Compositionality
Simons Institute, 8 December 2016
Fix a *finite relational vocabulary*: $\tau = (R_1, \ldots, R_m)$. and consider finite τ-structures

$$\mathbb{A} = (A, R_1^A, \ldots, R_m^A)$$

$$\mathbb{B} = (B, R_1^B, \ldots, R_m^B)$$

As a special case, we have graphs, where τ consists of a single binary relation E.
Homomorphism and Isomorphism

\(A \xrightarrow{\text{hom}} B \): there is \(h : A \rightarrow B \) s.t. for any \(a \):

\[
R^A(a) \Rightarrow R^B(h(a)).
\]

\(A \cong B \): there is a \textit{bijection} \(h : A \rightarrow B \) s.t. for any \(a \):

\[
R^A(a) \Leftrightarrow R^B(h(a)).
\]

Or, equivalently \(A \cong B \) if there are \(h : A \xrightarrow{\text{hom}} B \) and \(g : B \xrightarrow{\text{hom}} A \) such that

\[
h \circ g = \text{id}_B \quad \text{and} \quad g \circ h = \text{id}_A
\]
The problem of deciding, given \(A \) and \(B \), whether \(A \xrightarrow{\text{hom}} B \) is NP-complete.

The problem of deciding, given \(A \) and \(B \), whether \(A \cong B \) is

- not known to be NP-complete;
- not known to be in \(P \);
- known to be in quasi-polynomial time \((\text{Babai 2016}) \)

The \textit{k-local consistency} test gives an algorithm, running in time \(n^{O(k)} \) that gives an \textit{approximate} test for \(A \xrightarrow{\text{hom}} B \).
Finite Variable Logic

$\exists^+ k\text{FO}$: existential, positive formulas of first-order logic, using no more than k distinct variables.

$$\exists x_1 \cdots \exists x_k \bigwedge_{i \neq j} E(x_i, x_j)$$

In $\exists^+ k\text{FO}$ we can express the existence of a k-clique, but not a $(k + 1)$-clique.

$$\exists x_1 \exists x_2 E(x_1, x_2) \land (\exists x_1 E(x_2, x_1) \land \cdots)$$

In $\exists^+ 2\text{FO}$, we can express the existence of a path of length n for any n.

Anuj Dawar
December 2016
k-local Consistency

Write $A \equiv^k B$ to denote that for any sentence φ of $\exists^+ \cdot k \text{FO}$

$$\text{if } A \models \varphi \text{ then } B \models \varphi.$$

The k-local consistency test determines whether $A \equiv^k B$

$$A \overset{\text{hom}}{\rightarrow} B \iff A \equiv^n B \Rightarrow A \equiv^k B$$

where $|A| = n$ and $n > k$.

Anuj Dawar

December 2016
The relation $A \equiv^k B$ has a pebble game characterization due to (Kolaitis-Vardi 1992).
The game is played by two players—Spoiler and Duplicator—using k pairs of pebbles $\{(a_1, b_1), \ldots, (a_k, b_k)\}$.

Spoiler moves by picking a pebble a_i and placing it on an element of A.

Duplicator responds by placing b_i on an element of B.

Spoiler wins at any stage if the partial map from A to B defined by the pebble pairs is not a partial homomorphism.

If **Duplicator** has a strategy to play forever without losing, then $A \equiv^k B$.
Duplicator can compose strategies witnessing \(A \equiv^k B \) and \(B \equiv^k C \) to get one for \(A \equiv^k C \).
Strategies more formally

A *strategy* for \(A \equiv \rangle^k B \) is a set \(H \) of pairs \((a, b)\) where \(a \) and \(b \) are \(l \)-tuples of elements from \(A \) and \(B \) respectively for some \(0 \leq l \leq k \), such that:

1. for each \((a, b) \in H\), the map \(a \mapsto b \) is a partial homomorphism;
2. if \((a, b) \in H\), then \((a', b') \in H\) whenever \(a' \) and \(b' \) are obtained by deleting corresponding elements of \(a \) and \(b \); and
3. if \((a, b) \in H\) and \(|a| = |b| = l < k\), then there is a function \(f : A \rightarrow B \) so that for each \(a \in A\), \((aa, bf(a)) \in H\).

\[\text{id}_A : A \equiv \rangle^k A \] is the strategy consisting of all pairs \((a, a)\).

Say that a strategy \(H : A \equiv \rangle^k B \) is *injective* if the function \(f \) in (2) can always be chosen to be injective.
The following are equivalent for any A and B:

1. There are strategies $H : A \equiv^k B$ and $I : B \equiv^k A$ such that $I \circ H = \text{id}_A$ and $H \circ I = \text{id}_B$.

2. There are injective strategies $H : A \equiv^k B$ and $I : B \equiv^k A$.

3. There is a \textit{bijective} strategy $H : A \equiv^k B$.

The last condition amounts to saying the \textit{Duplicator} has a winning strategy in the \textit{bijection game}. \hfill (Hella 1996)
Hella’s bijection game characterizes the equivalence $A \equiv^k B$, which says that the two structures cannot be distinguished by any sentence of C^k—k-variable first-order logic with counting quantifiers.

This equivalence relation has many independent characterizations. $G \equiv^k H$ for a pair of graphs G, H iff they cannot be distinguished by the $(k - 1)$-dimensional Weisfeiler-Leman method. This is a much studied approximation of graph isomorphism.
A structure \mathcal{A} is a core if there is no proper substructure $\mathcal{A}' \subseteq \mathcal{A}$ such that $\mathcal{A} \xrightarrow{\text{hom}} \mathcal{A}'$.

Every structure \mathcal{A} has a core $\mathcal{A}' \subseteq \mathcal{A}$ such that $\mathcal{A} \xrightarrow{\text{hom}} \mathcal{A}'$. Moreover, \mathcal{A}' is unique up to isomorphism.

Say \mathcal{A}' is a k-core of \mathcal{A} if:

1. $\mathcal{A} \equiv^k \mathcal{A}'$;
2. $\mathcal{A}' \equiv^k_{\text{inj}} \mathcal{A}$;
3. for any \mathcal{B}, if $\mathcal{A} \equiv^k \mathcal{B}$ and $\mathcal{B} \equiv^k_{\text{inj}} \mathcal{A}$ then $\mathcal{A}' \equiv^k_{\text{inj}} \mathcal{B}$.

Every structure \mathcal{A} has a k-core and it is unique up to \equiv^k.
Some Questions

If C is a class of structures closed under \equiv^k and \textit{homomorphisms}, is it closed under $\equiv^{k'}$; or $\equiv^{k'}$ for some k'?

Can we extract suitable \textit{isomorphism tests} from other approximations of homomorphism given by algebraic constraint satisfaction algorithms? Conversely, what homomorphism approximations do we get from group-theoretic methods for testing isomorphism?