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Complex systems are composed of many non-identical 
elements, entangled in loops of nonlinear interactions, and 
characterized by the characteristic 'emergence' behaviours.
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The	  TFTD	  is	  based	  on	  	  

1.	  embedding	  data	  space	  into	  a	  combinatorial	  
topological	  object,	  a	  simplicial	  complex;	  	  

2.	  considering	  the	  complex	  as	  base	  space	  of	  a	  
(block)	  0iber	  bundle	  

3.	  	  assuming	  a	  0ield	  action	  (which	  has	  a	  free	  part,	  
the	  combinatorial	  Laplacian	  over	  the	  simplicial	  
complex,	  and	  an	  interaction	  part	  depending	  on	  the	  
process	  algebra)	  

4.	  constructing	  the	  gauge	  group	  (semi-‐direct	  
product	  of	  the	  group	  generated	  by	  the	  algebra	  of	  
processes	  (the	  Gibers)	  and	  the	  group	  of	  (simplecio-‐
morphisms	  modulo	  isotopy)	  of	  the	  data	  space.	  	  

Emergent	  features	  of	  data-‐represented	  complex	  
systems	  were	  shown	  to	  be	  expressed	  by	  the	  
correlation	  functions	  of	  the	  Gield	  theory.”	  
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Persistent Homology

Persistent homology is an 
algebraic method for discerning 

 topological features of data

e.g. components, 
graph structure 

holes

set of discreet points

A graph captures connectivity, but ignores higher-order features, such as holes.

!!!
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Three examples of paths in the plane. 

Paths are necessarily oriented, and we can think of the starting point of the path as f (0) , and the ending point as f (1). 
And if we label the starting point, say, a,and the ending point b, we will call f a path from a to b. We call a, b the 
endpoints of f . We also speak of “moving along a path,” in the sense that as we increase t from zero to one, we 
continuously move along its image in X. We certainly allow paths to intersect themselves, as in the blue path given 
above, and we do not require that paths are smooth (in fact, they need not be differentiable in any sense, as in the green 
path above). We will call a path simple if it is injective (that is, it doesn’t intersect itself). The black and green paths in 
the figure above are simple. The most trivial of paths is the constant path. We will denote it by !! and it is simply 
defined by sending the entire interval to a single point !!⟼ !,∀!!! ∈ [0, 1]. 

The language of paths already gives us a nice topological invariant. We call a space X path-connected if for every two 
points !, !! ∈ ! there exists a path from a to b. This is distinct from the usual topological notion of connectedness 
(which is actually weaker than path-connectedness). It is not hard to see that if two topological spaces X, Y are 
homeomorphic, then X is path connected if and only if Y is path connected. As a quick, notice that any map giving a 
homeomorphism ! ∶ !!⟶ ! is continuous, and the composition of a path with any map is again a path, namely: 
! ∘ ! ∶ 0, 1 ⟶ !.  By path connectivity in X and the fact that ! is surjective, one can always find a path between any 
two points !, !! ∈ ! just finding a path between !!! ! ,!!! ! ∈ ! and compose it with !. The same argument goes 
in the reverse direction using !!!, and this establishes the if and only if. 

Back to our mission of describing holes, we want to be able to continuously transform two paths into each other. That 
is, in the picture that follow, we want to be able to say that the red and blue paths are “equivalent” because we can 
continuously slide one to the other, while always keeping the endpoints fixed. 

&
We can continuously transform the red path into the blue path; these two paths are homotopic. 

On the other hand, if there is a hole in the space, as shown by the black disk below, no way to slide the red path to the 
blue path can be continuous; it would need to “jump” over the hole, which is a non-continuous operation. Indeed, no 
matter how small this hole is we can never overcome this problem; even if just a single point is missing, the nature of 
continuity ensures it. 

&
The black “hole” in this plane makes it so that the red path cannot be continuously transformed into the blue path; these 
paths are not homotopic. 
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G=<a,b  |  aba-‐1b-‐1>
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Topological Invariants



• S is the space of states 

• Each state is defined by a vector that moves over S driven 
by a dynamical system 

• If the dynamics moves the vector towards a boundary, we 
can say that there is a deadlock. 

• This happens because S has not been defined globally. In 
fact the boundary breaks the translational symmetry.  

•  If we allow the boundary to disappear by adding an extra-
relation, global in nature, we obtain a global topology that 
is not trivial 

• For example we can add two relations among the 
generators of the manifold  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Topological Interpretation of Dynamics of a System



for any g ≠ 0, (e.g. g=1 torus) there are three irreducible classes behaviors

πPB a
PB

b

PB

i) the set of closed paths homotopy to 0. In this case, we 
are given a local interpretation and we are not aware that at 
global level the genus can be different that 0.

ii) the set of closed paths homotopy to the first generator 
a of the topological space (the homology group) whose basic 
cycle fixed on point PB can be used to reduce any path going 
around the neck of the torus a by a continuos deformation; 

iii) similar to the previous set, but the paths 
are homotopy to the second generator b

|v’>
1

2

|v>

to each point | v>  of the states space 
is associated a path, represented by the arrow 

|v>  ➝ |v’>  
that is nothing but an operator G that determines  

the dynamic of the system moving  
|v> to G(|v>)=|v’>

the set of all possible G represents a group, i.e the group of transformations 

The trivial case of torus:



(beyond) Frege’s principle of compositionality

The principle of non-linear composition states that the emergent behaviour of 
a complex systems can not be fully determined by the behaviour of its 
constituents and the rules to combine them, because is the global context that 
induces the non-linearity interactions among them. 
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(2 ν + 1) ⇔ (2 ν + 6)   
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(2 ν + 1) ⇔ (2 ν + 6)   
[ mod 14] 
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More complex case:



Frege’s principle: in mathematics, semantics, and philosophy of language, the principle of 
compositionality is the principle for which the meaning of a complex expression is determined by 
the meanings of its constituent expressions and the rules used to combine them;

(a+b)* a*(b+a*)*

a*b a*+a*bb* a*+a*b(b*+c)
c

a

b

b

b

a a

≃

b
a

b
a

a
b

bb

under bisimulation relation, but cannot be proven in any axioms system

Compositionality over a Paths

Theorem [Milner 1984]:  
not every X-behaviour 
is a  star behaviour.



The ′process interpretation′ scheme of P in P is 
indeed nothing but a quiver Q  (or, more generally, a 
set of quivers, over some arbitrary ring κ). Associate 
to quiver Q  its ′natural′ path algebra A ≡ PkQ,  i.e., 
the path algebra of which Q is the basis.  

The structure is simpler and elegant because space 
P has an underlying natural formal language (that 
generates in general a subgroup of the much wilder 
group of all possible homeomorphisms of P(P)) 

Topological Interpretation of Processes



A quiver Q is a direct graph. Q =(Q
0
, Q

1
, s, e), where Q

0
 is a 

set of vertices (states) and Q
1
 a set of arrows (transitions) and 

s,e:Q
1
➝Q

0
, are maps.  

Given an arrow a∈Q
1
 with a: i➝j for i,j∈Q

0
 

When s(a)=e(a), arrow a is said to be a loop.

The process quiver Q represents a system behavior 
Behavioural equivalences: the paths in process 
quivers are distinguished by some homotopic 
equivalence.  

Q: a

b

1

b

b

a aQ:
1 2

Q:
a b

1 2 3

A quiver with relations is a pair (Q,R), 

An path in a quiver Q is either an ordered composition of arrows  
p = a1 a2 …an  with e(at) = s(at+1) for 1≤ t <n   
or the symbol v

i
 for i∈Q

0
 

A path p that starts and ends at the same vertex is a cycle. Loops are 
cycles. 

paths:  v1,  v2,  v3,  a,  b,  a  b

paths:  v1,  a*,  b*,  (a+b)*

paths:  v1,  v2,  a*,  b*,  (a+b)*

1.  define a processes as Quivers Q



2. associate a natural path algebra PkQ to given Q

• Let k be a field. The path 
algebra PkQ of the quiver Q is 
defined to be the k-vector 
space generated by all paths 
in Q. The composition 
(product) of two paths is 
induced by simple 
concatenation of paths if it 
exists, and zero otherwise. Q is 
the basis of PkQ.  

• PkQ is unitary if Q0 is finite

Q:
a b

1 2 3

Q=({1,2,3},{a,b},s,e) 

{v1,v2,v3, a,  b,  ab} is the basis for the PkQ 

Q: a

b

1

{v1, a*,  b*,  a*b*,  (a+b)*} is the basis for the PkQ 

PQR is a path co-algebra of quivers with relations



4. define L in Hopf algebra H

Turn L into a Hopf algebra H, equipping it in particular with a a coalgebra

5. redefine the theorem G in H and prove that hold in H and not in P 

3. identify the Lie algebra L given by P

Identify the Lie algebra L arising from PkQ

Theorem G: 
The SHC [Star Height Conjecture] is a topological application to the space P, generated by the formal representation 
of a (any) process P. 

Corradini’s Star Heigh conjecture: 
the set of regular expressions (without 0) with hnewp 
is the largest language for which bisimulation 
admits a finite equational axiomatization.

Def. nhewp structural property:  

1. each *-behaviour must avoid to 
enter in a pure cycle, 

2. each cycle must be of the form 
E*=1+EE*  
E*F ➝ X=EX + F 

3.  in *-behaviour   a*a≄ aa* 

15 Jos Baeten's farewell afternoon Eindhoven 12.10.2010 

A Decision Procedure 

Regular 
Epressions Well-Behaved 

Specifications 

Recursive 
Specifications 

The natural question now is: 
Is it possible to decide whether a generic recursive specification 
has a well-behaved specification or not?  



Save our History and Research 
After the recent earthquakes in Central Italy, the research and historical 

heritage of the University of Camerino, one of the worlds’ oldest research 
institutions, is in danger. 

  
With your help we can save our history, art, and research.  

#ilfuturononcrolla



thanks!


