
Modelling	 interfaces	 in	 distributed	
systems:	 some	 first	 steps	

David	 Pym	
UCL	 and	 Alan	 Turing	 Ins@tute	
London	
	

Modelling	 distributed	 systems:	 basic	
concepts	
•  Basic	 concepts	 of	 distributed	 systems	
–  Loca@on:	 the	 basic	 architecture	
–  Resource:	 created,	 consumed,	 moved	 by	 the	 processes	
–  Process:	 the	 services	 that	 the	 system	 provides	 	

•  Situated	 in	 	
–  Environment:	 structure	 not	 modelled,	 just	 events	 	

•  These	 may	 be	 composed	 par@ally	 of	 other	 models	 of	
interest,	 so	 need	 composi@on	

•  Mathema@cally,	 seek	 to	 employ	 minimal	 viable	
structure	

•  Concerned	 here	 with	 prac)cal	 modelling,	 with	
mo@va@ons	 from	 security	 policy	 	 	 	

Modelling	 distributed	 systems:	 basic	 	
mathema@cal	 set-‐up	
•  Loca@on	
–  Topological	 structure:	 e.g.,	 directed	 graphs	

•  Resource	
–  Combinatorial	 structure:	 e.g.,	 par@al	 monoids,	 possibly	
ordered	 (cf.	 the	 logic	 BI’s	 resource	 seman@cs,	 which	 gives	
rise	 to	 Separa@on	 Logic)	

•  Process	
–  Synchronous	 structure	 (for	 modelling	 purposes):	 e.g.,	 SCCS	
+	 integra@on	 with	 resources	

•  Environment	
–  Stochas@c	 representa@on:	 events	 are	 incident	 upon	 a	
model	 system	 from	 outside	

Modelling	 distributed	 systems:	 basic	 	
mathema@cal	 set-‐up	
•  Basic	 opera@onal	 judgement:	 	
	

•  Some	 rules	 (omiPng	 loca@ons	 for	 brevity):	 	

	

	
•  A	 bunch	 of	 laws	 for	 	 	 	 	 ,	 	 	 	 	 	 ,	 and	 	 	 	 	 	 	 	
•  Resource-‐process	 equivalence	 is	 bisimula@on,	 	 wriRen	 ~	 	
•  Cf.	 Concurrent	 Separa@on	 Logic	

L,R,E
a�! L0, R0, E0

µ(a,R) = R0

R, a : E
a�! R0, E

R,E
a�! R0, E0 S, F

b�! S0, F 0

R⌦ S,E ⇥ F
ab�! R0 ⌦ S0, E0 ⇥ F 0

�⌦µ

Ri, Ei
a�! R0

i, E
0
i

R1 �R2, E1 + E2
a�! R0

i, E
0
i

i = 1, 2

A	 (bunched)	 modal	 logic	

	
	

	

	

� ::= p | ? | > | � _ � | � ^ � | � ! �
| hai� | [a]�
| I | � ⇤ � | ���⇤ �
| hai⌫� | [a]⌫�

R,E |= �1 ^ �2 i↵ R,E |= �1 and R,E |= �2

R,E |= hai� i↵ for some R,E
a�! R0, E0

, R0, E0 |= �

R,E |= hai⌫� i↵ for some S, S0
s.t. R⌦ S,E

a�! R0 ⌦ S0, E0
,

R0 ⌦ S0, E0 |= �

Other	 similar	 things,	 some	 choices	 for	 the	 last	 one	

R,E |= �1 ⇤ �2 i↵ for some R1 ⌦R2 = R and E1 ⇥ E2 ⇠ E,

R1, E1 |= �1 and R2, E2 |= �2

In	 a	 	 given	 model,	 a	 truth-‐func@onal	 judgement:	 	 	 R,E |= �

Basic	 meta-‐theory	 	

•  Logical	 (declara@ve)	 equivalence:	 	
	
•  Bisimula@on	 (opera@onal)	 equivalence:	 	

	 	 	 	 	
•  Soundness	 and	 completeness	 (Hennessy-‐
Milner-‐van	 Bentham	 equivalence):	 	

	 	 	 	 	
	

R1, E1 ⌘ R2, E2 i↵ for all �, R1, E1 |= � i↵ R2, E2 |= �

R1, E1 ⇠ R2, E2

for all R1, E1, R1, E1 ⇠ R2, E2 i↵ R1, E1 ⌘ R2, E2

Basic	 meta-‐theory	
•  Hennessy-‐Milner	 completeness	 is	 not	 as	 straighVorward	 as	

might	 perhaps	 be	 imagined	
•  In	 basic	 resource	 seman@cs,	 based	 on	 ordered	 monoids	 of	

resource	 elements,	 it	 holds	 only	 for	 fragments	 of	 the	 modal	
logic	

•  Mul@plica@ve	 implica@on	 and	 mul@plica@ve	 modali@es	
problema@c	

•  Need	 the	 combinatorial	 structure	 of	 	 	 	 	 and	 	 	 	 	 to	 	 track	
evolu@ons	 of	 +	 and	 x	 	

•  Several	 papers	 (MSCS,	 TCS,	 JLC,	 others):	 hRp://
www.cs.ucl.ac.uk/staff/D.Pym/recent.htm	

� ⌦

Building	 models	
•  Classical	 mathema@cal	 modelling	 approach	 using	 these	 tools	

	

•  Early	 versions	 deployed	 with	 HewleR-‐Packard	 and	 its	 customers,	
and	 more	 recently	 in	 projects	 in	 the	 GCHQ	 RISCS	 	

•  Currently	 aiming	 for	 policy	 modelling	 apps	 in	 the	 Turing	 Ins@tute;	
lots	 of	 big	 industry	 partners	 	

•  Several	 papers	 at	 hRp://www.cs.ucl.ac.uk/staff/D.Pym/recent.htm	
•  julia	 code	 at	 hRps://github.com/tristanc/SysModels	

!!

!
!!!!!

in! out!
observa-ons! models!

consequences!real3world!
consequences!

induc-on!

deduc-on!

interpreta-on!

valida-on!

Aside:	 building	 models	

•  Approach	 is	 essen@ally	 scale-‐free	
•  Abstrac@on	 level	 therefore	 chosen	 to	 fit	
problem	

•  Predic@ons	 explored	 using	 simula@ons	 	
•  Model	 checking	 also	 possible	 (though	 much	
less	 developed	 at	 this	 point)	

•  The	 map	 is	 not	 the	 territory	 (Alfred	 Korzybski)	
•  Time-‐value	 of	 models	
	

Example:	 security	 modelling	

Interfaces:	 basic	 concepts	

•  Mediate	 composi@on	 of	 models	
•  Build	 on	 the	 structure	 of	 distributed	 systems	
models,	 quite	 pragma@cally	 	

•  In	 prac@ce,	 must	 reflect	
–  the	 loca@ons	 involved,	
–  the	 resources	 involved,	 and	 	
– processes/ac@ons	 crossing	 the	 boundaries	

•  Note	 that	 models	 are	 being	 subs@tuted	 for	
environment	

Interfaces:	 sketch	 of	 basic	
mathema@cal	 set-‐up	
	

	

•  Implement	 the	 distributed	 systems	 model:	 	
–  Loca@on	 graph	 labelled	 with	 resources	
–  Explicitly	 iden@fy	 ac@ons	 with	 associated	 loca@ons	 in	 interfaces	

•  Each	 model	 comes	 with	 a	 specified	 set	 of	 interfaces,	
specifying	 input/output	 loca@ons,	 with	 associated	 ac@ons	

•  Decent	 basic	 algebraic	 proper@es:	 commuta@ve,	
associa@ve	 composi@on	 of	 models	 with	 compa@ble	
interfaces	

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of

Interfaces:	 sketch	 of	 basic	
mathema@cal	 set-‐up	
•  Implement	 models	 as	 tuples	 	

•  Here	 	
– Graph	 with	 resource-‐labelled	 ver@ces	
– Sets	 of	 ac@ons,	 processes,	 and	 located	 ac)ons	
– A	 set	 	 	 	 	 	 of	 	 interfaces	

•  An	 interface	 	 	 	 	 	 	 	 	 	 	 	 	 on	 a	 model	 is	 a	 tuple	 of	
(disjoint)	 input	 and	 output	 loca@ons	 and	
located	 ac@ons	 	

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of

2.4 Gnosis: A Proof-of-concept Tool
The semantic basis for system modelling described above has been
implemented in a proof-of-concept modelling tool called Gnosis
[8, 9] that closely captures the semantic structure of processes, re-
sources, and locations. In [8, 9], a formal semantics of Gnosis is
given in the semantic structures described above. Since the stochas-
tic aspects of models are not captured directly in these structures,
Gnosis’s scheduler is given a denotational definition within them.

In the implementation described in this paper, we employ not Gno-
sis, but rather a new framework written in julia [19]. julia is well-
adapted to describing the simplified implemented models that we
explain in detail in the next section and is supported by well-engin-
eered programming and graphics environments. Our use of julia is
explained in Section 3.4.

The relationship between the abstract semantic structures for pro-
cesses, resources, and locations, the implemented models, Gnosis
models, and julia models can summarized by the following dia-
gram: Each of the arrows can be given a precise mathematical def-

Mathema'cal*
Structure*

Implemented*
Models*

Gnosis*Models* Julia*Models*

Seman'c*
Interpreta'on*

Seman'c*
Interpreta'on*

Specializa'on*

Specializa'on*

inition; for example, the interpretation of Gnosis models in the se-
mantic structures is spelled out in [8, 9], and the interpretation of
julia models in our implemented models is similar.

3. IMPLEMENTED MODELS
The mathematical structure of models as described above provides
the basis for the class of models that we implement. We employ
well-motivated simplifcations of the general semantic set-up.

Figure 3: The basic structure of implemented models

Models in this methodology are designed to be composed with
other models (Figures 3 and 4). Composition allows us to join two
or more models together and see what effects their interaction has.
When models are composed there are interactions at the location,
process, and resource levels, and the role of their intended envi-
ronments is critical. Processes transition and resources are moved
between models at locations shared between the models.

Interface)

Figure 4: The basic structure of composed models

To enable composition, models contain interfaces, which define the
locations where models fit together and which actions, defined at
appropriate locations within the interface, are party to the compo-
sition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

3.1 Definitions of Implemented Models
The locations and resources of a model are represented using a lo-
cation graph, G(V[R], E), with a set of vertices, V , representing
the locations of the model, and a set of directed edges, E , giving
the connections between the locations. Vertices are labelled with
resources R.

As explained above, actions evolve the processes and resources of
a model. However, rather than thinking of actions evolving pro-
cesses, it is convenient to think of a process as a trace of actions—
the history of actions that have evolved a process during the execu-
tion of the model. All of the actions in a model are contained in a
set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model
to be executed, at a particular location. A model contains a set of lo-
cated actions, L, and a located action, l 2 L, is given by an ordered
pair l = (a 2 A, v 2 V). The environment associates these located
actions with probability distributions: Env : L ! ProbDist.
During the execution of the model, the located actions are brought
into existence by sampling from these distributions.

Models also need to have interfaces in order to support composi-
tion. An interface I 2 I on a model is a tuple (In,Out, L) of sets
of input and output vertices, where In ✓ V and Out ✓ V , and a
set of located actions L ✓ L.

The sets of input vertices and output vertices in interfaces must be
disjoint; that is

\

i2I

In
i

2 In = ; and

\

i2I

Out
i

2 Out = ;.

DEFINITION 1. A model M = (G(V[R], E),A,P,L, I) is a
tuple that consists of a location graph G, a set of actions A, a set of
processes P , a set of located actions L, and a set of interfaces I.

3.2 Composition of Implemented Models
Two models, M1 and M2 are composed with specific interfaces
I1,1, . . . , I1,j , . . . , I1,n 2 I1 and I2,1, . . . , I2,k, . . . , I2,m 2 I2

using the composition operator, M1I1,j |I2,kM2, which is defined
using an operation, �, on each of the elements of a model.

First, we define the � operator for vertices and edges,

V1 � V2 = V1 [V2

and, for each v 2 V1 � V2,

v[R1 �R2] =

8
<

:

v[R1] if v 2 V1 ^ v /2 V2

v[R2] if v 2 V2 ^ v /2 V1

v[R1 [R2] otherwise.
.

Composition of edges, actions, and proceeses are straightforward:
E1�E2 = E1[E2, A1�A2 = A1[A2, and P1�P2 = P1[P2.

To define the � operator for locations and interfaces, we first need
to introduce some notation. The interfaces on a model are a set of

Example:	 security	 modelling	

Interfaces:	 the	 frame	 property	 	
•  Supports	 composi@onal	 reasoning:	 	
•  The	 Frame	 Rule	 (think	 of	 Hoare’s	 program	 logic	 and	 CSL):	 	 	

•  Side-‐condi@on	 restricts	 evolu@on	 to	 part	 of	 model	 not	 in	 the	
interface	

•  Correctness	 reasoning	 can	 then	 be	 restricted	 to	 the	 interfaces	
themselves	

•  This	 gives	 local	 reasoning	 about	 models	 in	 their	 global	
context;	 that	 is,	 composi@onality	

	
	 	 	

{�} (M
a�! M 0) { }

{� ⇤ �} (M | N a�! M 0 | N) { ⇤ �}
N |= �, where N 6 a�!

Example:	 security	 modelling	

Next	 steps	
•  Refine	 defini@on	 of	 interface,	 useful	 abstrac@ons	
•  Some	 underpinning	 logical	 theory	
•  The	 Frame	 Rule	 in	 theory	 and	 prac@ce;	 cf.	 (Concurrent)	
Separa@on	 Logic’s	 theory	 and	 implementa@on	 of	 local	
reasoning:	 abduc)on	 important	 here?	 	

•  Applica@ons	 to	 big-‐scale	 systems	 	
–  Networking	
–  Distributed	 databases	 and	 their	 consistency	 	
–  Supply	 chains	

•  Deliver	 tools	 for	 reasoning	 about	 big-‐scale	 systems	
•  Small-‐scale	 systems:	 weak	 memory	 	

Thank	 you	

	
	

Modelling	 distributed	 systems:	 basic	 	
mathema@cal	 set-‐up	
•  Other	 key	 combinators	
– Hiding	 	

– Generalizes	 restric@on	 (build	 a	 term	 model	 for	
resources;	 par@al	 monoid	 of	 ac@ons)	

•  Sequen@al	 composi@on	 	
•  Fixed	 points	

A	 (bunched)	 modal	 logic	

•  Other	 logical	 operators	
– Addi@ve	 and	 mul@plica@ve	 quan@fiers	 (over	 ac@ons)	

•  Systema@c	 logical	 treatment	 in	 recent	 joint	 work	
with	 Galmiche,	 Courtault,	 and	 Kimmel	

•  Applica@ons	 in	 access	 control	
–  Roles:	 	
–  Corresponding	 (via	 simula@on)	 ‘says’	 modality:	 	 	

References	
•  G.	 Anderson	 and	 D.	 Pym.	 A	 Calculus	 and	 Logic	 of	 Bunched	

Resources	 and	 Processes.	 Theore)cal	 Computer	 Science	
614:63-‐96,	 2016.	

•  D.	 Galmiche,	 J.-‐R.	 Courtault,	 D.	 Pym.	 A	 Logic	 of	 Separa@ng	
Modali@es.	 Theore)cal	 Computer	 Science	 637,	 30-‐58,	 2016.	 	

•  M.	 Collinson	 and	 D.	 Pym.	 Algebra	 and	 Logic	 for	 Resource-‐
based	 Systems	 Modelling.	 Mathema)cal	 Structures	 in	
Computer	 Science	 19:959-‐1027,	 2009.	 doi:10.1017/
S0960129509990077.	

•  M.	 Collinson,	 B.	 Monahan,	 D.	 Pym.	 A	 Discipline	 of	
Mathema)cal	 Systems	 Modelling.	 College	 Publica@ons,	
2012.	 	

More	 references	
•  T.	 Caulfield	 and	 D.	 Pym.	 Modelling	 and	 Simula@ng	
Systems	 Security	 Policy.	 Proc.	 SIMUTools	 2015,	
ACM	 Digital	 Library,	
SIMUtools	 2015.	 doi:	 10.4108/eai.
24-‐8-‐2015.2260765.	

•  T.	 Caulfield	 and	 D.	 Pym.	 Improving	 Security	 Policy	
Decisions	 with	 Models.	 IEEE	 Security	 and	 Privacy,	
13(5),	 34-‐41,	 September/October	 2015.	

•  The	 julia	 package	 used	 for	 crea@ng	 system	
models	 may	 be	 obtained	 from	 GitHub:	 hRps://
github.com/tristanc/SysModels	

