Modelling interfaces in distributed systems: some first steps

David Pym
UCL and Alan Turing Institute
London
Modelling distributed systems: basic concepts

• Basic concepts of distributed systems
 – Location: the basic architecture
 – Resource: created, consumed, moved by the processes
 – Process: the services that the system provides

• Situated in
 – Environment: structure not modelled, just events

• These may be composed partially of other models of interest, so need composition

• Mathematically, seek to employ minimal viable structure

• Concerned here with practical modelling, with motivations from security policy
Modelling distributed systems: basic mathematical set-up

• Location
 – Topological structure: e.g., directed graphs

• Resource
 – Combinatorial structure: e.g., partial monoids, possibly ordered (cf. the logic Bi’s resource semantics, which gives rise to Separation Logic)

• Process
 – Synchronous structure (for modelling purposes): e.g., SCCS + integration with resources

• Environment
 – Stochastic representation: events are incident upon a model system from outside
Modelling distributed systems: basic mathematical set-up

- Basic operational judgement:
 \[L, R, E \xrightarrow{a} L', R', E' \]

- Some rules (omitting locations for brevity):
 \[
 \begin{align*}
 \mu(a, R) &= R' \\
 R, a : E \xrightarrow{a} R', E \\
 S, F \xrightarrow{b} S', F' \\
 R \otimes S, E \times F \xrightarrow{ab} R' \otimes S', E' \times F'
 \end{align*}
 \]

- A bunch of laws for \(\mu, \otimes, \) and \(\oplus \)
- Resource-process equivalence is bisimulation, written \(\sim \)
- Cf. Concurrent Separation Logic
A (bunched) modal logic

\(\phi ::= p | \bot | \top | \phi \lor \phi | \phi \land \phi | \phi \rightarrow \phi \\
| \langle a \rangle \phi | [a] \phi \\
| I | \phi \ast \phi | \phi \rightarrow \ast \phi \\
| \langle a \rangle \nu \phi | [a] \nu \phi \)

In a given model, a truth-functional judgement: \(R, E \models \phi \)

\(R, E \models \phi_1 \land \phi_2 \) iff \(R, E \models \phi_1 \) and \(R, E \models \phi_2 \)

\(R, E \models \langle a \rangle \phi \) iff for some \(R, E \xrightarrow{a} R', E', R', E' \models \phi \)

\(R, E \models \phi_1 \ast \phi_2 \) iff for some \(R_1 \otimes R_2 = R \) and \(E_1 \times E_2 \sim E, R_1, E_1 \models \phi_1 \) and \(R_2, E_2 \models \phi_2 \)

\(R, E \models \langle a \rangle \nu \phi \) iff for some \(S, S' \) s.t. \(R \otimes S, E \xrightarrow{a} R' \otimes S', E', R' \otimes S', E' \models \phi \)

Other similar things, some choices for the last one
Basic meta-theory

• Logical (declarative) equivalence:

 \[R_1, E_1 \equiv R_2, E_2 \text{ iff for all } \phi, R_1, E_1 \models \phi \text{ iff } R_2, E_2 \models \phi \]

• Bisimulation (operational) equivalence:

 \[R_1, E_1 \sim R_2, E_2 \]

• Soundness and completeness (Hennessy-Milner-van Bentham equivalence):

 for all \(R_1, E_1 \), \(R_1, E_1 \sim R_2, E_2 \text{ iff } R_1, E_1 \equiv R_2, E_2 \)
Basic meta-theory

• Hennessy-Milner completeness is not as straightforward as might perhaps be imagined
• In basic resource semantics, based on ordered monoids of resource elements, it holds only for fragments of the modal logic
• Multiplicative implication and multiplicative modalities problematic
• Need the combinatorial structure of \oplus and \otimes to track evolutions of + and x
• Several papers (MSCS, TCS, JLC, others): http://www.cs.ucl.ac.uk/staff/D.Pym/recent.htm
Building models

• Classical mathematical modelling approach using these tools

• Early versions deployed with Hewlett-Packard and its customers, and more recently in projects in the GCHQ RISCS

• Currently aiming for policy modelling apps in the Turing Institute; lots of big industry partners

• Several papers at http://www.cs.ucl.ac.uk/staff/D.Pym/recent.htm

• julia code at https://github.com/tristanc/SysModels
Aside: building models

- Approach is essentially scale-free
- Abstraction level therefore chosen to fit problem
- Predictions explored using simulations
- Model checking also possible (though much less developed at this point)
- The map is not the territory (Alfred Korzybski)
- Time-value of models
Example: security modelling
Interfaces: basic concepts

• Mediate composition of models
• Build on the structure of distributed systems models, quite pragmatically
• In practice, must reflect
 – the locations involved,
 – the resources involved, and
 – processes/actions crossing the boundaries
• Note that models are being substituted for environment
Interfaces: sketch of basic mathematical set-up

- Implement the distributed systems model:
 - Location graph labelled with resources
 - Explicitly identify actions with associated locations in interfaces
- Each model comes with a specified set of interfaces, specifying input/output locations, with associated actions
- Decent basic algebraic properties: commutative, associative composition of models with compatible interfaces
Interfaces: sketch of basic mathematical set-up

- Implement models as tuples
 \[M = (G(V[R], E), A, P, L, I) \]

- Here
 - Graph with resource-labelled vertices
 - Sets of actions, processes, and located actions
 - A set \(I \) of interfaces

- An interface \(I \in I \) on a model is a tuple of (disjoint) input and output locations and located actions \((In, Out, L)\)
Example: security modelling
Interfaces: the frame property

• Supports compositional reasoning: $M_1 I_1 |_{I_2} M_2$

• The Frame Rule (think of Hoare’s program logic and CSL):

\[
\frac{\{\phi\} (M \xrightarrow{a} M') \{\psi\} \quad \{\psi \ast \chi\} (M | N \xrightarrow{a} M' | N) \{\psi \ast \chi\}}{\{\phi \ast \chi\} (M | N \xrightarrow{a} M' | N) \{\psi \ast \chi\}}
\]

$N \models \chi$, where $N \not\xrightarrow{a}$

• Side-condition restricts evolution to part of model not in the interface

• Correctness reasoning can then be restricted to the interfaces themselves

• This gives local reasoning about models in their global context; that is, compositionality
Example: security modelling
Next steps

• Refine definition of interface, useful abstractions
• Some underpinning logical theory
• The Frame Rule in theory and practice; cf. (Concurrent) Separation Logic’s theory and implementation of local reasoning: *abduction* important here?
• Applications to big-scale systems
 – Networking
 – Distributed databases and their consistency
 – Supply chains
• Deliver tools for reasoning about big-scale systems
• Small-scale systems: weak memory
Thank you
Modelling distributed systems: basic mathematical set-up

• Other key combinators
 – Hiding
 \[
 \frac{R \circ S, E \xrightarrow{a} R' \circ S', E'}{R, \nu S.E \xrightarrow{\nu S.a} R', \nu S'.E'}
 \]
 \[\mu(\nu S.a, R) = R'\]
 – Generalizes restriction (build a term model for resources; partial monoid of actions)

• Sequential composition

• Fixed points
A (bunched) modal logic

- Other logical operators
 - Additive and multiplicative quantifiers (over actions)
 \[R, E \models \exists \nu x. \phi \iff \text{there exist } S, F, \text{ and } a \text{ s.t. } R, E \sim R, \nu S.F \]
 \[\text{and } R \circ S, F \models \phi[a/x] \]

- Systematic logical treatment in recent joint work with Galmiche, Courtault, and Kimmel

- Applications in access control
 - Roles: \(E \propto F \)
 - Corresponding (via simulation) ‘says’ modality: \(\{E\} \phi \)
References

More references

• The julia package used for creating system models may be obtained from GitHub: https://github.com/tristanc/SysModels