# Composition and quantum theory: a conjecture, and how it could fail

#### Markus P. Müller\* and Marius Krumm Departments of Applied Mathematics and Philosophy, UWO Perimeter Institute for Theoretical Physics, Waterloo





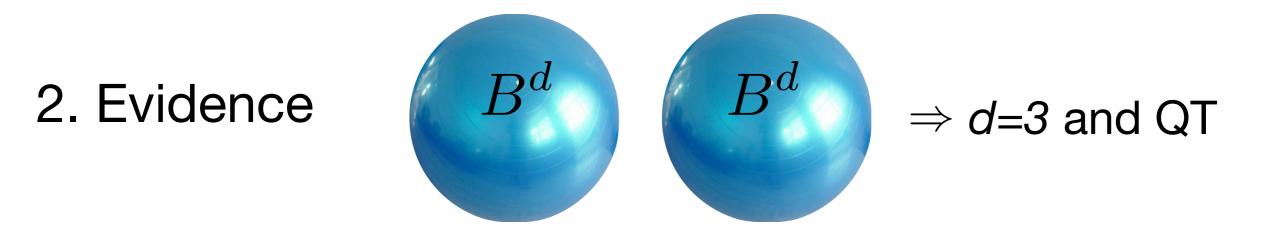






### Outline

1. The conjecture tomographic locality + reversibility ⇒ QT



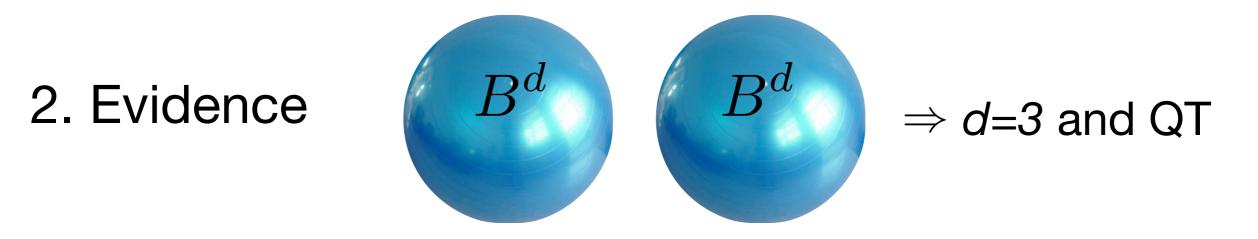
3. Multipartite interaction beyond QT?



Composition and quantum theory: a conjecture, and how it could fail

# Outline

1. The conjecture tomographic locality + reversibility ⇒ QT

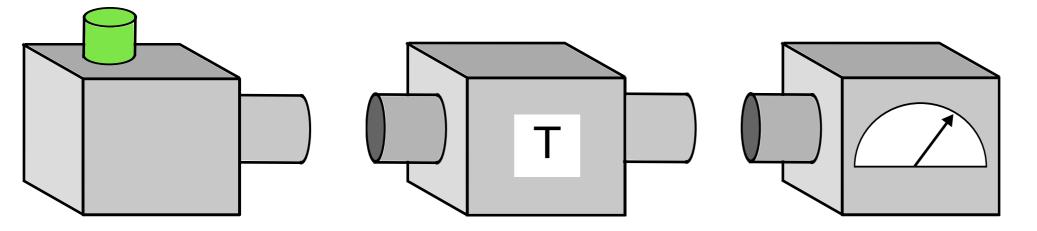


3. Multipartite interaction beyond QT?



Composition and quantum theory: a conjecture, and how it could fail

# Starting point: convex-operational theory

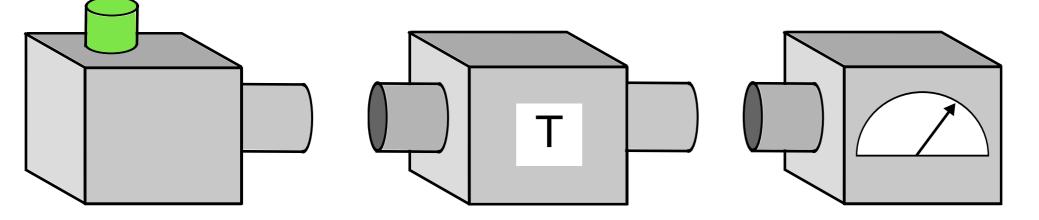


Preparation, transformation, measurement.

#### 1. The conjecture

Composition and quantum theory: a conjecture, and how it could fail

# Starting point: convex-operational theory

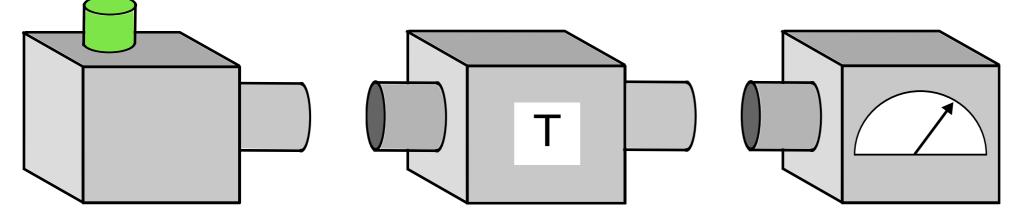


Preparation, transformation, measurement.

# **State** $\omega$ = equivalence class of **preparation procedures**

Composition and quantum theory: a conjecture, and how it could fail

# Starting point: convex-operational theory



Preparation, transformation, measurement.

# **State** $\omega$ = equivalence class of **preparation procedures**

**State space**  $\Omega$  = set of all possible states of a given system

Composition and quantum theory: a conjecture, and how it could fail

# Starting point: convex-operational theory

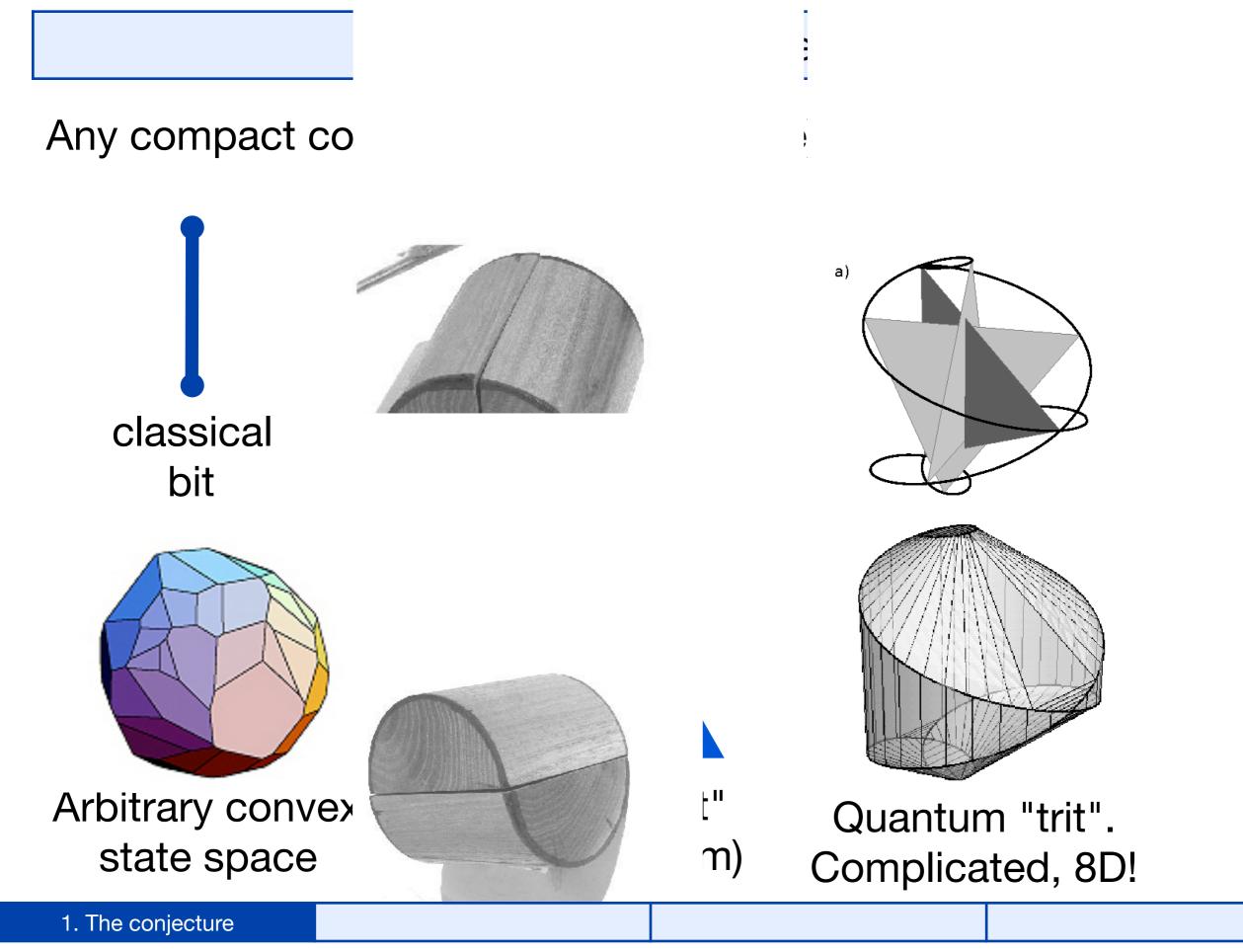
Preparation, transformation, measurement.

**State**  $\omega$  = equivalence class of **preparation procedures** 

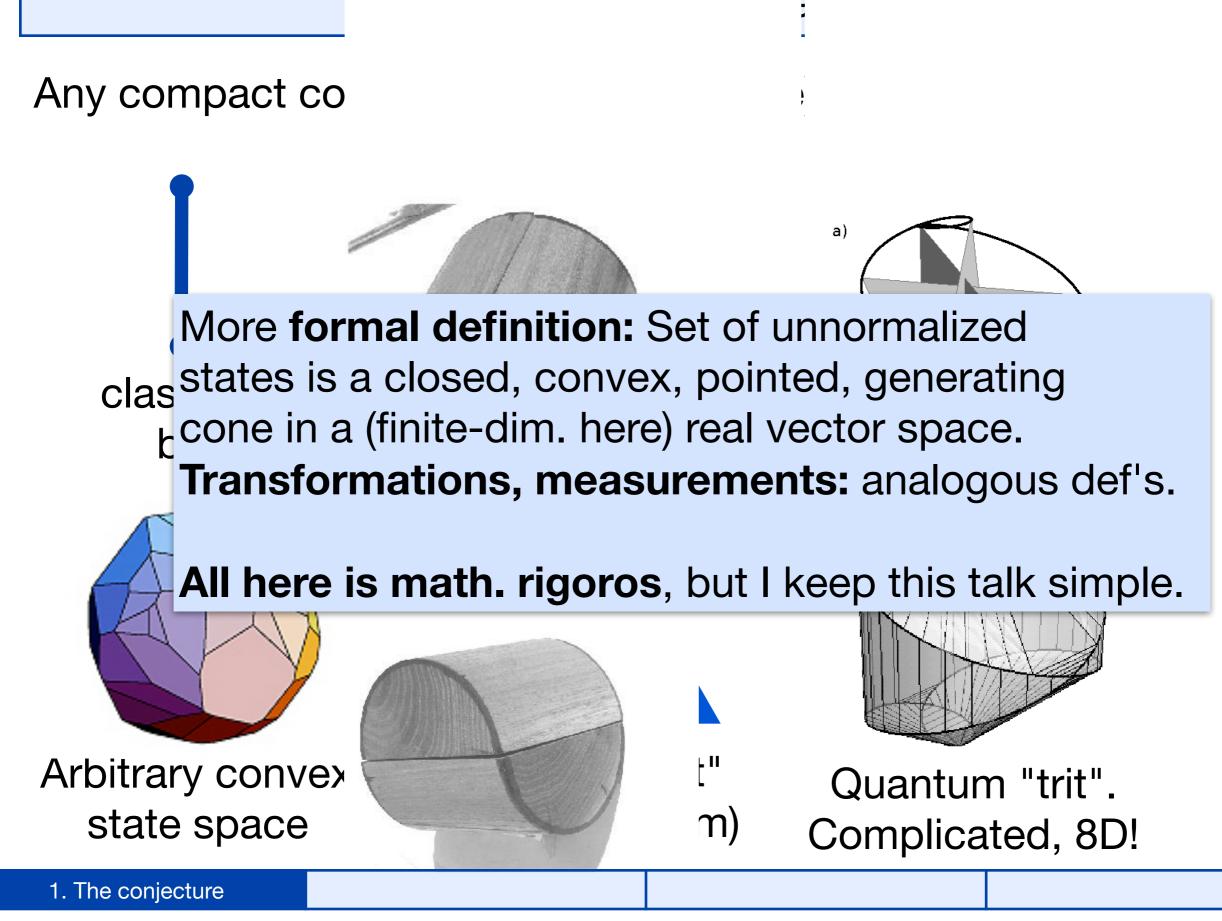
**State space**  $\Omega$  = set of all possible states of a given system

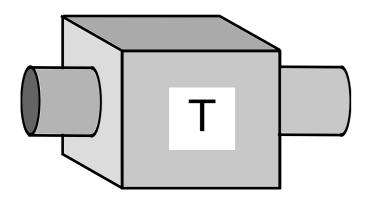
QT:  $\Omega_N = \text{set of } N \times N \text{ density matrices}$ CPT:  $\Omega_N = \text{set of prob. distributions } (p_1, \dots, p_N).$ 

1. The conjecture



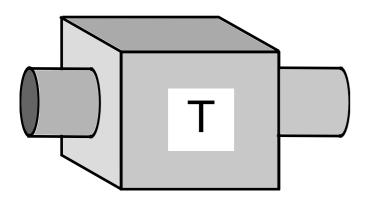
Composition and quantum theory: a conjecture, and how it could fail





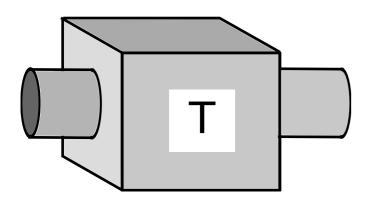
**Transformations** map states to states and are linear.

A transformation T is **reversible** if T<sup>-1</sup> exists and is a transformation, too.



**Transformations** map states to states and are linear. A transformation T is **reversible** if T<sup>-1</sup> exists and is a transformation, too.

QM: reversible transformations = unitaries,  $\rho \mapsto U\rho U^{\dagger}$ . CPT: permutations,  $(p_1, \ldots, p_n) \mapsto (p_{\pi(1)}, \ldots, p_{\pi(n)})$ 



**Transformations** map states to states and are linear. A transformation T is **reversible** if T<sup>-1</sup> exists and is a transformation, too.

QM: reversible transformations = unitaries,  $\rho \mapsto U\rho U^{\dagger}$ . CPT: permutations,  $(p_1, \ldots, p_n) \mapsto (p_{\pi(1)}, \ldots, p_{\pi(n)})$ 



Reversible transformations are **linear symmetries** of the state space.

They **map pure states to pure states** (pure state = extremal point of convex set).

1. The conjecture

#### **Reversibility postulate:**

For every pair of pure states  $\omega, \varphi$ , there is a reversible transformation T such that  $T\omega = \varphi$ .

#### **Reversibility postulate:**

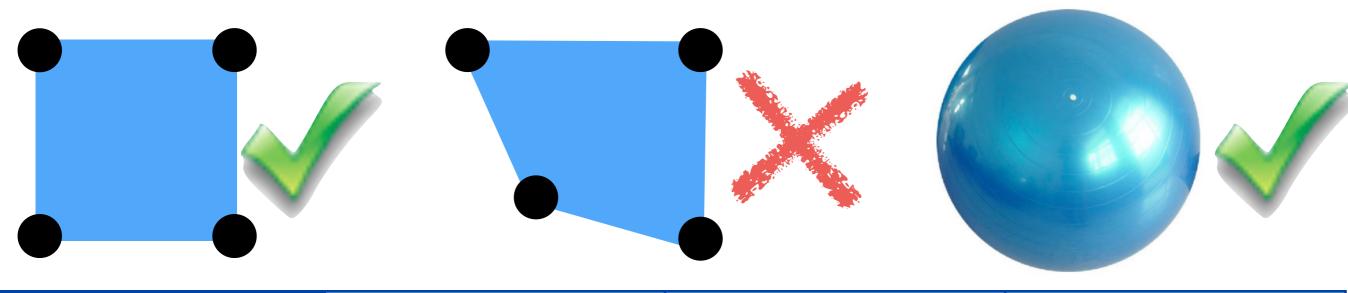
For every pair of pure states  $\omega, \varphi$ , there is a reversible transformation T such that  $T\omega = \varphi$ .

- Very natural: reversible time evolution / (quantum) circuits should exhaust the state space. True in QT + CPT.
- Brings in the **power of group theory**.

#### **Reversibility postulate:**

For every pair of pure states  $\omega, \varphi$ , there is a reversible transformation T such that  $T\omega = \varphi$ .

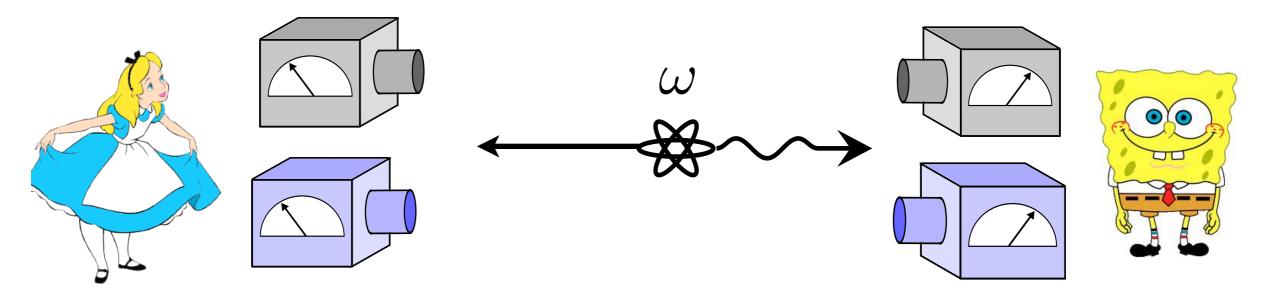
- Very natural: reversible time evolution / (quantum) circuits should exhaust the state space. True in QT + CPT.
- Brings in the **power of group theory**.
- Enforces some **symmetry** in the state space:



1. The conjecture

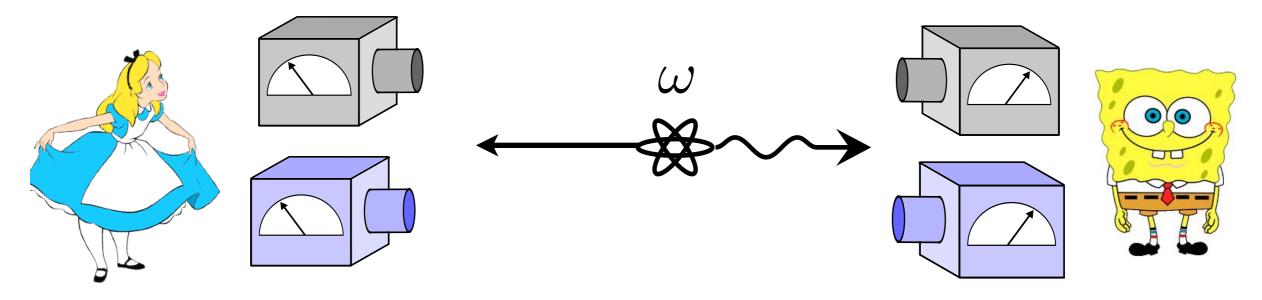
#### 1. The conjecture

Composition and quantum theory: a conjecture, and how it could fail



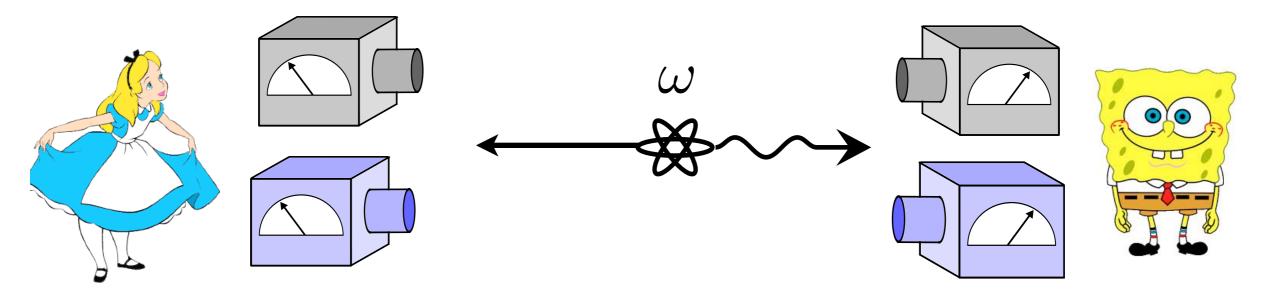
Alice+Bob are given (many copies) of a state.

Task: determine the state via measurements (tomography).



Alice+Bob are given (many copies) of a state. **Task:** determine the state via measurements (tomography).

True in QT+CPT: can be done via local measurements.



Alice+Bob are given (many copies) of a state. **Task:** determine the state via measurements (tomography). **True in QT+CPT:** can be done via **local** measurements.

#### **Tomographic locality:**

Every state of a composite system is completely characterized by the correlations of measurements on the individual components.

<sup>1.</sup> The conjecture

More mathematical perspective:

- Given two state spaces  $\Omega_A$  and  $\Omega_B$  there are always infinitely many possible composites  $\Omega_{AB}$ .
- Only constraints: there are notions of "product states" and "product measurements".
- Tomographic locality equivalent to the following property of state-space-carrying vector spaces:

$$V_{AB} = V_A \otimes V_B.$$

#### **Tomographic locality:**

Every state of a composite system is completely characterized by the correlations of measurements on the individual components.

#### **Conjecture:**

If some  $\Omega_{AB}$  is a **locally tomographic** composite of some  $\Omega_A$  and  $\Omega_B$ , and all three state spaces satisfy **reversibility**, and there is at least one reversible transformation  $T_{AB} \neq T_A \otimes T_B$ , then  $\Omega_{AB}$  is a (subspace of a) **quantum** state space.

#### **Conjecture:**

If some  $\Omega_{AB}$  is a **locally tomographic** composite of some  $\Omega_A$  and  $\Omega_B$ , and all three state spaces satisfy **reversibility**, and there is at least one reversible transformation  $T_{AB} \neq T_A \otimes T_B$ , then  $\Omega_{AB}$  is a (subspace of a) **quantum** state space.

- If true: Gives very clear idea of "why the quantum?".
- If wrong (which I actually hope): Physically interesting: counterexamples describe possible alternative/new physics.

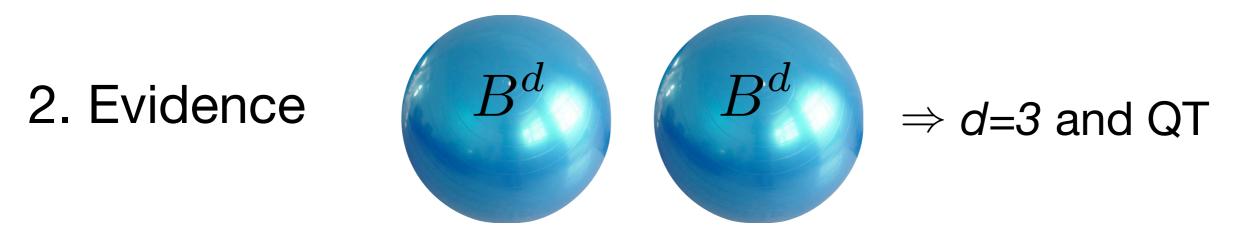
Mathematically interesting: interplay convex geometry/ group theory/ multilinear algebra.

Computersciency interesting: contrast that new theory to quantum computation!

1. The conjecture

# Outline

1. The conjecture tomographic locality + reversibility ⇒ QT



3. Multipartite interaction beyond QT?

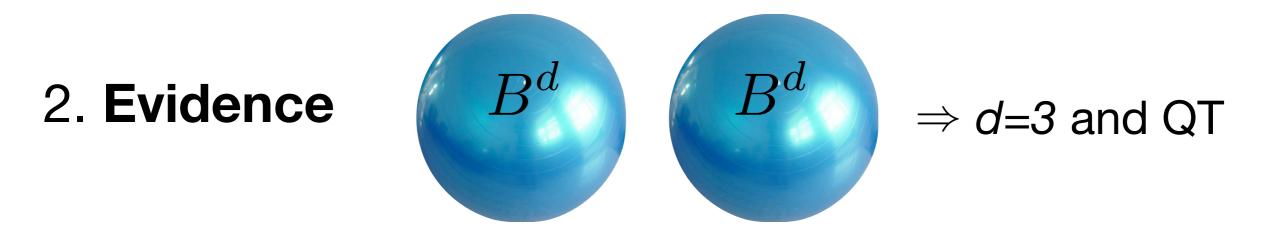


1. The conjecture

Composition and quantum theory: a conjecture, and how it could fail

#### Outline

1. The conjecture tomographic locality + reversibility  $\Rightarrow$  QT



3. Multipartite interaction beyond QT?



2. Evidence

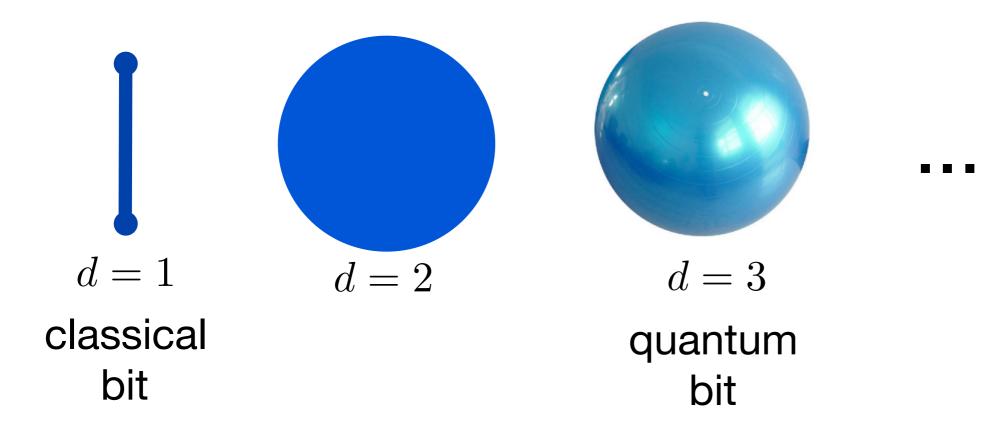
Composition and quantum theory: a conjecture, and how it could fail

For many reasons, it's natural to expect that **bits** (binary alternatives) are described by **Euclidean ball state spaces**:

2. Evidence

Composition and quantum theory: a conjecture, and how it could fail

For many reasons, it's natural to expect that **bits** (binary alternatives) are described by **Euclidean ball state spaces**:



d = 2, 5, 9 are bits in quantum theory over  $\mathbb{R}, \mathbb{H}, \mathbb{O}$ .

2. Evidence

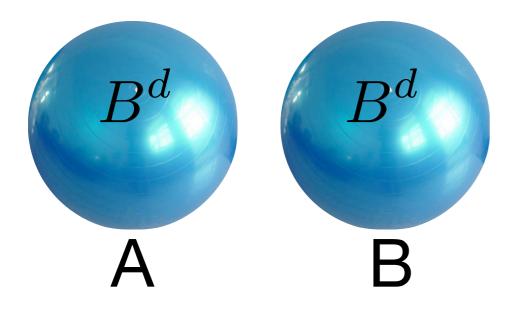
LI. Masanes, MM, D. Pérez-García, R. Augusiak, *Entanglement and the three-dimensionality of the Bloch ball*, J. Math. Phys. **55**, 122203 (2014).

2. Evidence

Composition and quantum theory: a conjecture, and how it could fail

LI. Masanes, MM, D. Pérez-García, R. Augusiak, *Entanglement and the three-dimensionality of the Bloch ball*, J. Math. Phys. **55**, 122203 (2014).

Consider two *d*-dimensional "Bloch" balls:

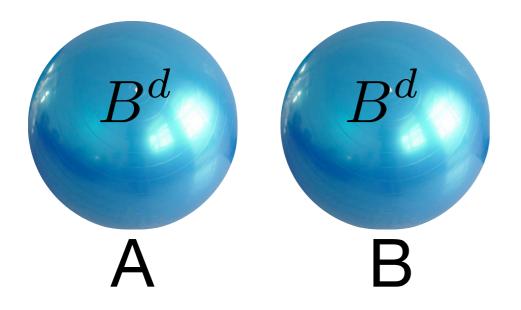


2. Evidence

Composition and quantum theory: a conjecture, and how it could fail

LI. Masanes, MM, D. Pérez-García, R. Augusiak, *Entanglement and the three-dimensionality of the Bloch ball*, J. Math. Phys. **55**, 122203 (2014).

Consider two *d*-dimensional "Bloch" balls:

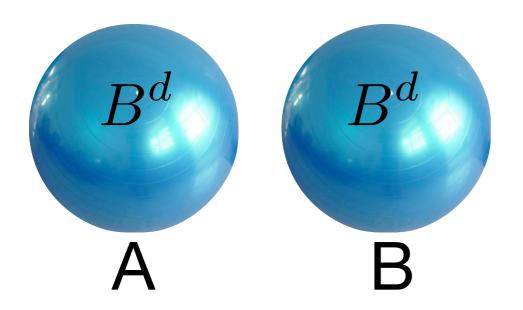


Assume tomographic locality, and reversibility for A, B, AB.

 $\Rightarrow$  group of reversible transformations  $\mathcal{G}_A = \mathcal{G}_B$ must be transitive on  $\partial B^d = S^{d-1}$ .

LI. Masanes, MM, D. Pérez-García, R. Augusiak, *Entanglement and the three-dimensionality of the Bloch ball*, J. Math. Phys. **55**, 122203 (2014).

Consider two *d*-dimensional "Bloch" balls:



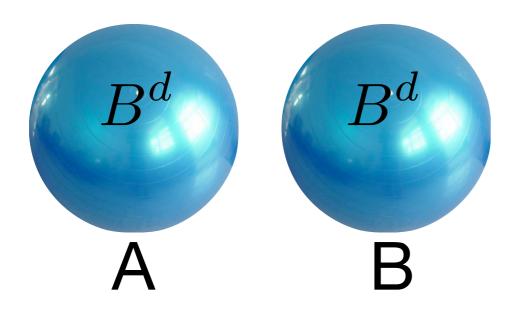
Assume tomographic locality, and reversibility for A, B, AB.

 $\Rightarrow$  group of reversible transformations  $\mathcal{G}_A = \mathcal{G}_B$ must be transitive on  $\partial B^d = S^{d-1}$ .

| abstract groups                                      | d                  |
|------------------------------------------------------|--------------------|
| $\operatorname{SO}(d)$                               | $3, 4, 5 \dots$    |
| SU(d/2)                                              | $4, 6, 8 \dots$    |
| U(d/2)                                               | $2, 4, 6, 8 \dots$ |
| $\operatorname{Sp}(d/4)$                             | 8, 12, 16          |
| $\operatorname{Sp}(d/4) \times \mathrm{U}(1)$        | 8, 12, 16          |
| $\operatorname{Sp}(d/4) \times \operatorname{SU}(2)$ | 4, 8, 12           |
| G <sub>2</sub>                                       | 7                  |
| Spin(7)                                              | 8                  |
| Spin(9)                                              | 16                 |

LI. Masanes, MM, D. Pérez-García, R. Augusiak, *Entanglement and the three-dimensionality of the Bloch ball*, J. Math. Phys. **55**, 122203 (2014).

Consider two *d*-dimensional "Bloch" balls:

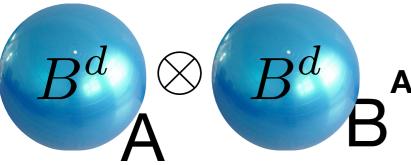


Assume tomographic locality, and reversibility for A, B, AB.

Additional assumption:  $\mathcal{G}_{AB}$  is a **connected** group.

|                                                      | -                  |
|------------------------------------------------------|--------------------|
| abstract groups                                      | d                  |
| $\operatorname{SO}(d)$                               | $3, 4, 5 \dots$    |
| SU(d/2)                                              | $4, 6, 8 \dots$    |
| U(d/2)                                               | $2, 4, 6, 8 \dots$ |
| $\operatorname{Sp}(d/4)$                             | 8, 12, 16          |
| $\operatorname{Sp}(d/4) \times \mathrm{U}(1)$        | 8, 12, 16          |
| $\operatorname{Sp}(d/4) \times \operatorname{SU}(2)$ | 4, 8, 12           |
| G <sub>2</sub>                                       | 7                  |
| Spin(7)                                              | 8                  |
| Spin(9)                                              | 16                 |

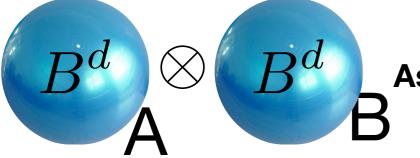
LI. Masanes, MM, D. Pérez-García, R. Augusiak, *Entanglement and the three-dimensionality of the Bloch ball*, J. Math. Phys. **55**, 122203 (2014).



**Assumptions:** Tomographic locality and reversibility for A, B, AB;  $\mathcal{G}_{AB}$  is connected (thus a Lie group).

2. Evidence

LI. Masanes, MM, D. Pérez-García, R. Augusiak, *Entanglement and the three-dimensionality of the Bloch ball*, J. Math. Phys. **55**, 122203 (2014).



 $\mathcal{S}$   $\mathcal{B}^{d}$  Assumptions: Tomographic locality and reversibility for A, B, AB;  $\mathcal{G}_{AB}$  is connected (thus a Lie group).

**Theorem.** Among all dimensions d and all groups  $\mathcal{G}_A$ , there are only the following possibilities:

- The trivial solution:  $\mathcal{G}_{AB} = \mathcal{G}_A \otimes \mathcal{G}_B$ .
- d = 3,  $\mathcal{G}_A = SO(3)$  (i.e. the quantum bit),  $\mathcal{G}_{AB} \simeq PU(4)$ , and  $\Omega_{AB}$  is equivalent to the two-qubit quantum state space.

In particular, continuous reversible interaction is only possible for d = 3, in standard complex two-qubit quantum theory.

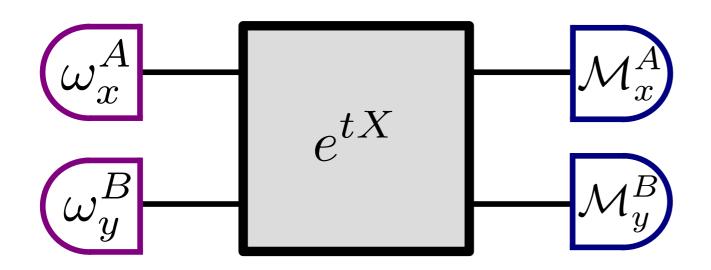
- Use Lie algebra properties to get generators that look "simple":  $X \in \mathfrak{g}_{AB} \Rightarrow X' := \int_{\mathcal{G}_A \otimes \mathcal{G}_B} (A \otimes B) X(A^{-1} \otimes B^{-1}) dA dB \in \mathfrak{g}_{AB}.$
- Positivity of probabilities imposes constraints on those generators.

**Theorem.** Among all dimensions d and all groups  $\mathcal{G}_A$ , there are only the following possibilities:

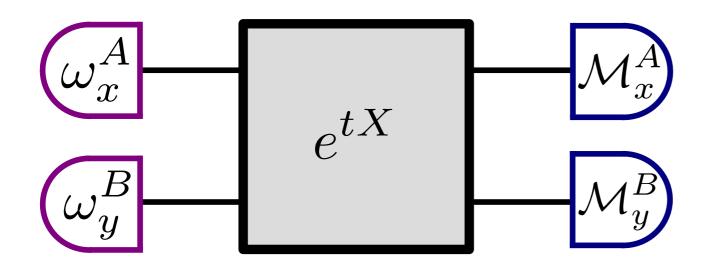
- The trivial solution:  $\mathcal{G}_{AB} = \mathcal{G}_A \otimes \mathcal{G}_B$ .
- d = 3,  $\mathcal{G}_A = SO(3)$  (i.e. the quantum bit),  $\mathcal{G}_{AB} \simeq PU(4)$ , and  $\Omega_{AB}$  is equivalent to the two-qubit quantum state space.

In particular, continuous reversible interaction is only possible for d = 3, in standard complex two-qubit quantum theory.

- Use Lie algebra properties to get generators that look "simple":  $X \in \mathfrak{g}_{AB} \Rightarrow X' := \int_{\mathcal{G}_A \otimes \mathcal{G}_B} (A \otimes B) X(A^{-1} \otimes B^{-1}) dA dB \in \mathfrak{g}_{AB}.$
- Positivity of probabilities imposes constraints on those generators.



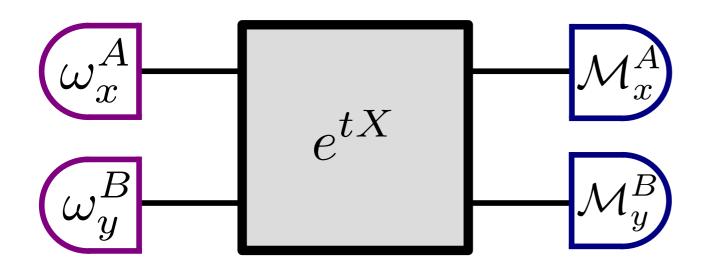
- Use Lie algebra properties to get generators that look "simple":  $X \in \mathfrak{g}_{AB} \Rightarrow X' := \int_{\mathcal{G}_A \otimes \mathcal{G}_B} (A \otimes B) X(A^{-1} \otimes B^{-1}) dA dB \in \mathfrak{g}_{AB}.$
- Positivity of probabilities imposes constraints on those generators.



$$\mathcal{M}_x^A(\omega_x^A) = 0 \quad \Rightarrow \quad \left(\mathcal{M}_x^A \otimes \mathcal{M}_y^B\right) e^{tX}(\omega_x^A \otimes \omega_y^B) \upharpoonright_{t=0} = 0$$
  
is a local minimum

2. Evidence

- Use Lie algebra properties to get generators that look "simple":  $X \in \mathfrak{g}_{AB} \Rightarrow X' := \int_{\mathcal{G}_A \otimes \mathcal{G}_B} (A \otimes B) X(A^{-1} \otimes B^{-1}) dA dB \in \mathfrak{g}_{AB}.$
- Positivity of probabilities imposes constraints on those generators.



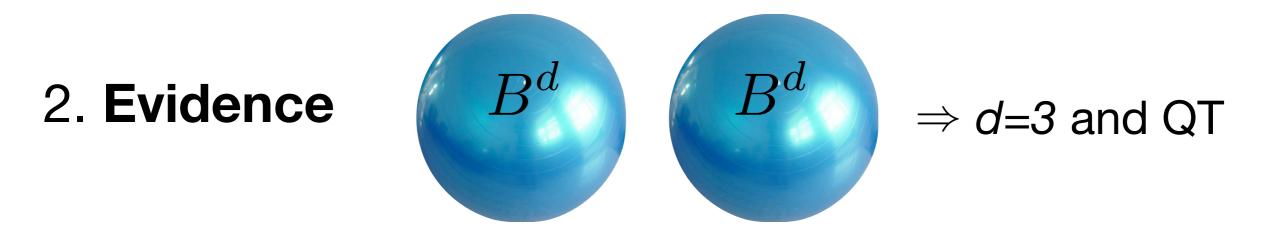
• If  $d \neq 3$  then it follows  $X = X_A \otimes \mathbf{1}_B + \mathbf{1}_A \otimes X_B.$ 

$$\mathcal{M}_x^A(\omega_x^A) = 0 \quad \Rightarrow \quad \left(\mathcal{M}_x^A \otimes \mathcal{M}_y^B\right) e^{tX}(\omega_x^A \otimes \omega_y^B) \mid_{t=0} = 0$$
  
is a local minimum.

2. Evidence

#### Outline

1. The conjecture tomographic locality + reversibility  $\Rightarrow$  QT



3. Multipartite interaction beyond QT?

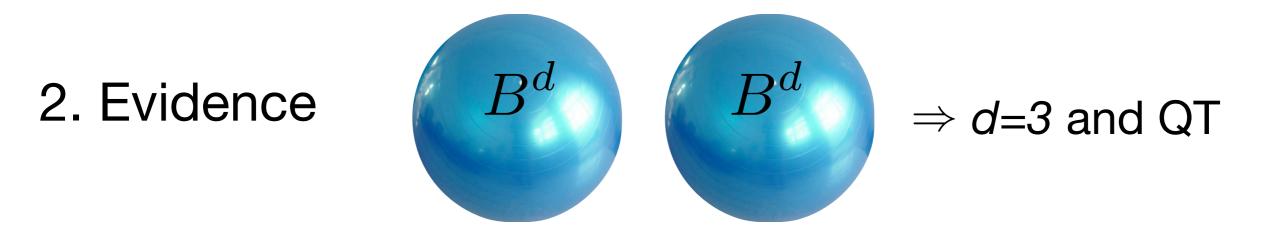


2. Evidence

Composition and quantum theory: a conjecture, and how it could fail

#### Outline

1. The conjecture tomographic locality + reversibility ⇒QT

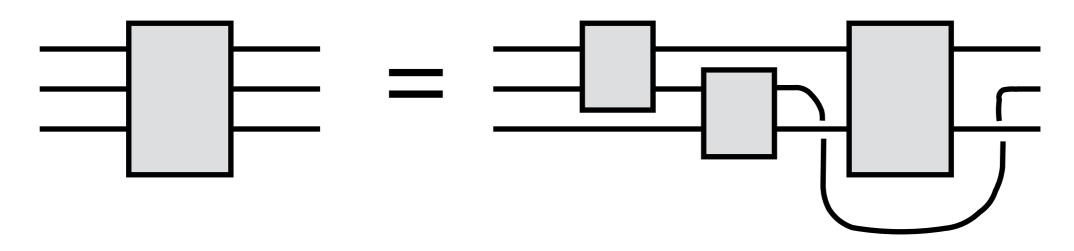


# 3. Multipartite interaction beyond QT?



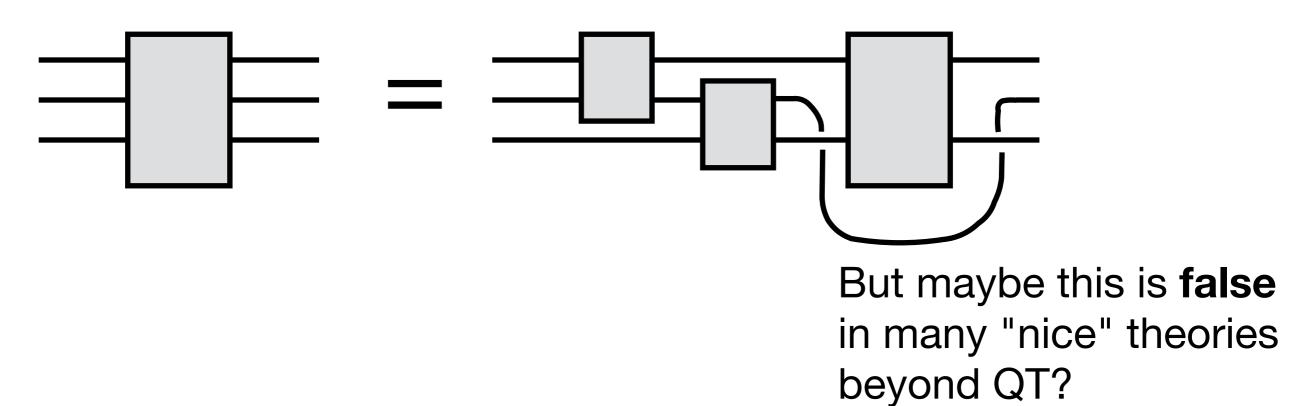
3. Multipartite interaction?

Composition and quantum theory: a conjecture, and how it could fail



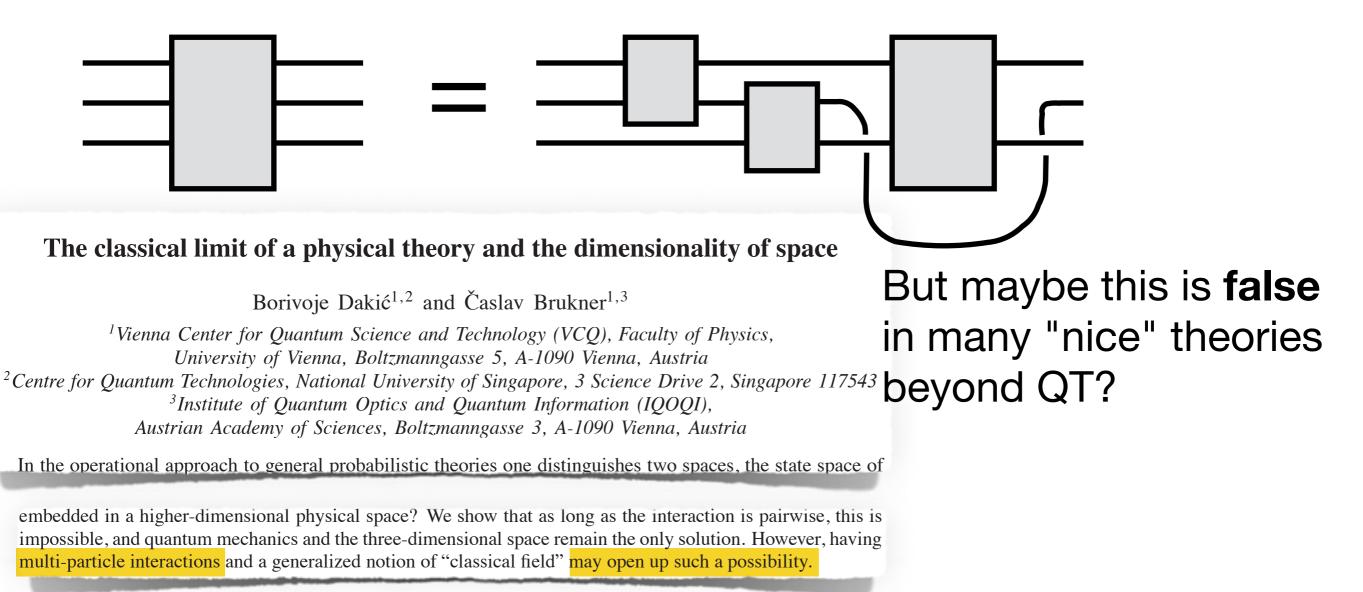
#### 3. Multipartite interaction?

Composition and quantum theory: a conjecture, and how it could fail



#### 3. Multipartite interaction?

Composition and quantum theory: a conjecture, and how it could fail



#### 3. Multipartite interaction?

The classical limit of a physical theory and the dimensionality of space

Borivoje Dakić<sup>1,2</sup> and Časlav Brukner<sup>1,3</sup>

<sup>1</sup>Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria <sup>2</sup>Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 beyond QT? <sup>3</sup>Institute of Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria

In the operational approach to general probabilistic theories one distinguishes two spaces, the state space of

embedded in a higher-dimensional physical space? We show that as long as the interaction is pairwise, this is impossible, and quantum mechanics and the three-dimensional space remain the only solution. However, having multi-particle interactions and a generalized notion of "classical field" may open up such a possibility.

#### Interaction among (*d*-1) many *d*-balls?

But maybe this is **false** in many "nice" theories beyond QT?



3. Multipartite interaction?

3. Multipartite interaction?

Joint work (in progress, unpublished) with Marius Krumm



3. Multipartite interaction?

Composition and quantum theory: a conjecture, and how it could fail

3. Multipartite interaction?

Joint work (in progress, unpublished) with Marius Krumm



**Theorem:** There is no tomographically local interaction among  $n \ge 2$  many *d*-ball state spaces, if  $d \in \{5, 7, 9, 11, 13, \ldots\}$  and if the group of local reversible transformations is SO(d).

#### 3. Multipartite interaction?

Composition and quantum theory: a conjecture, and how it could fail

3. Multipartite interaction?

Joint work (in progress, unpublished) with Marius Krumm



**Theorem:** There is no tomographically local interaction among  $n \ge 2$  many *d*-ball state spaces, if  $d \in \{5, 7, 9, 11, 13, \ldots\}$  and if the group of local reversible transformations is SO(d).

Disproves part of Brukner's and Dakic's conjecture.

#### **Conjecture:**

If some  $\Omega_{AB}$  is a **locally tomographic** composite of some  $\Omega_A$  and  $\Omega_B$ , and all three state spaces satisfy **reversibility**, and there is at least one reversible transformation  $T_{AB} \neq T_A \otimes T_B$ , then  $\Omega_{AB}$  is a (subspace of a) **quantum** state space.

- Counterexamples would be extremely interesting for physics, mathematics and computer science.
- Evidence for conjecture: only pairs of quantum Bloch balls can interact reversibly (singling out *d*=3 and the quantum state space).
  LI. Masanes, MM, D. Pérez-García, R. Augusiak, *Entanglement and the three-dimensionality of the Bloch ball*, J. Math. Phys. 55, 122203 (2014).
- Hope for "counterex".: multipartite interaction. Being killed now. :(

Summary