Data Structures for Semistrict Higher Categories

(Krzysztof Bar and) Jamie Vicary
Department of Computer Science
University of Oxford

arXiv:1610.06908

Compositionality Workshop
Simons Institute, University of California, Berkeley, USA
5 December 2016
Higher-dimensional algebra

Ordinary algebra lets us compose along a line:

\[xy^2 y x^3 z \]
Higher-dimensional algebra

Ordinary algebra lets us compose along a line:

\[xy^2 z y x^3 z \]

Higher-dimensional algebra lets us compose in the plane, or in higher dimensions:
Higher-dimensional algebra

Here is a pasting diagram involving categories, functors and natural transformations:
Higher-dimensional algebra

Here is a pasting diagram involving categories, functors and natural transformations:

The graphical calculus representation is the \textit{dual} diagram.
Higher-dimensional algebra

Here is a pasting diagram involving categories, functors and natural transformations:

The graphical calculus representation is the dual diagram.

We expect n-categories to have an n-dimensional graphical calculus.
Higher-dimensional algebra

Higher-dimensional algebra has a range of striking applications:
Higher-dimensional algebra

Higher-dimensional algebra has a range of striking applications:

- Homotopy type theory
Higher-dimensional algebra

Higher-dimensional algebra has a range of striking applications:

- Homotopy type theory
- Topological field theory
Higher-dimensional algebra has a range of striking applications:

- Homotopy type theory
- Topological field theory
- Higher topos theory
Higher-dimensional algebra

Despite its importance, higher category theory is “generally regarded as a technical and forbidding subject” (Lurie).
Higher-dimensional algebra

Despite its importance, higher category theory is “generally regarded as a technical and forbidding subject” (Lurie).

It probably doesn’t help that, even in a simplified (‘semistrict’) case:
Higher-dimensional algebra

Despite its importance, higher category theory is “generally regarded as a technical and forbidding subject” (Lurie).

It probably doesn’t help that, even in a simplified (‘semistrict’) case:
 ▶ a 2-category comprises 3 sets, 6 functions and 12 axioms;
Higher-dimensional algebra

Despite its importance, higher category theory is “generally regarded as a technical and forbidding subject” (Lurie).

It probably doesn’t help that, even in a simplified (‘semistrict’) case:
- a 2-category comprises 3 sets, 6 functions and 12 axioms;
- a 3-category comprises 4 sets, 19 functions and 58 axioms;
Higher-dimensional algebra

Despite its importance, higher category theory is “generally regarded as a technical and forbidding subject” (Lurie).

It probably doesn’t help that, even in a simplified (‘semistrict’) case:

- a 2-category comprises 3 sets, 6 functions and 12 axioms;
- a 3-category comprises 4 sets, 19 functions and 58 axioms;
- a 4-category comprises 5 sets, 34 functions and 118 axioms.
Higher-dimensional algebra

Despite its importance, higher category theory is “generally regarded as a technical and forbidding subject” (Lurie).

It probably doesn’t help that, even in a simplified (‘semistrict’) case:

- a 2-category comprises 3 sets, 6 functions and 12 axioms;
- a 3-category comprises 4 sets, 19 functions and 58 axioms;
- a 4-category comprises 5 sets, 34 functions and 118 axioms.

How can we do formal proof in this setting?
Higher-dimensional algebra

Despite its importance, higher category theory is “generally regarded as a technical and forbidding subject” (Lurie).

It probably doesn’t help that, even in a simplified (‘semistrict’) case:

- a 2-category comprises 3 sets, 6 functions and 12 axioms;
- a 3-category comprises 4 sets, 19 functions and 58 axioms;
- a 4-category comprises 5 sets, 34 functions and 118 axioms.

How can we do formal proof in this setting?

Proof assistants like Coq and Agda can’t always help, because they use 1-dimensional algebra.

We need an alternative that brings out higher category theory’s geometrical essence.
Globular

Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

http://globular.science
Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

http://globular.science

Loaded 9,050 times by 2,022 users since launch in December 2015.
Globular

Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

http://globular.science

Loaded 9,050 times by 2,022 users since launch in December 2015.

Developed by Krzysztof Bar, Aleks Kissinger, JV.
Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

http://globular.science

Loaded 9,050 times by 2,022 users since launch in December 2015.

Developed by Krzysztof Bar, Aleks Kissinger, JV.

It has many attractive features:
Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

http://globular.science

Loaded 9,050 times by 2,022 users since launch in December 2015.

Developed by Krzysztof Bar, Aleks Kissinger, JV.

It has many attractive features:

- Runs in the browser, minimizing barriers to use.
Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

```
http://globular.science
```

Loaded 9,050 times by 2,022 users since launch in December 2015.

Developed by Krzysztof Bar, Aleks Kissinger, JV.

It has many attractive features:

- Runs in the browser, minimizing barriers to use.
- Graphical point-and-click interface.
Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

http://globular.science

Loaded 9,050 times by 2,022 users since launch in December 2015.

Developed by Krzysztof Bar, Aleks Kissinger, JV.

It has many attractive features:

▶ Runs in the browser, minimizing barriers to use.
▶ Graphical point-and-click interface.
▶ Generate images to use in your paper...
Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

http://globular.science

Loaded 9,050 times by 2,022 users since launch in December 2015.

Developed by Krzysztof Bar, Aleks Kissinger, JV.

It has many attractive features:

▶ Runs in the browser, minimizing barriers to use.
▶ Graphical point-and-click interface.
▶ Generate images to use in your paper...
▶ ... or better, include a link to the formalized proof online, for your readers to interact with.
Globular

Our solution is *Globular*, a proof assistant for higher category theory, available now at this address:

http://globular.science

Loaded 9,050 times by 2,022 users since launch in December 2015.

Developed by Krzysztof Bar, Aleks Kissinger, JV.

It has many attractive features:

- Runs in the browser, minimizing barriers to use.
- Graphical point-and-click interface.
- Generate images to use in your paper...
- ... or better, include a link to the formalized proof online, for your readers to interact with.
- Supports proofs up to the level of semistrict 4-categories.
Signature and diagram structures

A signature is a list of allowed moves, given as source-target pairs.
Signature and diagram structures

A signature is a list of allowed moves, given as source-target pairs. A diagram represents a generic composition of moves.
Signature and diagram structures

A **signature** is a list of allowed moves, given as source-target pairs. A **diagram** represents a *generic composition* of moves.
Signature and diagram structures

A **signature** is a list of allowed moves, given as source-target pairs. A **diagram** represents a *generic composition* of moves.
Signature and diagram structures

A **signature** is a list of allowed moves, given as source-target pairs.

A **diagram** represents a *generic composition* of moves.

Encoding:

\[
(\text{---}, \text{---}, \text{---})
\]
Signature and diagram structures

A **signature** is a list of allowed moves, given as source-target pairs.

A **diagram** represents a *generic composition* of moves.

Encoding:

\[\left(\begin{array}{c} \text{\includegraphics[width=2cm]{signature1.png}} \\ 0 \end{array} \right), \left(\begin{array}{c} \text{\includegraphics[width=2cm]{signature2.png}} \\ \text{\includegraphics[width=2cm]{signature3.png}} \\ \text{\includegraphics[width=2cm]{signature4.png}} \end{array} \right) \]
Signature and diagram structures

A **signature** is a list of allowed moves, given as source-target pairs. A **diagram** represents a *generic composition* of moves.

![Diagram](image)

Encoding:

\[(\text{blue, 1), (red, 0), (black, black, black)}\]

\[(\text{blue, 1), (red, 0), (black, black, black)}\]
Signature and diagram structures

A **signature** is a list of allowed moves, given as source-target pairs. A **diagram** represents a *generic composition* of moves.

Encoding:

\[
\begin{align*}
&(\text{\includegraphics[width=0.05\textwidth]{signature_diagram1.png}}, 0) \\
&(\text{\includegraphics[width=0.05\textwidth]{signature_diagram2.png}}, 1) \\
&(\text{\includegraphics[width=0.05\textwidth]{signature_diagram3.png}}, 0) \\
&(\text{\includegraphics[width=0.05\textwidth]{signature_diagram4.png}}, 0) \\
\end{align*}
\]
A signature is a list of allowed moves, given as source-target pairs. A diagram represents a generic composition of moves.

Encoding:
\[(\text{fig 1, 0}, \text{fig 2, 1}), (\text{fig 3, 0}), (\text{fig 4, 1}), (\text{fig 5, 0}), (\text{fig 6, 1})\]
Homotopies

We also need *homotopy moves*:
Homotopies

We also need *homotopy moves*:

\[\alpha \rightarrow \beta \quad \text{I} \quad \alpha \rightarrow \beta \]

\[\alpha \rightarrow \beta \quad \text{II} \quad \alpha \]
Homotopies

We also need *homotopy moves*:

\[
\begin{align*}
\alpha & \beta \\
\alpha & \beta \\
\alpha & \beta \\
\alpha & \beta
\end{align*}
\]
We also need homotopy moves:

1. $\alpha \beta \xrightarrow{\text{I}} \alpha \beta$
2. $\alpha \xrightarrow{\text{II}} \alpha$
3. $\alpha \xrightarrow{\text{III}} \alpha$
4. $\xrightarrow{\text{IV}}$

\Rightarrow

$\xrightarrow{\text{II}}$

$\xrightarrow{\text{III}}$

$\xrightarrow{\text{II}}$

$\downarrow \mu$

$\xrightarrow{\Rightarrow}$

$\downarrow \mu$

$\downarrow \mu$
Homotopies

We also need *homotopy moves*:

1. $\alpha \beta
\xrightarrow{I} \alpha \beta
\xrightarrow{II} \alpha \beta
\xrightarrow{IV} \alpha \beta
\xrightarrow{II^{-1}}

2. $A
\xrightarrow{II} A$
\xrightarrow{III} A

3. $B
\xrightarrow{II} B$
\xrightarrow{II} B

4. $\alpha \beta
\xrightarrow{V} \alpha \beta
\xrightarrow{I} \alpha \beta
\xrightarrow{II} \alpha \beta
\xrightarrow{II} \alpha \beta$
Semistrict n-categories

This yields new, simple definitions of semistrict n-category.
Semistrict n-categories

This yields new, simple definitions of semistrict n-category.

Definition. An *n-signature* is a signature containing moves of dimension at most n.
Semistrict n-categories

This yields new, simple definitions of semistrict n-category.

Definition. An n-signature is a signature containing moves of dimension at most n.

Definition. A *semistrict 2-category* is a 3-signature supporting homotopy moves of type I.
Semistrict n-categories

This yields new, simple definitions of semistrict n-category.

Definition. An n-signature is a signature containing moves of dimension at most n.

Definition. A semistrict 2-category is a 3-signature supporting homotopy moves of type I.

Definition. A semistrict 3-category is a 4-signature supporting homotopy moves of types I and II.
Semistrict n-categories

This yields new, simple definitions of semistrict n-category.

Definition. An n-signature is a signature containing moves of dimension at most n.

Definition. A *semistrict 2-category* is a 3-signature supporting homotopy moves of type I.

Definition. A *semistrict 3-category* is a 4-signature supporting homotopy moves of types I and II.

Definition. A *semistrict 4-category* is a 5-signature supporting homotopy moves of types I, II, III, IV and V.
Semistrict n-categories

This yields new, simple definitions of semistrict n-category.

Definition. An n-signature is a signature containing moves of dimension at most n.

Definition. A semistrict 2-category is a 3-signature supporting homotopy moves of type I.

Definition. A semistrict 3-category is a 4-signature supporting homotopy moves of types I and II.

Definition. A semistrict 4-category is a 5-signature supporting homotopy moves of types I, II, III, IV and V.

Thank you!