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Compositionality x 3

e Plain old monoidal category theory:
gquantum computing in string diagrams

* Rewriting and sulbstitution:
taking the syntax seriously

» “Quantum theory” as a composite theory
Lack’s composing PROPS

An application: compiling for guantum architecture



1. Quantum theory as
string diagrams

How much gquantum theory can be expressed as an
internal language in some monoidal category?






F.D. Pure state QM

States : Hilbert spaces
Compound systems : Tensor product
Dynamics : Unitary maps

Non-degenerate measurements : O.N. Bases
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F.D. Pure state QM

Ambient mathematical
framework: T-symmetric
States : Hilbert Sloacee/v monoidal categories

Compound systems : Te product

Dynamics : Unitary maps

Non-degenerate meapurements : O.N. Bases

Choose some good generators and

relations to capture this stuff




Frobenius Algebras

Theorem: in fdHilb orthonormal bases are in bijection
with T-special commutative Frobenius algebras.

0:A—->ARA nw:ARQA— A
e:A—1 n:1— A

Via:

0 ::la;) — |a;) ® |a;) =25
€::la;) — 1 n=mn'

Coecke, Pavlovic, and Vicary, “A new description of orthogonal bases”, MSCS 23(3), 2013. arxiv:0810.0812



Frobenius Algebras

Represent observables by T-special commutative
Frobenius algebras:

p=9, n=0
W=2a, n=¢




Frobenius Algebras

Represent observables by T-special commutative
Frobenius algebras:

p= 9.
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Frobenius Algebras

Represent observables by T-special commutative
Frobenius algebras:

A-h A A

w=a, n'=06




Frobenius Algebras

Represent observables by T-special commutative
Frobenius algebras:




Phases

 Defn: a phase is unitary map that commutes with
the Frobenius algebra like this:

7] 77 | No/

) "G

« Thm: the phases form an abelian group




Example: Z-spin

* The following define a Frobenius algebra on the

qubit;
<. |0) = [00) C|0) 1
1) e [11) ) 1

* |ts group of phases is:

0) = 10)
1) — ' |1)

Lo




Example: Z-spin

5. 10) ~ [00) 0y 1 0)

)
1) — |11) ) 1



Frob. algebras + phases

Theorem: let f: n — m be connected.

8%
87
f — o731 B 2.
O
a3
073}




Example: X-spin

* The following define a Frobenius algebra on the

qubit;

5. +) >

—>H

€ . 1

++) +) — 1
) )

* |ts group of phases is:

X@I

+) o )
-) i |-)




X and Z spins

o 10) = [00) . [0)
1Y) e [11) ) e 1




X and Z spins

o 10) = [00)
1Y) e [11)




X and Z spins




Strongly Complementary
Observables are Hopf algebras

Theorem 3: Two observables are strongly
complementary iff they form a Hopf algebra

0o €o o 7)o
He 7)o 0o €eo

Coecke and Duncan, “Interacting Quantum Observables: categorical algebra and diagrammatics”, NJP 13(043016), 2011, arXiv:0906.4725



Strongly Complementary
Observables are Hopf algebras

Theorem 3: Two observables are strongly
complementary iff they form a Hopf algebra

Frobenius 50 €o ,UO 770

Frobenius ’LL' 77‘ 5‘ Ceo

Coecke and Duncan, “Interacting Quantum Observables: categorical algebra and diagrammatics”, NJP 13(043016), 2011, arXiv:0906.4725.



Strongly Complementary
Observables are Hopf algebras

Theorem 3: Two observables are strongly
complementary iff they form a Hopf algebra

0o €o o 7)o
He 7)o 0o €eo

Hopf Hopf

Coecke and Duncan, “Interacting Quantum Observables: categorical algebra and diagrammatics”, NJP 13(043016), 2011, arXiv:0906.4725.



Strongly Complementary
Observables are Hopf algebras

-4 2

Voo Sie T4

Coecke and Duncan, “Interacting Quantum Observables: categorical algebra and diagrammatics”, NJP 13(043016), 2011, arXiv:0906.4725.




ZX-calculus

e Since we are interested in quantum computing we'll
focus on the X and Z observables.

e This s called the ZX-calculus



/X-calculus syntax

a € [0, 27)

Defn: A diagram is an undirected open graph generated
by the above vertices.



/X-calculus semantics

O>®n . |O>®m
@7
1) e et 1)




Representing Qubits

191=(5) =10

197 1=(9)=m

D1 (9 1-5(2)-



Representing Phase shifts



Representing Paulis

u%w 1= (3o)
ﬂ@%ﬂ 1=(05)



ANX =

Representing CNot

:

]l

ﬂ

/

>]]:

1000
0100
0001
0010



The ZX-calculus Is universal

Theorem: Let U be a unitary map on n qubits; then there exists
a /X-calculus term D such that:

D] =U



The ZX-calculus Is universal

Theorem: Let U be a unitary map on n qubits; then there exists
a /X-calculus term D such that:

) =U

Z| — QO «

X, —> ’ﬁ

A
&W —  0—@




Steane code encoder:
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Translating circuits
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Equations

/(}i—f\ C:>0=:

(anti-loop) (identity)



Fquations

Generalised Spider

(anti-loop) (identity)




Equations

-t fetr R

(bialgebra) (copying) (hopf )

A

(r-commute)



. (bia.lgebra)

EFquations

“Strong Complementarity”

/& 9.9

(copying)

(m-commute)

(hopf)






Fquations

A weird one specific to ZX
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Example: CNOTS
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Graph States

Let G = (V,E) be a simple, undirected graph. Then define:

)= X) CZu Q) |+)

(v,u)eFE veV

Orin 2D:




STOP!
QUANTO-TIME!



A good reference

PICTURING
QUANTUM
PROCESSE

A First Course in Quantum Theory and
Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER
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2. Composition In
graphical syntax



Composing diagrams

e /X-calculus terms are arrows in PROP
— Compose them push-out style




Composing diagrams

e /X-calculus terms are arrows in PROP
— Tensor them push-out style




Equational Reasoning

SN



Equational Reasoning

R,
g SR



Equational Reasoning

E \}/

X _B(
g AR



Equational Reasoning
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Equational Reasoning

==



Equational Reasoning

[
&



Equational Reasoning

N
N

X X



Equational Reasoning

N
N
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N
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Equational Reasoning

Double Pushout

Rewriting




Equational Reasoning

X



Equational Reasoning

X

V



Equational Reasoning

X Y

XX



3. Composite Theories

| learned all this from Pawel: thanks mate!



PROPs

Defn. A PROP is a strict symmetric monoidal category
whose objects are the natural numbers.

Defn. A T-PROP is a PROP which has a dagger.

Let T be a PROP and let C be strict monoidal category.

Defn: a T-algebra in C is a strict monoidal functor from
T to C.



PROPs

Syntactic presentation of a PROP:

Generators /2 E) Relations
symbols with \ 7 equations between
arity and coarity terms of same type

The coproduct of PROPs is very simple:

(X1, E1) 4+ (X2, Ey) = (X1 + Yo, Eq + Eo)



Example

he PROP of commutative monoids M

2={9,0)

N A R A

he NMFralgebras in C are exactly the monoids of C



Example

he PROP of cocommutative comonoids  M°P

Y={Q .0}

E = {}5\/%% 63* ﬁg ﬁé}

he M°P-algebras in C are the comonoids of C



COMPOSING PROPS

Dedicated to Aurelio Carboni on the occasion of his sixtieth birthday

STEPHEN LACK

ABSTRACT. A PROP is a way of encoding structure borne by an object of a symmetric
monoidal category. We describe a notion of distributive law for PROPs, based on Beck’s
distributive laws for monads. A distributive law between PROPs allows them to be
composed, and an algebra for the composite PROP consists of a single object with an
algebra structure for each of the original PROPs, subject to compatibility conditions
encoded by the distributive law. An example is the PROP for bialgebras, which is a
composite of the PROP for coalgebras and that for algebras.

Lack, “Composing PROPs”, Theory and Applications of Categories 13(9), 2004.



Composing PROPs

PROPs are monads in a certain (complicated) category.
Distributive laws of monads produce composite monads
— can do this for PROPs!

A 1:S=5;1T
This boils down to an equation

{ S
n—»k—»m

|

/
S

for every composable pair.

Lack, “Composing PROPs”, Theory and Applications of Categories 13(9), 2004.



Composing PROPs

Proposition: Given a distributive law
A 1:S=5;1

S t
f:n—>m=n——k——>m

Then

Proposition: if  § = (Xg, Es) T = (X7, Et)

then S; I = (Zg -+ Z‘[r, Es + E7 + E)\)

Lack, “Composing PROPs”, Theory and Applications of Categories 13(9), 2004.



Composing PROPs

Proposition: Given a distributive law
A 1:S=5;1

Then

S t
f:n—>m=n——k——>m

Proposition: if  § = (Xg, Es) T = (X7, Et)

then  S;T = (S+T)/E,

Lack, “Composing PROPs”, Theory and Applications of Categories 13(9), 2004.



Frobenius Algebras

The PROP [ of special commutative Frobenius
algebras arises by a distributive law

Ap - MPP:-M — M;M°P

generated by the equations




Phases

Let G be an abelian group: define the PROP (G by

Y={g:1—1]g€G} E={goh=gh}

Quotient ' ++ (G by the equations

g




Frob. algebras with phases

Recall [ is itself a composite M;M°P so we can view
FG as an iterated distributive law for M;G ™ ;M°P,

This yields a tactorisation:

\% g A /
f=n—m-—m—n
Wl G~ M©P

So F(G is the PROP of Frob.algs. with phases.



Bialgebras

The PROP B of bialgebras arises by a distributive law
Ap : M:M°P — M°P:M

generated by the equations

A0t R SRS ST

Can do the same for Hopf algebras.




Two Frobenius Algebras?

We can form the coproduct i.e. non-interacting
Frobenius algebras with phases.

FG +FH

76

Factorisation:



Sad Face :(

Theorem: [ does not arise as a distributive law
\:FG:FH = FH:FG

Proof: Recall we need:

{ S
n—»k—»m

J
n— k' —>m

s’ {

for every composable pair — including the phase groups

RD + Kevin Dunne, “Interacting Frobenius Algebras are Hopf”, LICS 2016.



But the news is still pretty
good

* No distributive law for ZX-calculus
— no nice normal forms for the full language
— this would have been very surprising!

 But nice normal forms for every subtheory.
— the monochrome theory = spiders
— the phase-tfree theory = Z,-matrices
— the Clifford fragment = 7777

e This will be enough for some interesting
applications!



4. Compiling

Oh look, category theory can do something useful!



Circuilt Perspective
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Circuilt Perspective

nputs ==~
Xa
‘ $
o || Zg

X, .49

Outputsig,



Circuilt Perspective
nputs F"cc’T—777 >
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2?7 Perspective
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2?7 Perspective
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2?7 Perspective
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Hopf algebra
expression
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MBQC Perspective
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MBQC Perspective
Q

Prepared qubits i M :
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MBQC Perspective
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Any /ZX-calculus term can
be | nterpre ed as an

Prepared qubit;




NQIT Perspective
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NQIT Perspective

o | | | °
O
B P



NQIT Perspective
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NQIT Perspective
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NQIT Perspective

¢ B

O

Op cal ct Few qult
ion traps

] o ©



NQIT perspective(?)

What about determinism®?
— unknown in general
— use standard technigues for specific examples

What are the trade-offs?
— non-Clifford gates vs physical qubits
— circuit depth vs complexity of entanglement






