
Improved Pseudopolynomial Time 
Algorithms for Subset Sum 

Karl Bringmann

Simons Institute, Berkeley, December 12, 2016



Subset Sum

Given a set 𝑍 of 𝑛 positive integers and a target 𝑡,

is there a subset 𝑌 of 𝑍 summing to exactly 𝑡?

𝑍 = {2,5,6,11,15}𝑡 = 19

Σ 𝑌 = 2 + 6 + 11 = 19

well-studied, classic NP-hard problem,  𝑂 21/3 algorithm

at the core of many other problems: knapsack, constraint shortest path, ...

[Horowitz,Sahni’72]

note that 𝑛 ≤ 𝑡

𝑌 = {2,5,6,11,15}



Subset Sum

pseudopolynomial time algorithm by dynamic programming: [Bellman’57]

𝑇 𝑖, 𝑠 ≔ 𝑇 𝑖 − 1, 𝑠 ∨ 𝑇[𝑖 − 1, 𝑠 − 𝑧=]

𝑇 0, 𝑠 ≔ [𝑠 = 0]
𝑍 = {𝑧@, … , 𝑧1}

then 𝑇[𝑛, 𝑡] decides the Subset Sum instance (𝑍, 𝑡)

time 𝑂(𝑛𝑡), space 𝑂(𝑡)

Given a set 𝑍 of 𝑛 positive integers and a target 𝑡,

is there a subset 𝑌 of 𝑍 summing to exactly 𝑡?



Conditional Lower Bounds

Is time 𝑂(𝑛𝑡) optimal? Can we prove a conditional lower bound?

[CDLMNOPSW’12]
any 𝑡@DE𝑛F(@) algorithm would imply an 2 @DG 1(𝑛𝑚)F(@) algorithm for Set Cover

follows from [Abboud,Lewi,Williams‘14]

any combinatorial 𝑡@DE𝑛F(@) algorithm would imply
a combinatorial 𝑂 𝑛 @DG I algorithm for 𝑘-Clique, for some large constant 𝑘

conditional lower bound:  𝑡@DK(@)

Is there an 𝑂L 𝑛 + 𝑡 = 𝑂L(𝑡) algorithm?



Attempts to break O(nt)

use basic Word RAM parallelism, word size 𝑤:  𝑂(𝑛𝑡/𝑤) [Pisinger’03]

consider 𝑠 ≔ max𝑍; we can assume 𝑠 ≤ 𝑡:  𝑂(𝑛𝑠) [Pisinger’99]

breakthrough:  𝑂L( 𝑛� ⋅ 𝑡) [Koiliaris,Xu Arxiv’15/SODA’17]

all previous algorithms are deterministic

Thm: Subset Sum is in randomized time 𝑂L 𝑡 .
[B. SODA’17]

Is there an 𝑂L(𝑡) algorithm?

one-sided error probability 1/𝑛, time 𝑂(𝑡 log 𝑡 logV 𝑛)



Preliminaries



Sumset Computation

𝐴, 𝐵 sets of non-negative integers

𝐴⨁𝐵 ≔ 𝑎 + 𝑏 𝑎 ∈ 𝐴 ∪ 0 , 𝑏 ∈ 𝐵 ∪ 0sumset: 

𝐴⨁^𝐵 ≔ 𝐴⨁𝐵 ∩ 0,… , 𝑡𝒕-capped sumset: 

Fact: 𝐴⨁^𝐵	can be computed in time 𝑂(𝑡 log 𝑡)

(on Word RAM with word size Ω(log 𝑡))

1) reduce to Boolean convolution:  𝑧= = ⋁ 	𝑥e ∧ 𝑦=De�
e for vectors 𝑥, 𝑦 ∈ {0,1}^

Boolean conv. of characteristic vectors of 𝐴, 𝐵 yields characteristic vector of 𝐴⨁𝐵

capping at 𝑡 yields 𝐴⨁^𝐵

2) reduce Boolean convolution to multiplying polynomials of degree 𝑡

set 𝑎 ≔ ∑ 𝑥= ⋅ 𝑋=�
= and 𝑏 ≔ ∑ 𝑦= ⋅ 𝑋=�

= , and consider their product 𝑐 = ∑ 𝑐= ⋅ 𝑋=�
=

3) polynomial multiplication is in time 𝑂(𝑡	log	𝑡) on the Word RAM  (using FFT)

then we can infer 𝑧 as 𝑧= = [𝑐= > 0]



From Multisets to Sets

Given a set 𝑍 of 𝑛 positive integers and a target 𝑡,

is there a subset 𝑌 of 𝑍 summing to exactly 𝑡?

in general 𝑍 can be a multiset, i.e., every integer 𝑧 has some multiplicity in 𝑍

reducing to multiplicities ≤ 2: [Lawler’79]

if 𝑧 ∈ 𝑍 has multiplicity 2𝑘 + 1

then decrese the multiplicity of 𝑧 to 1 and increase the multiplicity of 2𝑧 by 𝑘

this generates the same subset sums

2𝑘 + 2

2

do this for all 𝑧 ∈ 𝑍 in increasing order

this is a linear time preprocessing that reduces all multiplicities to ≤ 2



From Multisets to Sets

Given a set 𝑍 of 𝑛 positive integers and a target 𝑡,

is there a subset 𝑌 of 𝑍 summing to exactly 𝑡?

in general 𝑍 can be a multiset, i.e., every integer 𝑧 has some multiplicity in 𝑍

linear time preprocessing that reduces to multiplicities ≤ 𝟐

split 𝑍 into two 𝐬𝐞𝐭𝐬 𝑍@, 𝑍3 s.t. 𝑍	 = 𝑍@ ∪ 𝑍3

thus in the remainder:  assume that 𝒁 is a set

new goal is to compute:  𝑆 𝑍, 𝑡 = 	 ∑ 𝑦�
r∈s 	𝑌 ⊆ 𝑍 ∩ {0, … , 𝑡}

compute 𝑆(𝑍@, 𝑡) and 𝑆(𝑍3, 𝑡) and combine to 𝑆 𝑍, 𝑡 = 𝑆 𝑍@, 𝑡 	⨁^	𝑆(𝑍3, 𝑡)

we reduced subset sum on multisets to computing 𝑆(𝑍, 𝑡) on sets 𝑍

[Koiliaris,Xu’17]reducing to sets:



Warmup: Unbounded Subset Sum

a variant of Subset Sum:

given a set 𝑍 of 𝑛 positive integers and target 𝑡

is there any sequence of elements of 𝑍 summing to 𝑡?

i.e., each item can be picked multiple times

want to compute 𝑆u1v 𝑍, 𝑡 = 	 𝑎@ + ⋯+ 𝑎I 𝑘 ≥ 0, 𝑎@, … , 𝑎I ∈ 𝑍 ∩ {0, … , 𝑡}

compute 𝑆u1v 𝑍, 2𝑥 from 𝑆u1v 𝑍, 𝑥 via 

𝑆u1v 𝑍, 2𝑥 = 𝑆u1v 𝑍, 𝑥 	⨁3y	𝑆u1v 𝑍, 𝑥 	⨁3y	𝑍

proof: each sequence summing to ≤ 2𝑥 can be split into
two sequences summing to ≤ 𝑥 and at most one additional element

time 𝑂(𝑥	log	𝑥)

total time 𝑂(𝑡	log	𝑡)0 ≤ 2𝑥𝑥



Using Sumset Computation for Subset Sum

𝐴⨁^𝐵 ≔ 𝑎 + 𝑏 𝑎 ∈ 𝐴 ∪ 0 , 𝑏 ∈ 𝐵 ∪ 0 ∩ 0,… , 𝑡notation: 

Σ 𝑌 ≔ ∑ 𝑦�
r∈s

goal is to compute 𝑆 𝑍, 𝑡 = Σ 𝑌 	 	𝑌 ⊆ 𝑍 ∩ {0,… , 𝑡}

.. sum of a set

.. sumset

𝑍⨁^𝑍 contains forbidden sums 𝑧 + 𝑧 ☹

however, for a partitioning 𝑍 = 𝑍@ ∪ 𝑍3:

how to use „⨁𝒕“:

𝑍@	⨁^	𝑍3 contains only valid subset sums of 𝑍

more generally, if 𝑆@ and 𝑆3 contain only valid subset sums of 𝑍@ and 𝑍3, 
then 𝑆@	⨁^	𝑆3 contains only valid subset sums of 𝑍



Algorithm for Subset Sum

1. Color-Coding:

2. Two-level Partitioning:

3. FasterSubsetSum:

computes all Σ(𝑌) for 𝑌 ⊆ 𝑍 with 𝑌 ≤ 𝑘

computes all Σ(𝑌) for 𝑌 ⊆ 𝑍, assuming 𝑍 ⊆ [𝑡/𝑚, 2𝑡/𝑚]

computes all Σ(𝑌) for 𝑌 ⊆ 𝑍



Color-Coding

.. is a technique from FPT algorithms

we use color-coding to detect sums of small subsets:

[Alon,Yuster,Zwick’95]

we want to compute all Σ(𝑌) for 𝑌 ⊆ 𝑍 with 𝑌 ≤ 𝑘

consider a random partitioning 𝑍 = 𝑍@ ∪ ⋯∪ 𝑍I{

compute 𝑆 ≔ 𝑍@ 	⨁^…⨁^	𝑍I{

then 𝑆 contains only valid sums of 𝑍

if the partitioning splits 𝒀 then 𝑺 contains 𝜮(𝒀)

since we can choose the element in 𝑌 ∩ 𝑍= (or 0) in each 𝑍= to obtain Σ(𝑌)

we say that the partitioning splits 𝑌 if 𝑌 ∩ 𝑍= ≤ 1 for all 𝑖



Color-Coding

Pr[random partitioning splits 𝑌] = ?

balls into bins process:  at most 𝑘 balls (𝑌) into 𝑘3 bins (𝑍@, … , 𝑍I{)

„birthday paradox“: 

Pr[no bin is used twice] = I
{D@
I{

⋅ I
{D3
I{

⋅ … ⋅ I
{D s D@

I{
≥ 1 − @

I

ID@
≥ 1/𝑒

.. is a technique from FPT algorithms

we use color-coding to detect sums of small subsets:

[Alon,Yuster,Zwick’95]

we want to compute all Σ(𝑌) for 𝑌 ⊆ 𝑍 with 𝑌 ≤ 𝑘

→ constant success probability

consider a random partitioning 𝑍 = 𝑍@ ∪ ⋯∪ 𝑍I{

compute 𝑆 ≔ 𝑍@ 	⨁^…⨁^	𝑍I{



Color-Coding

complete color-coding algorithm:

for 𝑟 = 1,… , 𝑂(log 𝑛):
consider a random partitioning 𝑍 = 𝑍@ ∪ ⋯∪ 𝑍I{
compute 𝑆� ≔ 𝑍@ 	⨁^…⨁^	𝑍I{

this returns a set 𝑆 containing only valid subset sums of 𝑍

return ⋃ 𝑆��
�

for any 𝑌 ⊆ 𝑍 with Σ 𝑌 ≤ 𝑡 and 𝑌 ≤ 𝑘:

Σ 𝑌 ∈ 𝑆 with high probability (≥ 1 − 𝑛D�(@))

running time:  𝑂 𝑡 log 𝑡 ⋅ 𝑘3 ⋅ log 𝑛 = 𝑂L(𝑡 ⋅ 𝑘3)

ColorCoding(𝑍, 𝑡, 𝑘):



Two-Level Partitioning

for computing all subset sums, we use a two-level partitioning approach

assume: 𝑍 ⊆ [𝑡/𝑚, 2𝑡/𝑚] for some 𝑚

fix 𝑌 ⊆ 𝑍, Σ 𝑌 ≤ 𝑡,  note that 𝑌 ≤ 𝑚

consider a random partitioning 𝑍 = 𝑍@ ∪ ⋯∪ 𝑍�

this does not split 𝑌 (we would need 𝑚3 bins)

but it almost splits 𝑌:  whp we have 𝑌 ∩ 𝑍= ≤ 𝑂(log 𝑛) for all 𝑖

Proof: 𝑌 ∩ 𝑍= = Bin( 𝑌 , 1/𝑚) is binomially distributed

use Chernoff



Two-Level Partitioning

for computing all subset sums, we use a two-level partitioning approach

assume: 𝑍 ⊆ [𝑡/𝑚, 2𝑡/𝑚] for some 𝑚

fix 𝑌 ⊆ 𝑍, Σ 𝑌 ≤ 𝑡,  note that 𝑌 ≤ 𝑚

consider a random partitioning 𝑍 = 𝑍@ ∪ ⋯∪ 𝑍�

this does not split 𝑌 (we would need 𝑚3 bins)

but it almost splits 𝑌:  whp we have 𝑌 ∩ 𝑍= ≤ 𝑂(log 𝑛) for all 𝑖

thus 𝑆= ≔ ColorCoding(𝑍=, 𝑡, 𝑂(log 𝑛)) contains Σ(𝑌 ∩ 𝑍=) whp

thus  𝑆@ 	⨁^…⨁^	𝑆� contains Σ(𝑌) whp

running time 𝑂L(𝑚 ⋅ 𝑡), so what did we gain?

𝑂(log 𝑛 ⋅ 𝑡/𝑚) .. can work with smaller target 



Two-Level Partitioning

1)  𝑆= ≔ ColorCoding(𝑍=, 𝑂(log 𝑛 ⋅ 𝑡/𝑚), 𝑂(log 𝑛))

2)		𝑆@ 	⨁^…⨁^	𝑆�

running time of color-coding is 𝑂L(𝑡′ ⋅ 𝑘′3) = 𝑂L(𝑡/𝑚)

we do this for 𝑚 sets:  𝑂L(𝑡)

1)

𝑡′ 𝑘′

assume  𝑍 ⊆ [𝑡/𝑚, 2𝑡/𝑚] for some 𝑚



Two-Level Partitioning

	⨁^�

𝑆@ 𝑆3 𝑆� 𝑆� 𝑆V 𝑆� 𝑆� 𝑆�

	⨁^� 	⨁^� 	⨁^�

	⨁^{ 	⨁^{

	⨁^�

0

1

2

3
level all elements are at most

𝑂(log 𝑛 ⋅ 𝑡/𝑚)

𝑂(log 𝑛 ⋅ 𝑡/𝑚)

𝑂(log 𝑛 ⋅ 𝑡/𝑚)

𝑂(log 𝑛 ⋅ 𝑡/𝑚)

1 ⋅

𝑡@ = 2 ⋅

𝑡3 = 4 ⋅

𝑡� = 8 ⋅

in level 𝑖 there are 𝑚/2= sets with elements bounded by 𝑂(2= ⋅ log 𝑛 ⋅ 𝑡/𝑚)

sumset computation in level 𝑖 takes time 𝑂L(2= ⋅ 𝑡/𝑚)

total time 𝑂L(𝑡) for computing 𝑆@ 	⨁^…⨁^	𝑆�

2)

1)  𝑆= ≔ ColorCoding(𝑍=, 𝑂(log 𝑛 ⋅ 𝑡/𝑚), 𝑂(log 𝑛))

2)		𝑆@ 	⨁^…⨁^	𝑆�

assume  𝑍 ⊆ [𝑡/𝑚, 2𝑡/𝑚] for some 𝑚



Two-Level Partitioning

consider a random partitioning 𝑍 = 𝑍@ ∪ ⋯∪ 𝑍�

return  𝑆 ≔ 𝑆@ 	⨁^…⨁^	𝑆�, computed in binary-tree-like way

this returns a set 𝑆 containing only valid subset sums of 𝑍

for any 𝑌 ⊆ 𝑍 with Σ 𝑌 ≤ 𝑡:

Σ 𝑌 ∈ 𝑆 with high probability (≥ 1 − 𝑛D�(@))

running time:  𝑂L 𝑡 = 𝑂(𝑡 log 𝑡 log� 𝑛)

Partitioning(𝑍, 𝑡):

compute 𝑆= ≔ ColorCoding(𝑍=, 𝑂(log 𝑛 ⋅ 𝑡/𝑚), 𝑂(log 𝑛)) for all 𝑖

assume: 𝑍 ⊆ [𝑡/𝑚, 2𝑡/𝑚] for some 𝑚



Final algorithm

recall: we assumed 𝑍 ⊆ [𝑡/𝑚, 2𝑡/𝑚] for some 𝑚

actually we only needed:  (for some 𝑚)

2) all interesting subsets are small:  for any 𝑌 ⊆ 𝑍 with Σ 𝑌 ≤ 𝑡 we have 𝑌 = 𝑂(𝑚)

1) all items are small:  𝑍 ⊆ [0, 𝑂(𝑡/𝑚)]

this is satisfied for 𝑍 ⊆ [𝑡/𝑚, 2𝑡/𝑚] as well as 𝑍 ⊆ [0, 𝑡/𝑛] (with 𝑚 ≔ 𝑛)

split 𝑍 into 𝑍= ≔ 𝑍 ∩ [𝑡/2=, 𝑡/2=D@] for 𝑖 = 1, … , 𝐿 = 𝑂(log	𝑛)

compute  𝑆= ≔ Partitioning(𝑍=, 𝑡) for all 𝑖

FasterSubsetSum(𝑍, 𝑡):

and 𝑍��@ ≔ 𝑍 ∩ [0, 𝑡/2�]

running time 𝑂L 𝑡 = 𝑂(𝑡 log 𝑡 logV 𝑛), same whp-error bound as Partitioning

return  𝑆 ≔ 𝑆@ 	⨁^…⨁^	𝑆��@

recall: 𝑛 = |𝑍|



Polynomial Space

polynomial space is known:  𝑂L 𝑛�𝑡 time and 𝑂L 𝑛3 space

uses space 𝑂L 𝑡

[Lokshtanov,Nederlof’10]

Thm: Subset Sum has a randomized algorithm with

- time 𝑂L 𝑛𝑡 and space 𝑂L 𝑛 log 𝑡 , assuming ERH

- time 𝑂L 𝑛𝑡 ⋅ min	{𝑛, 𝑡E} and space 𝑂L 𝑛 ⋅ min	{𝑛, 𝑡E} , unconditional

[B. SODA’17]

Thm: Subset Sum is in randomized time 𝑂L 𝑡 .
[B. SODA’17]

Is there an 𝑂L(𝑡) algorithm?

one-sided error probability 1/𝑛, time 𝑂(𝑡 log 𝑡 logV 𝑛)



Algorithm by Lokshtanov and Nederlof

interpret a Subset Sum algorithm as a circuit:

translate to characteristic vectors:

translate to integer vectors „counting“ the number of solutions:

→ circuit over ∪ and	⨁, each gate computes a subset of {0, … , 𝑓 𝑛, 𝑡 }

→ circuit over ∨ and Boolean conv., each gate computes a vector of length 𝑓(𝑛, 𝑡)

→ circuit over + and convolution, each gate computes a vector of length 𝑓(𝑛, 𝑡)

go to Fourier domain:
→ circuit over + and × (pointwise operations!) with 𝑔(𝑛) gates, length 𝑓(𝑛, 𝑡)

evaluating an entry of the output vector of the circuit: 𝑂L 𝑔 𝑛 time and space

inverse Fourier transform is a simple sum, 
so we can evaluate all entries independently

total number of arithmetic operations 𝑂L 𝑓 𝑛, 𝑡 ⋅ 𝑔 𝑛 , storing 𝑂L 𝑔 𝑛 numbers

→ output gate computes the set of all subset sums

up to 2�(1)

need 𝑂(𝑛)-bit numbers



Algorithm by Lokshtanov and Nederlof

total time 𝑂L 𝑛 ⋅ 𝑓 𝑛, 𝑡 ⋅ 𝑔 𝑛 and space 𝑂L 𝑛 ⋅ 𝑔 𝑛

they use a Subset Sum algorithm with 𝑓 𝑛, 𝑡 = 𝑂L(𝑛𝑡)	 and  𝑔(𝑛) = 𝑂L(𝑛)

1) plugging in our new Subset Sum algorithm: 𝑓 𝑛, 𝑡 = 𝑂L(𝑡)	 and  𝑔(𝑛) = 𝑂L(𝑛)

2) work modulo a random prime 𝑝 to decrease precision from 𝑂(𝑛)	to polylog(𝑛) bits

vectors have length 𝑓(𝑛, 𝑡) = ℓ

need a primitive ℓ-th root of unity for Fourier transform

this exists in ℤ£ if ℓ divides 𝑝 − 1

so we want to choose 𝑝 as a random prime in the arithmetic progression 1 + ℓ ⋅ ℕ

need that the arithmetic progression contains many primes (see Dirichlet‘s Thm)

ERH helps with this



Polynomial Space

Thm: Subset Sum is in randomized time 𝑂L 𝑡 .

polynomial space is known:  𝑂L 𝑛�𝑡 time and 𝑂L 𝑛3 space

uses space 𝑂L 𝑡

[Lokshtanov,Nederlof’10]

Thm: Subset Sum has a randomized algorithm with

- time 𝑂L 𝑛𝑡 and space 𝑂L 𝑛 log 𝑡 , assuming ERH

- time 𝑂L 𝑛𝑡 ⋅ min	{𝑛, 𝑡E} and space 𝑂L 𝑛 ⋅ min	{𝑛, 𝑡E} , unconditional

OPEN: time 𝑂L 𝑡 and space 𝑛F(@) polylog 𝑡

we plug our new algorithm into the framework by Lokshtanov and Nederlof

and work modulo a random prime (from an appropriate arithmetic progression)

[B. SODA’17]



Summary

More open problems:

knapsack problem 𝑂(𝑛𝑡), constraint shortest path 𝑂(𝑚𝑡)

similar improvements possible?

- approximation algorithms:

if a subset sums to 𝑡, we compute a subset summing to a value in [(1 − 𝜀)𝑡, 𝑡]

- extensions:

best known running time 𝑂L(min	{𝑛/𝜀, 𝑛 + 1/𝜀3}) - improvements?
[Lawler’79,Gens,Levner’80,KMPS’03]

Thm:

- derandomization

Subset Sum is in randomized time 𝑂L 𝑡 .



Extensions?

Subset Sum Knapsack Constraint Shortest Path

given n numbers, 
does any subset
sum to 𝑡?

given n items, 
pick subset of total 
weight ≤ 𝑡 and with
largest value

given a graph, find a 
path from u to v with
total delay ≤ 𝑡 and
with smallest length

≤ ≤

𝑂L 𝑛𝑡

𝑡@DK(@)𝑡@DK(@)

𝑂L 𝑛𝑡

𝑡@DK(@)

𝑂L 𝑚𝑡

(𝑛𝑡)@DK(@)𝑂L 𝑡 ?



Extensions?

Constraint Shortest Path

given a graph, find a 
path from u to v with
total delay ≤ 𝑡 and
with smallest length

𝑡@DK(@)

𝑂L 𝑚𝑡

(𝑛𝑡)@DK(@)

start with hard Subset Sum instance
with target 𝑡 and 𝑛′ = 𝑡K(@), 
e.g. from Set Cover or combinatorial k-Clique

0 0 ... 0

𝑧@ 𝑧3 … 𝑧1§

build graph with lengths	= 	−	delays:

lower bound 𝑡@DK(@)



Extensions?

Constraint Shortest Path

given a graph, find a 
path from u to v with
total delay ≤ 𝑡 and
with smallest length

𝑡@DK(@)

𝑂L 𝑚𝑡

(𝑛𝑡)@DK(@)

start with 𝒏 hard Subset Sum instances
with target 𝑡 and 𝑛′ = 𝑡K(@), 
e.g. from Set Cover or combinatorial k-Clique

0 0 ... 0

𝑧@,@ 𝑧@,3 … 𝑧@,1§

combine graphs as follows:

lower bound (𝑛𝑡)@DK(@)
0 0 ... 0

𝑧1,@ 𝑧1,3 … 𝑧1,1§

0

0

0

0

... ...


