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Modelling	  distributed	  systems:	  basic	  
concepts	  
•  Basic	  concepts	  of	  distributed	  systems	  
–  Loca@on:	  the	  basic	  architecture	  
–  Resource:	  created,	  consumed,	  moved	  by	  the	  processes	  
–  Process:	  the	  services	  that	  the	  system	  provides	  	  

•  Situated	  in	  	  
–  Environment:	  structure	  not	  modelled,	  just	  events	  	  

•  These	  may	  be	  composed	  par@ally	  of	  other	  models	  of	  
interest,	  so	  need	  composi@on	  

•  Mathema@cally,	  seek	  to	  employ	  minimal	  viable	  
structure	  

•  Concerned	  here	  with	  prac)cal	  modelling,	  with	  
mo@va@ons	  from	  security	  policy	  	  	  	  



Modelling	  distributed	  systems:	  basic	  	  
mathema@cal	  set-‐up	  
•  Loca@on	  
–  Topological	  structure:	  e.g.,	  directed	  graphs	  

•  Resource	  
–  Combinatorial	  structure:	  e.g.,	  par@al	  monoids,	  possibly	  
ordered	  (cf.	  the	  logic	  BI’s	  resource	  seman@cs,	  which	  gives	  
rise	  to	  Separa@on	  Logic)	  

•  Process	  
–  Synchronous	  structure	  (for	  modelling	  purposes):	  e.g.,	  SCCS	  
+	  integra@on	  with	  resources	  

•  Environment	  
–  Stochas@c	  representa@on:	  events	  are	  incident	  upon	  a	  
model	  system	  from	  outside	  



Modelling	  distributed	  systems:	  basic	  	  
mathema@cal	  set-‐up	  
•  Basic	  opera@onal	  judgement:	  	  
	  

•  Some	  rules	  (omiPng	  loca@ons	  for	  brevity):	  	  

	  

	  
•  A	  bunch	  of	  laws	  for	  	  	  	  	  ,	  	  	  	  	  	  ,	  and	  	  	  	  	  	  	  	  
•  Resource-‐process	  equivalence	  is	  bisimula@on,	  	  wriRen	  ~	  	  
•  Cf.	  Concurrent	  Separa@on	  Logic	  
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A	  (bunched)	  modal	  logic	  

	  
	  

	  

	  

� ::= p | ? | > | � _ � | � ^ � | � ! �
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| I | � ⇤ � | ���⇤ �
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R,E |= �1 ^ �2 i↵ R,E |= �1 and R,E |= �2

R,E |= hai� i↵ for some R,E
a�! R0, E0

, R0, E0 |= �

R,E |= hai⌫� i↵ for some S, S0
s.t. R⌦ S,E

a�! R0 ⌦ S0, E0
,

R0 ⌦ S0, E0 |= �

Other	  similar	  things,	  some	  choices	  for	  the	  last	  one	  

R,E |= �1 ⇤ �2 i↵ for some R1 ⌦R2 = R and E1 ⇥ E2 ⇠ E,

R1, E1 |= �1 and R2, E2 |= �2

In	  a	  	  given	  model,	  a	  truth-‐func@onal	  judgement:	  	  	  R,E |= �



Basic	  meta-‐theory	  	  

•  Logical	  (declara@ve)	  equivalence:	  	  
	  
•  Bisimula@on	  (opera@onal)	  equivalence:	  	  

	  	  	  	  	  
•  Soundness	  and	  completeness	  (Hennessy-‐
Milner-‐van	  Bentham	  equivalence):	  	  

	  	  	  	  	  
	  

R1, E1 ⌘ R2, E2 i↵ for all �, R1, E1 |= � i↵ R2, E2 |= �

R1, E1 ⇠ R2, E2

for all R1, E1, R1, E1 ⇠ R2, E2 i↵ R1, E1 ⌘ R2, E2



Basic	  meta-‐theory	  
•  Hennessy-‐Milner	  completeness	  is	  not	  as	  straighVorward	  as	  

might	  perhaps	  be	  imagined	  
•  In	  basic	  resource	  seman@cs,	  based	  on	  ordered	  monoids	  of	  

resource	  elements,	  it	  holds	  only	  for	  fragments	  of	  the	  modal	  
logic	  

•  Mul@plica@ve	  implica@on	  and	  mul@plica@ve	  modali@es	  
problema@c	  

•  Need	  the	  combinatorial	  structure	  of	  	  	  	  	  and	  	  	  	  	  to	  	  track	  
evolu@ons	  of	  +	  and	  x	  	  

•  Several	  papers	  (MSCS,	  TCS,	  JLC,	  others):	  hRp://
www.cs.ucl.ac.uk/staff/D.Pym/recent.htm	  

� ⌦



Building	  models	  
•  Classical	  mathema@cal	  modelling	  approach	  using	  these	  tools	  

	  

•  Early	  versions	  deployed	  with	  HewleR-‐Packard	  and	  its	  customers,	  
and	  more	  recently	  in	  projects	  in	  the	  GCHQ	  RISCS	  	  

•  Currently	  aiming	  for	  policy	  modelling	  apps	  in	  the	  Turing	  Ins@tute;	  
lots	  of	  big	  industry	  partners	  	  

•  Several	  papers	  at	  hRp://www.cs.ucl.ac.uk/staff/D.Pym/recent.htm	  
•  julia	  code	  at	  hRps://github.com/tristanc/SysModels	  
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Aside:	  building	  models	  

•  Approach	  is	  essen@ally	  scale-‐free	  
•  Abstrac@on	  level	  therefore	  chosen	  to	  fit	  
problem	  

•  Predic@ons	  explored	  using	  simula@ons	  	  
•  Model	  checking	  also	  possible	  (though	  much	  
less	  developed	  at	  this	  point)	  

•  The	  map	  is	  not	  the	  territory	  (Alfred	  Korzybski)	  
•  Time-‐value	  of	  models	  
	  



Example:	  security	  modelling	  



Interfaces:	  basic	  concepts	  

•  Mediate	  composi@on	  of	  models	  
•  Build	  on	  the	  structure	  of	  distributed	  systems	  
models,	  quite	  pragma@cally	  	  

•  In	  prac@ce,	  must	  reflect	  
–  the	  loca@ons	  involved,	  
–  the	  resources	  involved,	  and	  	  
– processes/ac@ons	  crossing	  the	  boundaries	  

•  Note	  that	  models	  are	  being	  subs@tuted	  for	  
environment	  



Interfaces:	  sketch	  of	  basic	  
mathema@cal	  set-‐up	  
	  

	  

•  Implement	  the	  distributed	  systems	  model:	  	  
–  Loca@on	  graph	  labelled	  with	  resources	  
–  Explicitly	  iden@fy	  ac@ons	  with	  associated	  loca@ons	  in	  interfaces	  

•  Each	  model	  comes	  with	  a	  specified	  set	  of	  interfaces,	  
specifying	  input/output	  loca@ons,	  with	  associated	  ac@ons	  

•  Decent	  basic	  algebraic	  proper@es:	  commuta@ve,	  
associa@ve	  composi@on	  of	  models	  with	  compa@ble	  
interfaces	  

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-
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inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [ V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of



Interfaces:	  sketch	  of	  basic	  
mathema@cal	  set-‐up	  
•  Implement	  models	  as	  tuples	  	  

•  Here	  	  
– Graph	  with	  resource-‐labelled	  ver@ces	  
– Sets	  of	  ac@ons,	  processes,	  and	  located	  ac)ons	  
– A	  set	  	  	  	  	  	  of	  	  interfaces	  

•  An	  interface	  	  	  	  	  	  	  	  	  	  	  	  	  on	  a	  model	  is	  a	  tuple	  of	  
(disjoint)	  input	  and	  output	  loca@ons	  and	  
located	  ac@ons	  	  

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-
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3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.
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Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.
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Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\
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i

2 In = ; and

\
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Out
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2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [ V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-
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Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
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To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is
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DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [ V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of



Example:	  security	  modelling	  



Interfaces:	  the	  frame	  property	  	  
•  Supports	  composi@onal	  reasoning:	  	  
•  The	  Frame	  Rule	  (think	  of	  Hoare’s	  program	  logic	  and	  CSL):	  	  	  

•  Side-‐condi@on	  restricts	  evolu@on	  to	  part	  of	  model	  not	  in	  the	  
interface	  

•  Correctness	  reasoning	  can	  then	  be	  restricted	  to	  the	  interfaces	  
themselves	  

•  This	  gives	  local	  reasoning	  about	  models	  in	  their	  global	  
context;	  that	  is,	  composi@onality	  

	  
	  	  	  

{�} (M
a�! M 0) { }

{� ⇤ �} (M | N a�! M 0 | N) { ⇤ �}
N |= �, where N 6 a�!



Example:	  security	  modelling	  



Next	  steps	  
•  Refine	  defini@on	  of	  interface,	  useful	  abstrac@ons	  
•  Some	  underpinning	  logical	  theory	  
•  The	  Frame	  Rule	  in	  theory	  and	  prac@ce;	  cf.	  (Concurrent)	  
Separa@on	  Logic’s	  theory	  and	  implementa@on	  of	  local	  
reasoning:	  abduc)on	  important	  here?	  	  

•  Applica@ons	  to	  big-‐scale	  systems	  	  
–  Networking	  
–  Distributed	  databases	  and	  their	  consistency	  	  
–  Supply	  chains	  

•  Deliver	  tools	  for	  reasoning	  about	  big-‐scale	  systems	  
•  Small-‐scale	  systems:	  weak	  memory	  	  



Thank	  you	  

	  
	  



Modelling	  distributed	  systems:	  basic	  	  
mathema@cal	  set-‐up	  
•  Other	  key	  combinators	  
– Hiding	  	  

– Generalizes	  restric@on	  (build	  a	  term	  model	  for	  
resources;	  par@al	  monoid	  of	  ac@ons)	  

•  Sequen@al	  composi@on	  	  
•  Fixed	  points	  



A	  (bunched)	  modal	  logic	  

•  Other	  logical	  operators	  
– Addi@ve	  and	  mul@plica@ve	  quan@fiers	  (over	  ac@ons)	  

•  Systema@c	  logical	  treatment	  in	  recent	  joint	  work	  
with	  Galmiche,	  Courtault,	  and	  Kimmel	  

•  Applica@ons	  in	  access	  control	  
–  Roles:	  	  
–  Corresponding	  (via	  simula@on)	  ‘says’	  modality:	  	  	  
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