldots \oplus_{t} Z_{k^{2}}$
$\operatorname{Pr}[$ random partitioning splits $Y]=$?
balls into bins process: at most k balls (Y) into k^{2} bins $\left(Z_{1}, \ldots, Z_{k^{2}}\right)$ „birthday paradox":
$\operatorname{Pr}[$ no bin is used twice $]=\frac{k^{2}-1}{k^{2}} \cdot \frac{k^{2}-2}{k^{2}} \cdot \ldots \cdot \frac{k^{2}-(|Y|-1)}{k^{2}} \geq\left(1-\frac{1}{k}\right)^{k-1} \geq 1 / e$
\rightarrow constant success probability

Color-Coding

complete color-coding algorithm:

ColorCoding (Z, t, k) :

$$
\text { for } r=1, \ldots, O(\log n):
$$

consider a random partitioning $Z=Z_{1} \cup \cdots \cup Z_{k^{2}}$
compute $S_{r}:=Z_{1} \oplus_{t} \ldots \oplus_{t} Z_{k^{2}}$
return $\mathrm{U}_{r} S_{r}$
this returns a set S containing only valid subset sums of Z
for any $Y \subseteq Z$ with $\Sigma(Y) \leq t$ and $|Y| \leq k$:
$\Sigma(Y) \in S$ with high probability $\left(\geq 1-n^{-\Omega(1)}\right)$
running time: $O\left(t \log t \cdot k^{2} \cdot \log n\right)=\tilde{O}\left(t \cdot k^{2}\right)$

Two-Level Partitioning

for computing all subset sums, we use a two-level partitioning approach
assume: $Z \subseteq[t / m, 2 t / m]$ for some m
fix $Y \subseteq Z, \Sigma(Y) \leq t$, note that $|Y| \leq m$
consider a random partitioning $Z=Z_{1} \cup \cdots \cup Z_{m}$
this does not split Y (we would need m^{2} bins)
but it almost splits Y : whp we have $\left|Y \cap Z_{i}\right| \leq O(\log n)$ for all i

$$
\begin{aligned}
\text { Proof: } & \left|Y \cap Z_{i}\right|=\operatorname{Bin}(|Y|, 1 / m) \text { is binomially distributed } \\
& \text { use Chernoff }
\end{aligned}
$$

Two-Level Partitioning

for computing all subset sums, we use a two-level partitioning approach
assume: $Z \subseteq[t / m, 2 t / m]$ for some m
fix $Y \subseteq Z, \Sigma(Y) \leq t$, note that $|Y| \leq m$
consider a random partitioning $Z=Z_{1} \cup \cdots \cup Z_{m}$
this does not split Y (we would need m^{2} bins)
but it almost splits Y : whp we have $\left|Y \cap Z_{i}\right| \leq O(\log n)$ for all i
$\underbrace{O(\log n \cdot t / m)}$.. can work with smaller target

thus $S_{1} \oplus_{t} \ldots \oplus_{t} S_{m}$ contains $\Sigma(Y)$ whp
running time $\tilde{O}(m \cdot t)$, so what did we gain?

Two-Level Partitioning

assume $Z \subseteq[t / m, 2 t / m]$ for some m

1) $S_{i}:=\operatorname{ColorCoding}\left(Z_{i}, O(\log n \cdot t / m), O(\log n)\right)$
2) $S_{1} \oplus_{t} \ldots \oplus_{t} S_{m}$

3)

running time of color-coding is $\tilde{O}\left(t^{\prime} \cdot k^{\prime 2}\right)=\tilde{O}(t / m)$
we do this for m sets: $\tilde{O}(t)$

Two-Level Partitioning

assume $Z \subseteq[t / m, 2 t / m]$ for some m

1) $S_{i}:=\operatorname{ColorCoding}\left(Z_{i}, O(\log n \cdot t / m), O(\log n)\right)$
2) $S_{1} \oplus_{t} \ldots \oplus_{t} S_{m}$
3)

all elements are at most

$$
t_{3}=8 \cdot O(\log n \cdot t / m)
$$

$$
t_{2}=4 \cdot O(\log n \cdot t / m)
$$

$$
t_{1}=2 \cdot O(\log n \cdot t / m)
$$

$$
1 \cdot O(\log n \cdot t / m)
$$

in level i there are $m / 2^{i}$ sets with elements bounded by $O\left(2^{i} \cdot \log n \cdot t / m\right)$ sumset computation in level i takes time $\tilde{O}\left(2^{i} \cdot t / m\right)$

Two-Level Partitioning

assume: $Z \subseteq[t / m, 2 t / m]$ for some m

$$
\begin{aligned}
& \text { Partitioning }(Z, t) \text { : } \\
& \text { consider a random partitioning } Z=Z_{1} \cup \cdots \cup Z_{m} \\
& \text { compute } S_{i}:=\operatorname{ColorCoding}\left(Z_{i}, O(\log n \cdot t / m), O(\log n)\right) \text { for all } i \\
& \text { return } S:=S_{1} \oplus_{t} \cdots \oplus_{t} S_{m}, \text { computed in binary-tree-like way }
\end{aligned}
$$

this returns a set S containing only valid subset sums of Z
for any $Y \subseteq Z$ with $\Sigma(Y) \leq t$:

$$
\Sigma(Y) \in S \text { with high probability }\left(\geq 1-n^{-\Omega(1)}\right)
$$

running time: $\tilde{O}(t)=O\left(t \log t \log ^{4} n\right)$

Final algorithm

recall: we assumed $Z \subseteq[t / m, 2 t / m]$ for some m
actually we only needed: (for some m)

1) all items are small: $Z \subseteq[0, O(t / m)]$
2) all interesting subsets are small: for any $Y \subseteq Z$ with $\Sigma(Y) \leq t$ we have $|Y|=O(\mathrm{~m})$
this is satisfied for $Z \subseteq[t / m, 2 t / m]$ as well as $Z \subseteq[0, t / n]$ (with $m:=n$)

FasterSubsetSum (Z, t) :
recall: $n=|Z|$

$$
\begin{aligned}
& \text { split } Z \text { into } Z_{i}:=Z \cap\left[t / 2^{i}, t / 2^{i-1}\right] \text { for } i=1, \ldots, L=O(\log n) \\
& \text { and } Z_{L+1}:=Z \cap\left[0, t / 2^{L}\right] \\
& \text { compute } S_{i}:=\text { Partitioning }\left(Z_{i}, t\right) \text { for all } i \\
& \text { return } S:=S_{1} \oplus_{t} \ldots \oplus_{t} S_{L+1}
\end{aligned}
$$

running time $\tilde{O}(t)=O\left(t \log t \log ^{5} n\right)$, same whp-error bound as Partitioning

Polynomial Space

Is there an $\tilde{O}(t)$ algorithm?

Thm:
Subset Sum is in randomized time $\tilde{O}(t)$.
[B. SODA'17]
one-sided error probability $1 / n$, time $O\left(t \log t \log ^{5} n\right)$
uses space $\tilde{O}(t)$
polynomial space is known: $\tilde{O}\left(n^{3} t\right)$ time and $\tilde{O}\left(n^{2}\right)$ space [Lokshtanov,Nederlof'10]

Thm: Subset Sum has a randomized algorithm with
[B. SODA'17]

- time $\tilde{O}(n t)$ and space $\tilde{O}(n \log t)$, assuming ERH
- time $\tilde{O}\left(n t \cdot \min \left\{n, t^{\varepsilon}\right\}\right)$ and space $\tilde{O}\left(n \cdot \min \left\{n, t^{\varepsilon}\right\}\right)$, unconditional

Algorithm by Lokshtanov and Nederlof

interpret a Subset Sum algorithm as a circuit:
\rightarrow circuit over \cup and \oplus, each gate computes a subset of $\{0, \ldots, f(n, t)\}$
\rightarrow output gate computes the set of all subset sums
translate to characteristic vectors:
\rightarrow circuit over V and Boolean conv., each gate computes a vector of length $f(n, t)$
translate to integer vectors „counting" the number of solutions: up to $2^{\Theta(n)}$
\rightarrow circuit over + and convolution, each gate computes a vector of length $f(n, t)$
go to Fourier domain:
\rightarrow circuit over + and \times (pointwise operations!) with $g(n)$ gates, length $f(n, t)$
evaluating an entry of the output vector of the circuit: $\tilde{O}(g(n))$ time and space
inverse Fourier transform is a simple sum,
so we can evaluate all entries independently
total number of arithmetic operations $\tilde{O}(f(n, t) \cdot g(n))$, storing $\tilde{O}(g(n))$ numbers

Algorithm by Lokshtanov and Nederlof

total time $\tilde{O}(n \cdot f(n, t) \cdot g(n))$ and space $\tilde{O}(n \cdot g(n))$
they use a Subset Sum algorithm with $f(n, t)=\tilde{O}(n t)$ and $g(n)=\tilde{O}(n)$

1) plugging in our new Subset Sum algorithm: $f(n, t)=\tilde{O}(t)$ and $g(n)=\tilde{O}(n)$
2) work modulo a random prime p to decrease precision from $O(n)$ to polylog (n) bits vectors have length $f(n, t)=\ell$
need a primitive ℓ-th root of unity for Fourier transform
this exists in \mathbb{Z}_{p} if ℓ divides $p-1$
so we want to choose p as a random prime in the arithmetic progression $1+\ell \cdot \mathbb{N}$ need that the arithmetic progression contains many primes (see Dirichlet's Thm)

ERH helps with this

Polynomial Space

Thm:

Subset Sum is in randomized time $\tilde{O}(t)$.
uses space $\tilde{O}(t)$
polynomial space is known: $\tilde{O}\left(n^{3} t\right)$ time and $\tilde{O}\left(n^{2}\right)$ space [Lokshtanov,Nederlof'10]

Thm: Subset Sum has a randomized algorithm with
[B. SODA'17]

- time $\tilde{O}(n t)$ and space $\tilde{O}(n \log t)$, assuming ERH
- time $\tilde{O}\left(n t \cdot \min \left\{n, t^{\varepsilon}\right\}\right)$ and space $\widetilde{O}\left(n \cdot \min \left\{n, t^{\varepsilon}\right\}\right)$, unconditional
we plug our new algorithm into the framework by Lokshtanov and Nederlof and work modulo a random prime (from an appropriate arithmetic progression)

OPEN: time $\tilde{O}(t)$ and space $n^{O(1)}$ polylog t

Summary

Thm:

Subset Sum is in randomized time $\widetilde{O}(t)$.

More open problems:

- derandomization
- approximation algorithms:
if a subset sums to t, we compute a subset summing to a value in $[(1-\varepsilon) t, t]$ best known running time $\tilde{O}\left(\min \left\{n / \varepsilon, n+1 / \varepsilon^{2}\right\}\right)$ - improvements?
[Lawler'79,Gens,Levner'80,KMPS'03]
- extensions:
knapsack problem $O(n t)$, constraint shortest path $O(m t)$
similar improvements possible?

Extensions?

Subset Sum ven n numbers,

 does any subset sum to t ?
Knapsack \leq

given n items, pick subset of total weight $\leq t$ and with largest value

$$
\tilde{O}(n t)
$$

?

$$
t^{1-o(1)}
$$

Constraint Shortest Path

given a graph, find a path from u to v with total delay $\leq t$ and with smallest length

$$
\tilde{O}(m t)
$$

$(n t)^{1-o(1)}$
$t^{1-o(1)}$

Extensions?

start with hard Subset Sum instance
with target t and $n^{\prime}=t^{o(1)}$,
e.g. from Set Cover or combinatorial k-Clique
build graph with lengths $=-$ delays:

Constraint Shortest Path

given a graph, find a path from u to v with total delay $\leq t$ and with smallest length

$$
\begin{gathered}
\tilde{O}(m t) \\
(n t)^{1-o(1)} \\
t^{1-o(1)}
\end{gathered}
$$

Extensions?

start with \boldsymbol{n} hard Subset Sum instances
with target t and $n^{\prime}=t^{o(1)}$,
e.g. from Set Cover or combinatorial k-Clique
combine graphs as follows:

lower bound $(n t)^{1-o(1)}$

Constraint Shortest Path

given a graph, find a path from u to v with total delay $\leq t$ and with smallest length

$$
\begin{gathered}
\tilde{O}(m t) \\
(n t)^{1-o(1)} \\
t^{1-o(1)}
\end{gathered}
$$

