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Decision support for cybersecurity: summary

we consider the problem of optimal cybersecurity planning
it is an adversarial problem so natural framework is game theory
the state space in our real world case study has 1015 “pure” strategic
behaviours
we show how we can efficiently (under 1 second) find optimal
solutions (equilibria) on this space by reasoning compositionally over
security controls
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Decision support for cybersecurity: timeline

started in 2013 considering stochastic games, abstract interpretation
and interactions between game theory and game semantics
moved to Stackelberg games (security games) and affine
transformation of zero sum games in 2014
introduced multi-objective, multiple choice binary knapsack (2015)
Mixed Integer Linear Programming MILP (2016) = Subgame Perfect
Nash Equilibria, so Stackelberg solutions
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Cyber-Security Planning

Definition
A Cyber-Security Plan is a set of defensive measures (a.k.a., controls)
that are applied across an enterprise to improve its overall state of security.

There are many security controls and each can be implemented at
different intensity levels.
Examples of controls: encryption, access control, firewall, patching,
secure OS configuration, pen testing, password policy, etc ....
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Cyber-Security Planning: Costs

Each cyber-security control addresses a specific set of vulnerabilities
⇒ A cyber-security plan should be composed of a combination of the
measures to provide a well-rounded defense.

However, an exhaustive implementation of controls at maximum intensity is
neither economically feasible nor managerially desirable for a SME.
Beside the overall security risk, must also be wary of:

Aggregate Direct (Monetary) Costs: e.g. limited cyber-security budget
Aggregate Indirect (Usability) Costs: e.g.: a low-budget but
undesirable plan:

force-install every patch upon release
min 16-char high-ent pwd, to be changed weekly
minimal whitelisting
maximal blacklisting
minimal priviledges, . . .
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Challenge I: Multi-Objective Optimization

Security Costs (Risk) Direct Costs Indirect Costs
Question: Why not simply minimize a weighted combination?

These costs are of hetrogeneous nature.
e.g. probabilistic and in-future vs deterministic and at-present
hard budgetary limit vs soft tolerance for usability costs

Require an a-priori vague determination of the weights:
e.g. if a small increase in one cost can improves the others significantly,
one may relax her a-priori preference

Solution Concept: Pareto-Optimality
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Challenge II: Cyber-Security Risk depends on Threat Type

Passive Reactive APT
Challenge: implementation a security plan → changes the
vulnerability profile → attack profile may adapt accordingly.
Classical “Risk Management” approaches assume the threat profile is
passive.

e.g. the probability of occurence and intensity of natural disasters do
not change based on defensive measures. But security is essentially
adversarial (reactive)
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Challenge III: Composing Security Controls

Efficacy of an individual security control: The reduction in the success
probability of exploitation attempts per each vulnerability when only
that control is implemented (stand-alone).

Question: Often, the same vulnerability can be (partially) mitigated by
more than one security measure, then what is the combined efficacy?

Additive: assumes complementary defense mechanisms ⇒
overestimates, mildly non linear
Multiplicative: assumes “independent” defense mechanisms →may
still be an overestimation, also highly non linear
Best-of: (per each vulnerability) the combined efficacy := (only) the
highest efficacy among the implemented controls

captures positive “correlations” in defensive mechanisms, but non linear
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Main Contributions

Converting the Non-Linear Multi-Objective Optimizations into MILP:
Mixed Integer Linear Programming for all 6 different settings.

E.g.: In our case-study, 1015 possible plans: state-of-the-art (Genetic
Algorithms) will take weeks with no guarantee of optimality, but our
MILPs return the exact Pareto-Front in seconds! in seconds.

Conducted the largest numerical evaluation to date
37 most common vulnerabilities,
27 distinct controls, each with multiple levels of implementation leading
to 1015 distinct plans.
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Modeling and Notations

C: set of (cyber-security) controls
Lc = {1, . . . , Lc} to denote the set of available implementation levels
of control c .

Definition
A cyber-security plan, or a cyber-security investment portfolio x = (xc) is a
vector in X := ×c∈C({0} ∪ Lc)

B ∈ R+ total cyber-security budget
D, I ,R : X → R+ respectively denote the (total) direct cost, (total)
indirect cost, and the (aggregate) “security risk”

Problem Statement:

min
x∈X

(D(x), I (x),R(x)) s.t.: D(x) ≤ B

Dec 8, 2016 10 / 15



Modeling and Notations

Aggregate Direct and Indirect Costs:

D(x) =
∑
c∈C

dc(xc), I (x) =
∑
c∈C

ic(xc)

Success Rate of Attempts on Vulnerability v:

Additive: Sv (x) =
(
1−

∑
c∈Cv

ecv (xc)
)+

Multiplicative: Sv (x) =
∏
c∈Cv

scv (xc)

Best-of: Sv (x) = min
c∈Cv

scv (xc)
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Modeling and Notations

Security Risk:

Passive: R(x) =
∑
v∈V

P(v)Sv (x)λv

Reactive: R(x) = max
v∈V

(Sv (x)λv )

Connection to Game Theory:

Proposition
Any strategy of the enterprise (the leader) in a Subgame Perfect Nash
Equilibrium (SPNE) of the above non-zero-sum sequential two player game
with “perfect information” is a Pareto-optimal solution to the
multi-objective problem where the security cost is according to the
“reactive threat” model. Conversely each point on the Pareto front is a
SPNE in the game defined by that point direct and indirect costs.
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Solving the Multi-Objective Optimization (MOOP)

Scalarization - I:

min
x∈X

[wdD(x) + wi I (x) + wrR(x)] s.t.: D(x) ≤ B.

Scalarization – II

min
x∈X

R(x) s.t.: I (x) ≤ ε, D(x) ≤ B.

Still, highly non-linear optimizations → Tricks to convert them to MILPs
(details in the paper).

Dec 8, 2016 13 / 15



Example: MILP formulation of best-of reactive optimization

main trick: use “flow variables” yvcl to linearize the problem

min
(xcl ,ycvl )

[
z + δ0

∑
v∈V

Pvλv
∑

c∈Cv∪{0}
l∈Lc

yvclscv (l)
]

s. t.:
(∑
l∈Lc

xcl ≤ 1,∀c∈C
)
,

(
xcl ∈ {0, 1}, ∀l ∈ Lc ,∀c∈C

)
,
∑
c∈C

∑
l∈Lc

dc(l)xcl ≤ εD ,∑
c∈C

∑
l∈Lc

ic(l)xcl ≤ εI ,
(
0 ≤ yvcl ≤ xcl , ∀v ∈ V,∀c ∈ Cv , ∀l ∈ Lc

)
,( ∑

c∈Cv∪{0},l∈Lc

yvcl = 1, ∀v ∈V
)
,

(
z ≥ λv

∑
c∈Cv∪{0},l∈Lc

yvclscv (l), ∀v ∈ V
)
.
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Conclusions

Compositionality and linearization allows us to solve complex strategic
problems efficiently.
We can linearize multiplicative, best-of composition of controls and
their custom mixtures.
The best-of reactive model is “validated” by comparing our tool
solutions with official recommendations from GCHQ and SANS.
Not clear what other compositionality principles are relevant.
Is there a general theory of flow variables?
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