

Improved Pseudopolynomial Time Algorithms for Subset Sum

Karl Bringmann

Simons Institute, Berkeley, December 12, 2016

Subset Sum

Given a set *Z* of *n* positive integers and a target *t*, is there a subset *Y* of *Z* summing to exactly *t*?

$$t = 19$$
 $Z = \{2,5,6,11,15\}$
 $Y = \{2, 6,11 \}$ $\Sigma(Y) = 2 + 6 + 11 = 19$

note that $n \leq t$

well-studied, classic NP-hard problem, $O(2^{n/2})$ algorithm [Horowitz,Sahni'72] at the core of many other problems: knapsack, constraint shortest path, ...

Subset Sum

Given a set Z of n positive integers and a target t,

is there a subset *Y* of *Z* summing to exactly *t*?

pseudopolynomial time algorithm by dynamic programming: [Bellman'57]

$$T[i,s] \coloneqq T[i-1,s] \lor T[i-1,s-z_i]$$

$$T[0,s] \coloneqq [s=0]$$

$$Z = \{z_1, \dots, z_n\}$$

then T[n, t] decides the Subset Sum instance (Z, t)

```
time O(nt), space O(t)
```


Conditional Lower Bounds

Is time O(nt) optimal? Can we prove a conditional lower bound?

any $t^{1-\varepsilon}n^{O(1)}$ algorithm would imply an $2^{(1-\delta)n}(nm)^{O(1)}$ algorithm for Set Cover [CDLMNOPSW'12]

any combinatorial $t^{1-\varepsilon}n^{O(1)}$ algorithm would imply a combinatorial $O(n^{(1-\delta)k})$ algorithm for *k*-Clique, for some large constant *k* follows from [Abboud,Lewi,Williams'14]

```
conditional lower bound: t^{1-o(1)}
```

Is there an $\tilde{O}(n + t) = \tilde{O}(t)$ algorithm?

Attempts to break O(nt)

use basic Word RAM parallelism, word size w: O(nt/w) [Pisinger'03]

consider $s \coloneqq \max Z$; we can assume $s \le t$: O(ns) [Pisinger'99]

breakthrough: $\tilde{O}(\sqrt{n} \cdot t)$

[Koiliaris,Xu Arxiv'15/SODA'17]

all previous algorithms are deterministic

Is there an $\tilde{O}(t)$ algorithm?

Thm:

Subset Sum is in randomized time $\tilde{O}(t)$.

[B. SODA'17]

one-sided error probability 1/n, time $O(t \log t \log^5 n)$

Preliminaries

Sumset Computation

A, B sets of non-negative integers	
sumset:	$A \bigoplus B \coloneqq \{ a + b \mid a \in A \cup \{0\}, b \in B \cup \{0\} \}$
<i>t</i> -capped sumset:	$A \bigoplus_t B \coloneqq (A \oplus B) \cap \{0, \dots, t\}$

 $A \bigoplus_t B$ can be computed in time $O(t \log t)$

(on Word RAM with word size $\Omega(\log t)$)

1) reduce to **Boolean convolution**: $z_i = \bigvee_j x_j \land y_{i-j}$ for vectors $x, y \in \{0,1\}^t$ Boolean conv. of characteristic vectors of *A*, *B* yields characteristic vector of $A \oplus B$ capping at *t* yields $A \oplus_t B$

2) reduce Boolean convolution to **multiplying polynomials** of degree tset $a \coloneqq \sum_i x_i \cdot X^i$ and $b \coloneqq \sum_i y_i \cdot X^i$, and consider their product $c = \sum_i c_i \cdot X^i$ then we can infer z as $z_i = [c_i > 0]$

3) polynomial multiplication is in time $O(t \log t)$ on the Word RAM (using **FFT**)

Fact:

From Multisets to Sets

Given a set Z of n positive integers and a target t,

is there a subset *Y* of *Z* summing to exactly *t*?

in general Z can be a **multiset**, i.e., every integer z has some multiplicity in Z

reducing to multiplicities ≤ 2 : 2k + 2 [Lawler'79] if $z \in Z$ has multiplicity 2k + 1then decrease the multiplicity of z to 1 and increase the multiplicity of 2z by kthis generates the same subset sums

do this for all $z \in Z$ in increasing order

this is a linear time preprocessing that reduces all multiplicities to ≤ 2

From Multisets to Sets

Given a set Z of n positive integers and a target t,

is there a subset *Y* of *Z* summing to exactly *t*?

in general Z can be a **multiset**, i.e., every integer z has some multiplicity in Z linear time preprocessing that reduces to **multiplicities** ≤ 2

reducing to sets:

[Koiliaris,Xu'17]

split Z into two sets Z_1, Z_2 s.t. $Z = Z_1 \cup Z_2$

max planck institut

new goal is to compute: $S(Z,t) = \{\sum_{y \in Y} y \mid Y \subseteq Z\} \cap \{0, ..., t\}$

compute $S(Z_1, t)$ and $S(Z_2, t)$ and combine to $S(Z, t) = S(Z_1, t) \bigoplus_t S(Z_2, t)$

we reduced subset sum on **multisets** to computing S(Z, t) on sets Z

thus in the remainder: assume that Z is a set

Warmup: Unbounded Subset Sum

a variant of Subset Sum:

given a set Z of n positive integers and target t

is there any **sequence** of elements of *Z* summing to *t*?

i.e., each item can be picked multiple times

want to compute $S^{unb}(Z, t) = \{a_1 + \dots + a_k \mid k \ge 0, a_1, \dots, a_k \in Z\} \cap \{0, \dots, t\}$

compute $S^{unb}(Z, 2x)$ from $S^{unb}(Z, x)$ via

 $S^{unb}(Z, 2x) = S^{unb}(Z, x) \oplus_{2x} S^{unb}(Z, x) \oplus_{2x} Z \qquad \text{time } O(x \log x)$

proof: each sequence summing to $\leq 2x$ can be split into two sequences summing to $\leq x$ and at most one additional element

total time $O(t \log t)$

Using Sumset Computation for Subset Sum

notation:

n: $A \bigoplus_t B := (\{a + b \mid a \in A \cup \{0\}, b \in B \cup \{0\}\}) \cap \{0, ..., t\}$... sumset

 $\Sigma(Y) \coloneqq \sum_{y \in Y} y$... sum of a set

goal is to compute $S(Z,t) = \{\Sigma(Y) \mid Y \subseteq Z\} \cap \{0, ..., t\}$

how to use " \oplus_t ": $Z \oplus_t Z$ contains forbidden sums $z + z \cong$

however, for a **partitioning** $Z = Z_1 \cup Z_2$:

 $Z_1 \bigoplus_t Z_2$ contains only valid subset sums of Z

more generally, if S_1 and S_2 contain only valid subset sums of Z_1 and Z_2 , then $S_1 \bigoplus_t S_2$ contains only valid subset sums of Z

max planck institut informatik

Algorithm for Subset Sum

1. Color-Coding:

computes all $\Sigma(Y)$ for $Y \subseteq Z$ with $|Y| \leq k$

2. Two-level Partitioning:

computes all $\Sigma(Y)$ for $Y \subseteq Z$, assuming $Z \subseteq [t/m, 2t/m]$

3. FasterSubsetSum:

computes all $\Sigma(Y)$ for $Y \subseteq Z$

Color-Coding

.. is a technique from FPT algorithms

[Alon,Yuster,Zwick'95]

we use color-coding to detect sums of **small** subsets:

we want to compute all $\Sigma(Y)$ for $Y \subseteq Z$ with $|Y| \leq k$

consider a **random** partitioning $Z = Z_1 \cup \cdots \cup Z_{k^2}$ compute $S \coloneqq Z_1 \oplus_t \ldots \oplus_t Z_{k^2}$

then S contains only valid sums of Z

we say that the partitioning *splits* Y if $|Y \cap Z_i| \le 1$ for all i

if the partitioning splits Y then S contains $\Sigma(Y)$

since we can choose the element in $Y \cap Z_i$ (or 0) in each Z_i to obtain $\Sigma(Y)$

Color-Coding

.. is a technique from FPT algorithms

[Alon, Yuster, Zwick'95]

we use color-coding to detect sums of **small** subsets:

we want to compute all $\Sigma(Y)$ for $Y \subseteq Z$ with $|Y| \leq k$

consider a **random** partitioning $Z = Z_1 \cup \cdots \cup Z_{k^2}$ compute $S \coloneqq Z_1 \oplus_t \ldots \oplus_t Z_{k^2}$

Pr[random partitioning splits *Y*] = ?

balls into bins process: at most *k* balls (*Y*) into k^2 bins ($Z_1, ..., Z_{k^2}$) "birthday paradox":

Pr[no bin is used twice] =
$$\frac{k^2 - 1}{k^2} \cdot \frac{k^2 - 2}{k^2} \cdot \dots \cdot \frac{k^2 - (|Y| - 1)}{k^2} \ge \left(1 - \frac{1}{k}\right)^{k-1} \ge 1/e$$

 \rightarrow constant success probability

Color-Coding

complete color-coding algorithm:

```
ColorCoding(Z, t, k):

for r = 1, ..., O(\log n):

consider a random partitioning Z = Z_1 \cup \cdots \cup Z_{k^2}

compute S_r \coloneqq Z_1 \bigoplus_t ... \bigoplus_t Z_{k^2}

return \bigcup_r S_r
```

this returns a set S containing only valid subset sums of Z

```
for any Y \subseteq Z with \Sigma(Y) \leq t and |Y| \leq k:
\Sigma(Y) \in S with high probability (\geq 1 - n^{-\Omega(1)})
```

running time: $O(t \log t \cdot k^2 \cdot \log n) = \tilde{O}(t \cdot k^2)$

for computing all subset sums, we use a two-level partitioning approach **assume:** $Z \subseteq [t/m, 2t/m]$ for some mfix $Y \subseteq Z$, $\Sigma(Y) \le t$, note that $|Y| \le m$

consider a **random** partitioning $Z = Z_1 \cup \cdots \cup Z_m$ this does not split *Y* (we would need m^2 bins)

but it **almost splits** *Y*: whp we have $|Y \cap Z_i| \leq O(\log n)$ for all *i*

Proof: $|Y \cap Z_i| = Bin(|Y|, 1/m)$ is binomially distributed use Chernoff

for computing all subset sums, we use a two-level partitioning approach assume: $Z \subseteq [t/m, 2t/m]$ for some m

fix $Y \subseteq Z$, $\Sigma(Y) \leq t$, note that $|Y| \leq m$

consider a **random** partitioning $Z = Z_1 \cup \cdots \cup Z_m$

this does not split *Y* (we would need m^2 bins)

but it **almost splits** *Y*: whp we have $|Y \cap Z_i| \leq O(\log n)$ for all *i* $O(\log n \cdot t/m)$... can work with smaller target thus $S_i \coloneqq \text{ColorCoding}(Z_i, X, O(\log n))$ contains $\Sigma(Y \cap Z_i)$ whp thus $S_1 \bigoplus_t ... \bigoplus_t S_m$ contains $\Sigma(Y)$ whp

running time $\tilde{O}(m \cdot t)$, so what did we gain?

assume $Z \subseteq [t/m, 2t/m]$ for some m

1)
$$S_i \coloneqq \text{ColorCoding}(Z_i, \frac{O(\log n \cdot t/m), O(\log n)}{t'})$$

2) $S_1 \oplus_t \dots \oplus_t S_m$
 t'

1) running time of color-coding is $\tilde{O}(t' \cdot k'^2) = \tilde{O}(t/m)$ we do this for *m* sets: $\tilde{O}(t)$

assume $Z \subseteq [t/m, 2t/m]$ for some m

- 1) $S_i \coloneqq \text{ColorCoding}(Z_i, O(\log n \cdot t/m), O(\log n))$
- 2) $S_1 \oplus_t \dots \oplus_t S_m$

max planck institut

informatik

all elements are at most

 $t_3 = 8 \cdot O(\log n \cdot t/m)$

$$t_2 = 4 \cdot O(\log n \cdot t/m)$$

$$t_1 = 2 \cdot O(\log n \cdot t/m)$$

 $1 \cdot O(\log n \cdot t/m)$

in level *i* there are $m/2^i$ sets with elements bounded by $O(2^i \cdot \log n \cdot t/m)$ sumset computation in level *i* takes time $\tilde{O}(2^i \cdot t/m)$

total time $\tilde{O}(t)$ for computing $S_1 \oplus_t ... \oplus_t S_m$

assume: $Z \subseteq [t/m, 2t/m]$ for some *m*

Partitioning(Z, t):

consider a **random** partitioning $Z = Z_1 \cup \cdots \cup Z_m$

compute $S_i \coloneqq \text{ColorCoding}(Z_i, O(\log n \cdot t/m), O(\log n))$ for all *i*

return $S \coloneqq S_1 \bigoplus_t \dots \bigoplus_t S_m$, computed in binary-tree-like way

this returns a set S containing only valid subset sums of Z

for any $Y \subseteq Z$ with $\Sigma(Y) \leq t$:

 $\Sigma(Y) \in S$ with high probability ($\geq 1 - n^{-\Omega(1)}$)

running time: $\tilde{O}(t) = O(t \log t \log^4 n)$

Final algorithm

recall: we assumed $Z \subseteq [t/m, 2t/m]$ for some m

actually we only needed: (for some m)

1) all items are small: $Z \subseteq [0, O(t/m)]$

max planck institut

2) all interesting subsets are small: for any $Y \subseteq Z$ with $\Sigma(Y) \leq t$ we have |Y| = O(m)

this is satisfied for $Z \subseteq [t/m, 2t/m]$ as well as $Z \subseteq [0, t/n]$ (with $m \coloneqq n$)

```
FasterSubsetSum(Z, t):

split Z into Z_i \coloneqq Z \cap [t/2^i, t/2^{i-1}] for i = 1, ..., L = O(\log n)

and Z_{L+1} \coloneqq Z \cap [0, t/2^L]

compute S_i \coloneqq \text{Partitioning}(Z_i, t) for all i

return S \coloneqq S_1 \oplus_t ... \oplus_t S_{L+1}
```

running time $\tilde{O}(t) = O(t \log t \log^5 n)$, same whp-error bound as Partitioning

Polynomial Space

Is there an $\tilde{O}(t)$ algorithm?

[B. SODA'17]

[B. SODA'17]

Subset Sum is in randomized time $\tilde{O}(t)$.

one-sided error probability 1/n, time $O(t \log t \log^5 n)$

uses space $\tilde{O}(t)$

Thm:

polynomial space is known: $\tilde{O}(n^3t)$ time and $\tilde{O}(n^2)$ space [Lokshtanov,Nederlof'10]

Thm: Subset Sum has a randomized algorithm with

- time $\tilde{O}(nt)$ and space $\tilde{O}(n \log t)$, assuming ERH

- time $\tilde{O}(nt \cdot \min\{n, t^{\varepsilon}\})$ and space $\tilde{O}(n \cdot \min\{n, t^{\varepsilon}\})$, unconditional

max planck institut

Algorithm by Lokshtanov and Nederlof

interpret a Subset Sum algorithm as a circuit:

→ circuit over \cup and \oplus , each gate computes a subset of {0, ..., f(n, t)}

 \rightarrow output gate computes the set of all subset sums

translate to characteristic vectors:

 \rightarrow circuit over \lor and Boolean conv., each gate computes a vector of length f(n, t)

translate to integer vectors "counting" the number of solutions: up to $2^{\Theta(n)}$

 \rightarrow circuit over + and convolution, each gate computes a vector of length f(n, t)

go to Fourier domain:

 \rightarrow circuit over + and × (pointwise operations!) with g(n) gates, length f(n, t)

evaluating an entry of the output vector of the circuit: $\tilde{O}(g(n))$ time and space

inverse Fourier transform is a simple sum, so we can evaluate all entries independently

max planck institut informatik

total number of arithmetic operations $\tilde{O}(f(n,t) \cdot g(n))$, storing $\tilde{O}(g(n))$ numbers

need O(n)-bit numbers

Algorithm by Lokshtanov and Nederlof

total time $\tilde{O}(n \cdot f(n, t) \cdot g(n))$ and space $\tilde{O}(n \cdot g(n))$

they use a Subset Sum algorithm with $f(n,t) = \tilde{O}(nt)$ and $g(n) = \tilde{O}(n)$

1) plugging in our new Subset Sum algorithm: $f(n,t) = \tilde{O}(t)$ and $g(n) = \tilde{O}(n)$

2) work modulo a random prime p to decrease precision from O(n) to polylog(n) bits

```
vectors have length f(n, t) = \ell
```

need a primitive ℓ -th root of unity for Fourier transform

```
this exists in \mathbb{Z}_p if \ell divides p-1
```

so we want to choose p as a random prime in the arithmetic progression $1 + \ell \cdot \mathbb{N}$ need that the arithmetic progression contains many primes (see Dirichlet's Thm) ERH helps with this

max planck institut informatik

Polynomial Space

Thm:

Subset Sum is in randomized time $\tilde{O}(t)$.

uses space $\tilde{O}(t)$

polynomial space is known: $\tilde{O}(n^3t)$ time and $\tilde{O}(n^2)$ space [Lokshtanov,Nederlof'10]

Thm: Subset Sum has a randomized algorithm with[B. SODA'17]- time $\tilde{O}(nt)$ and space $\tilde{O}(n \log t)$, assuming ERH- time $\tilde{O}(nt \cdot \min\{n, t^{\varepsilon}\})$ and space $\tilde{O}(n \cdot \min\{n, t^{\varepsilon}\})$, unconditional

we plug our new algorithm into the framework by Lokshtanov and Nederlof and work modulo a random prime (from an appropriate arithmetic progression)

max planck institut

OPEN: time $\tilde{O}(t)$ and space $n^{O(1)}$ polylog t

Summary

Thm:

Subset Sum is in randomized time $\tilde{O}(t)$.

More open problems:

- derandomization
- approximation algorithms:

if a subset sums to t, we compute a subset summing to a value in $[(1 - \varepsilon)t, t]$

best known running time $\tilde{O}(\min\{n/\varepsilon, n + 1/\varepsilon^2\})$ - improvements? [Lawler'79,Gens,Levner'80,KMPS'03]

- extensions:

knapsack problem O(nt), constraint shortest path O(mt)

similar improvements possible?

Extensions?

<

Subset Sum

given n numbers, does any subset sum to *t*?

Knapsack

 \leq

given n items, pick subset of total weight $\leq t$ and with largest value

Constraint Shortest Path

given a graph, find a path from u to v with total delay $\leq t$ and with smallest length

 $\tilde{O}(nt)$

 $\tilde{O}(t)$

 $\tilde{O}(nt)$

?

 $\tilde{O}(mt)$

 $t^{1-o(1)}$

 $t^{1-o(1)}$

 $(nt)^{1-o(1)}$

Extensions?

start with hard Subset Sum instance with target t and $n' = t^{o(1)}$, e.g. from Set Cover or combinatorial k-Clique

build graph with lengths = - delays:

lower bound $t^{1-o(1)}$

Constraint Shortest Path

given a graph, find a path from u to v with total delay $\leq t$ and with smallest length

 $\tilde{O}(mt)$

 $(nt)^{1-o(1)}$

 $t^{1-o(1)}$

Extensions?

start with *n* hard Subset Sum instances with target *t* and $n' = t^{o(1)}$, e.g. from Set Cover or combinatorial k-Clique

combine graphs as follows:

Constraint Shortest Path

given a graph, find a path from u to v with total delay $\leq t$ and with smallest length

 $\tilde{O}(mt)$

 $(nt)^{1-o(1)}$

 $t^{1-o(1)}$