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Preparation,

transformation,

measurement.

�

State      = equivalence class of preparation procedures!

State space       = set of all possible states of a given system

QT:    ΩN = set of N×N density matrices 
CPT:  ΩN = set of prob. distributions (p1, . . . , pN ).

⌦
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1. The conjecture

Any compact convex set (in a real space) is a possible state space:

classical

bit

quantum

bit

"gbit"

Arbitrary convex

state space

Classical "trit"

(3-level-system)

6

FIG. 6: The set of pure states in Q3 is connected, but for the
cylinder the pure states form two circles.

FIG. 7: This is now the convex hull of a single space curve,
but one cannot inscribe copies of the classical set �2 in it.

we consider the space curve

⌦x(t) =
�
cos(t) cos(3t), cos(t) sin(3t), � sin(t)

⇥T
. (16)

Note that the curve is closed, ⌦x(t) = ⌦x(t + 2�), and be-
longs to the unit sphere, ||⌦x(t)|| = 1. Moreover

||⌦x(t)� ⌦x(t+ 1
32�)|| =

⌅
3 (17)

for every value of t. Hence every point ⌦x(t) belongs to
an equilateral triangle with vertices at

⌦x(t), ⌦x(t+ 1
32�), and ⌦x(t+ 2

32�) .

They span a plane including the z-axis for all times t.
During the time �t = 2�

3 this plane makes a full turn
about the z-axis, while the triangle rotates by the angle
2�/3 within the plane—so the triangle has returned to a
congruent position. The curve ⌦x(t) is shown in Fig. 8 a)
together with exemplary positions of the rotating trian-
gle, and Fig. 8 b) shows its convex hull C. This convex
hull is symmetric under reflections in the (x-y) and (x-z)

FIG. 8: a) The space curve ⌅x(t) modelling pure quantum
states is obtained by rotating an equilateral triangle according
to Eq. (16) —three positions of the triangle are shown); b)
The convex hull C of the curve models the set of all quantum
states.

planes. Since the set of pure states is connected this is
our best model so far of the set of quantum pure states,
although the likeness is not perfect.

It is interesting to think a bit more about the boundary
of C. There are three flat faces, two triangular ones and
one rectangular. The remaining part of the boundary
consists of ruled surfaces: they are curved, but contain
one dimensional faces (straight lines). The boundary of
the set shown in Fig. 7 has similar properties. The ruled
surfaces of C have an analogue in the boundary of the
set of quantum states Q3, we have already noted that a
generic point in the boundary of Q3 belongs to a copy of
Q2 (the Bloch ball), arising as the intersection of Q3 with
a hyperplane. The flat pieces of C have no analogues in
the boundary of Q3, apart from Bloch balls (rank two)
and pure states (rank one) no other faces exist.

Still this model is not perfect: Its set of pure states
has self-intersections. Although it is created by rotating
a triangle, the triangles are not cross-sections of C. It
is not true that every point on the boundary belongs
to a face that touches the largest inscribed sphere, as
it happens for the set of quantum states [17]. Indeed its
boundary is not quite what we want it to be, in particular

Quantum "trit".

Complicated, 8D!
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More formal definition: Set of unnormalized

states is a closed, convex, pointed, generating

cone in a (finite-dim. here) real vector space.

Transformations, measurements: analogous def's. 

All here is math. rigoros, but I keep this talk simple.
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Transformations map states to states

and are linear.

A transformation T is reversible if T-1 exists

and is a transformation, too.

QM: reversible transformations = unitaries, ⇢ 7! U⇢U †.

Reversible transformations are

linear symmetries of the state space.


They map pure states to pure states

(pure state = extremal point of convex set).

CPT: permutations, (p1, . . . , pn) 7! (p⇡(1), . . . , p⇡(n))
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• Brings in the power of group theory.

• Enforces some symmetry in the state space:
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Figure 1. General experimental setup. From left to right, there are the
preparation, transformation and measurement devices. As soon as the release
button is pressed, the preparation device outputs a physical system in the state
specified by the knobs. The next device performs the transformation specified by
its knobs (which in particular can ‘do nothing’). The device on the right carries
out the measurement specified by its knobs, and the outcome (x or x̄) is indicated
by the corresponding light.

2. Generalized probabilistic theories

In CPT there can always be a joint probability distribution for all random variables under
consideration. The framework of generalized probabilistic theories (GPTs), also called the
convex operational framework, generalizes this by allowing the possibility of random variables
that cannot have a joint probability distribution or cannot be simultaneously measured (such as
noncommuting observables in QT).

This framework assumes that at some level there is a classical reality, where it makes
sense to talk about experimentalists performing basic operations such as preparations, mixtures,
measurements and counting the relative frequencies of outcomes. These are the primary
concepts of this framework. It also provides a unified way for all GPTs to represent states,
transformations and measurements. A particular GPT specifies which of these are allowed,
but it does not tell their correspondence to actual experimental setups. On its own, a GPT
can still make nontrivial predictions such as: the maximal violation of a Bell inequality [1],
the complexity-theoretic computational power [2, 18] and, in general, all information-theoretic
properties of the theory [6].

The framework of GPTs can be stated in different ways, but all lead to the same
formalism [3–9]. This formalism is presented in this section at a very basic level, providing
some elementary results without proofs.

2.1. States

Definition of a system. We associate with a setup like figure 1 a system if, for each configuration
of the preparation, transformation and measurement devices, the relative frequencies of the
outcomes tend to a unique probability distribution (in the large sample limit).

The probability of a measurement outcome x is denoted by p(x). This outcome can be
associated with a binary measurement that tells whether x happens or not (this second event
x̄ has probability p(x̄) = 1 � p(x)). The above definition of a system allows one to associate
with each preparation procedure a list of probabilities of the outcomes of all the measurements
that can be carried out on a system. As we show in section 4.3, our requirements imply that all
these probabilities p(x) are determined by a finite set of them; the smallest such set is used to

New Journal of Physics 13 (2011) 063001 (http://www.njp.org/)

!

Alice+Bob are given (many copies) of a state.

Task: determine the state via measurements (tomography).

True in QT+CPT: can be done via local measurements.
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Tomographic locality: 
Every state of a composite system is completely 
characterized by the correlations of measurements 
on the individual components.
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Tomographic locality: 
Every state of a composite system is completely 
characterized by the correlations of measurements 
on the individual components.

More mathematical perspective:
• Given two state spaces         and         there are always 

infinitely many possible composites

• Only constraints: there are notions of "product states" and 

"product measurements".

• Tomographic locality equivalent to the following property 

of state-space-carrying vector spaces:
VAB = VA ⌦ VB .

⌦A ⌦B

⌦AB .
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Conjecture: 
If some ⌦AB is a locally tomographic composite of some

⌦A and ⌦B , and all three state spaces satisfy reversibility, and

there is at least one reversible transformation TAB 6= TA ⌦ TB ,

then ⌦AB is a (subspace of a) quantum state space.
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Conjecture: 

• If true: Gives very clear idea of "why the quantum?".

• If wrong (which I actually hope): 

Physically interesting: counterexamples describe possible 
                                    alternative/new physics. 
Mathematically interesting: interplay convex geometry/ 
                                            group theory/ multilinear algebra. 
Computersciency interesting: contrast that new theory to 
                                                 quantum computation!

If some ⌦AB is a locally tomographic composite of some

⌦A and ⌦B , and all three state spaces satisfy reversibility, and

there is at least one reversible transformation TAB 6= TA ⌦ TB ,

then ⌦AB is a (subspace of a) quantum state space.
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For many reasons, it's natural to expect that bits (binary

alternatives) are described by Euclidean ball state spaces:
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2. Evidence: composing bit balls

classical

bit

quantum

bit

d = 1 d = 3d = 2

...

d = 2, 5, 9 are bits in quantum theory over R, H, O.

For many reasons, it's natural to expect that bits (binary

alternatives) are described by Euclidean ball state spaces:
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2. Evidence: composing bit balls
Ll. Masanes, MM, D. Pérez-García, R. Augusiak, Entanglement and the three- 
dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
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2. Evidence: composing bit balls

Bd Bd

Consider two d-dimensional "Bloch" balls:

A B

Ll. Masanes, MM, D. Pérez-García, R. Augusiak, Entanglement and the three- 
dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
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Bd Bd

Consider two d-dimensional "Bloch" balls:

A B
Assume tomographic locality,

and reversibility for A, B, AB.
) group of reversible

transformations GA = GB

must be transitive on @Bd
= Sd�1

.

Ll. Masanes, MM, D. Pérez-García, R. Augusiak, Entanglement and the three- 
dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
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abstract groups d H

SO(d) 3, 4, 5 . . . V

SU(d/2) 4, 6, 8 . . . V � V⇤

U(d/2) 2, 4, 6, 8 . . . V � V⇤

Sp(d/4) 8, 12, 16 . . . V � V⇤

Sp(d/4) ⇥ U(1) 8, 12, 16 . . . V � V⇤

Sp(d/4) ⇥ SU(2) 4, 8, 12 . . . irreducible

G2 7 V

Spin(7) 8 V

Spin(9) 16 V

TABLE I. The first column is the list of abstract groups (or families of groups parametrized by d)

that are transitive on the unit sphere within Rd. The second column contains the values of d for

which this holds. The third column schematically specifies which representation of each abstract

group corresponds to the matrix group H, where V is the fundamental representation and V⇤

its dual (both irreducible). In cases where describing the representation is complicated we just

mention whether it is irreducible.

where J = (i�2) ⌦ 1
n

and 1
n

is the n ⇥ n identity matrix. For the definition of G2 see35,

for the definition of Spin(n) see29. The fundamental representation V is the defining one

(12-15). According to Table IVA, the representation H for SO(d), denoted HSO(d), is the

fundamental V , hence HSO(d) = SO(d). The representation V � V⇤ makes use of a standard

trick to generate a real representation for a group of complex matrices. The particular map

is:

Cn⇥n �! R2n⇥2n

Q 7�! 12 ⌦ reQ+ (i�2)⌦ imQ . (16)

To see that this is a homomorphism, note that the real matrix (i�2) behaves as the imag-

inary unity (i�2)2 = �12. This specifies the representation H for the abstract groups

SU(d/2),U(d/2), Sp(d/4), denoted HSU(d/2),HU(d/2),HSp(d/4). The group SO(d) with d = 2

is not in Table IVA because SO(2) = HU(1), and we choose to include it in the U(d/2)

family because SO(2) is reducible, while SO(d) for d � 3 not. Another coincidence is

17

Ll. Masanes, MM, D. Pérez-García, R. Augusiak, Entanglement and the three- 
dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
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SU(d/2),U(d/2), Sp(d/4), denoted HSU(d/2),HU(d/2),HSp(d/4). The group SO(d) with d = 2

is not in Table IVA because SO(2) = HU(1), and we choose to include it in the U(d/2)

family because SO(2) is reducible, while SO(d) for d � 3 not. Another coincidence is
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Ll. Masanes, MM, D. Pérez-García, R. Augusiak, Entanglement and the three- 
dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).
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Theorem. Among all dimensions d and all groups GA, there are
only the following possibilities:

• The trivial solution: GAB = GA ⌦ GB .

• d = 3, GA = SO(3) (i.e. the quantum bit), GAB ' PU(4), and
⌦AB is equivalent to the two-qubit quantum state space.

In particular, continuous reversible interaction is only possible
for d = 3, in standard complex two-qubit quantum theory.
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• d = 3, GA = SO(3) (i.e. the quantum bit), GAB ' PU(4), and
⌦AB is equivalent to the two-qubit quantum state space.

In particular, continuous reversible interaction is only possible
for d = 3, in standard complex two-qubit quantum theory.

Proof sketch: 
•  Use Lie algebra properties to get generators that look "simple":


• Positivity of probabilities imposes constraints on those generators.

X 2 gAB ) X 0 :=
R
GA⌦GB

(A⌦B)X(A�1 ⌦B�1)dAdB 2 gAB .
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for all x, y 2 Rd with |x| = |y| = 1. By considering other
circuits of this kind, we obtain a long list of constraint
equalities and inequalities which must be satisfied by all
global Lie algebra elements X.

FIG. 7: Circuit model which yields constraints for the global
Lie algebra elements X. We prepare a pure product state
!A

x

!B

y

, apply the transformation exp(tX), and perform a
product measurement MA

x

MB

y

. Since this gives probability 1
for t = 0, and probabilities cannot be larger than 1 for other
(small) t, this implies that the derivative at t = 0 must vanish,
and the second derivative must be non-positive.

Surprisingly, as shown in Appendix A and in [54], if
d 6= 3, then the only matrices X which satisfy all con-
straints are those of the form X = XA + XB . And
these elements generate non-interacting time evolution
of product form: exp(tX) = exp(tXA) exp(tXB). Thus,
if d 6= 3, HAB contains only product transformations,
and Postulate 4 cannot be satisfied.

Theorem 2. From Postulates 1–4 it follows that
the spatial dimension must be d = 3.

The main reason why d = 3 is special becomes visible
by inspection of the proof in [54]. It boils down to the
group-theoretic fact that (at least for d � 3) the subgroup
of SO(d) which fixes a given vector (that is, SO(d� 1))
is Abelian only if d = 3. In other words, the fact that
rotations commute in two dimensions, but not in higher
dimensions is the main reason why d = 3 survives. The
cases d = 1 and d = 2 are special as well, but are ruled
out in the proof for other reasons.

It remains to show that we actually get quantum the-
ory for two direction bits if d = 3. We already know that
the dimension of the global state space is dim⌦AB =
(d+1)(d+1)� 1 = 15, which agrees with the number of
real parameters in a complex 4⇥4 density matrix. Thus,
we can embed ⌦AB in the real space of Hermitian 4⇥ 4-
matrices of unit trace. Now we have global Lie algebra
elements X 2 hAB that are not just sums of local genera-
tors, i.e. X 6= XA+XB . However, as shown in [55], these
elements are still highly restricted: they generate unitary
conjugations, i.e. transformations of the form ⇢ 7! U⇢U†.

By Postulate 4, at least one of these unitaries must be
entangling. Moreover, all local unitary transformations
are possible (in the ball representation, these are the ro-
tations in SO(3)). It is a well-known fact from quantum
computation [56] that a set of unitaries of this kind gen-
erates the set of all unitaries – that is, every map of the

form ⇢ 7! U⇢U † must be contained in the global trans-
formation group HAB ✓ GAB .
The orbit of this group on pure product states gen-

erates all pure quantum states, and one can show [55]
that there cannot be any additional non-quantum states.
Thus, we have recovered the state space of quantum the-
ory on two qubits. Due to positivity, all e↵ects must be
quantum e↵ects; in the noisy case (i.e. c 6= 1/2 or a < 1),
not all quantum e↵ects may actually be implementable –
that is, we might have a restricted set of measurements.
We have thus proven:

Theorem 3. From Postulates 1–4, it follows that
the state space of two direction bits is two-qubit
quantum state space (i.e. the set of 4 ⇥ 4 density
matrices), and time evolution is given by a one-
parameter group of unitaries, ⇢ 7! U(t)⇢U(t)†.

As a simple consequence, there exists some 4⇥4 Hermi-
tian matrix H such that U(t) = exp(�iHt), i.e. a Hamil-
tonian which generates time evolution according to the
Schrödinger equation.

VII. CONCLUSIONS

We have derived two facts about physics
from information-theoretic postulates: the three-
dimensionality of space [57], and the fact that proba-
bilities of measurement outcomes for some systems are
described by quantum theory. In order to do this, we
assumed that there exist “reasonable” physical systems
which, in a certain sense, carry minimal amounts of
directional information.
Our result supports and clarifies the point of view that

the geometric structure of spacetime and the probabilis-
tic structure of quantum theory are closely intertwined,
similar in spirit to [1–4, 58–60]. As one can see in Fig. 3,
this conclusion becomes particularly obvious in the con-
text of convex state spaces. This interrelation is not only
axiomatic, but also operational: as we have shown in
Sec. V, observers can measure – or even define – physical
angles by measuring probabilities.
Furthermore, these findings suggest exploring possible

generalizations: the approach to construct state spaces
from physical symmetry properties [70], together with
minimality assumptions, might reproduce quantum sys-
tems of higher spin, or even physically interesting non-
quantum state spaces that have so far remained unex-
plored.
In summary, there seem to be two possible interpreta-

tions of the results in this paper. First, the results might
simply be mathematical coincidence, without any deep
physical reason underlying them. This is perfectly con-
ceivable; in this case, the main contribution of this paper
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The classical limit of a physical theory and the dimensionality of space
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In the operational approach to general probabilistic theories one distinguishes two spaces, the state space of
the “elementary systems” and the physical space in which “laboratory devices” are embedded. Each of those
spaces has its own dimension– the minimal number of real parameters (coordinates) needed to specify the state
of system or a point within the physical space. Within an operational framework to a physical theory, the two
dimensions coincide in a natural way under the following “closeness” requirement: the dynamics of a single
elementary system can be generated by the invariant interaction between the system and the “macroscopic trans-
formation device” that itself is described from within the theory in the macroscopic (classical) limit. Quantum
mechanics fulfils this requirement since an arbitrary unitary transformation of an elementary system (spin-1/2
or qubit) can be generated by the pairwise invariant interaction between the spin and the constituents of a large
coherent state (“classical magnetic field”). Both the spin state space and the “classical field” are then embedded
in the Euclidean three-dimensional space. Can we have a general probabilistic theory, other than quantum the-
ory, in which the elementary system (“generalized spin”) and the “classical fields” generating its dynamics are
embedded in a higher-dimensional physical space? We show that as long as the interaction is pairwise, this is
impossible, and quantum mechanics and the three-dimensional space remain the only solution. However, having
multi-particle interactions and a generalized notion of “classical field” may open up such a possibility.

I. INTRODUCTION

“Physical space is not a space of states” writes Bengtsson
in his article entitled “Why is space three dimensional?”1. In-
deed, although the state space dimension for a macroscopic
object is exponentially large (in the number of object’s con-
stituents), we still find ourselves organizing data into a three-
dimensional manifold called “space”. Why is this discrep-
ancy? Can there be more dimensions? In past different ap-
proaches have been taken to show that the three-dimensional
space is special, such as bio-topological argument2, stabil-
ity of planet orbits2, stability of atoms3 or elementary parti-
cle properties4. The existence of extra dimensions has been
proposed as a possibility for physics beyond the standard
model5–10.

In this work we will address the questions given above
within the operational approach to general probabilistic theo-
ries11,12,16. There the basic ingredients of the theory are primi-
tive laboratory procedures by which physical systems are pre-
pared, transformed and measured by laboratory devices, but
the systems are not necessarily described by quantum theory.
General probabilistic theories are shown to share many fea-
tures that one previously have expected to be uniquely quan-
tum, such as probabilistic predictions for individual outcomes,
the impossibility of copying unknown states (no cloning)14, or
violation of Bell’s inequalities13,58. Why then nature obeys
quantum mechanics rather than other probabilistic theory?
Recently, there have been several approaches, answering this
question by reconstructing quantum theory from a plausible
set of axioms that demarcate phenomena that are exclusively
quantum from those that are common to more general proba-
bilistic theories15–30.

In probabilistic theories the macroscopic laboratory devices
are standardly assumed to be classically describable, but are

not further analyzed. The “position” of the switch at the
transformation device or the record on the observation screen
have only an abstract meaning and are not linked to the con-
cepts of position, time, direction, or energy of “traditional”
physics (or to use Barnum’s words “the full, meaty physical
theory” is still missing31). As a result of the reconstructions
of quantum theory, one derives a finite-dimensional, or count-
able infinite-dimensional, Hilbert space as an operationally
testable, abstract formalism concerned with predictions of fre-
quency counts in future experiments with no appointment of
concrete physical labels to physical states or measurement
outcomes. In standard textbook approach to quantum me-
chanics this appointment is “inherited” from classical me-
chanics and is formalized through the first quantization – the
set of explicit rules that relate classical phase variables with
quantum-mechanical operators. However, these rules lack an
immediate operational justification. This calls for a “comple-
tion” of operational approaches to quantum mechanics with
the “meaty physics”. Our work can be understood as a step in
this direction.

In an operational approach one interprets parameters that
describe physical states, transformations, and measurements,
as the parameters that specify the configurations of macro-
scopic instruments in physical space by which the state is pre-
pared, transformed, and measured. Within this approach it
is natural to assume the state space and the physical space
to be isomorphic to each other. The isomorphism of the
two spaces is realized in quantum mechanics for the ele-
mentary directional degree of freedom (spin-1/2). The state
space of the spin is a three-dimensional unit ball (the Bloch
ball) and its dimension and the symmetry coincide with those
of the Euclidian (non-relativistic) three-dimensional space in
which classical macroscopic instruments are embedded. This
was first pointed out by von Weizsäcker who writes32: “It

ar
X

iv
:1

30
7.

39
84

v1
  [

qu
an

t-p
h]

  1
5 

Ju
l 2

01
3

The classical limit of a physical theory and the dimensionality of space
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pared, transformed and measured by laboratory devices, but
the systems are not necessarily described by quantum theory.
General probabilistic theories are shown to share many fea-
tures that one previously have expected to be uniquely quan-
tum, such as probabilistic predictions for individual outcomes,
the impossibility of copying unknown states (no cloning)14, or
violation of Bell’s inequalities13,58. Why then nature obeys
quantum mechanics rather than other probabilistic theory?
Recently, there have been several approaches, answering this
question by reconstructing quantum theory from a plausible
set of axioms that demarcate phenomena that are exclusively
quantum from those that are common to more general proba-
bilistic theories15–30.

In probabilistic theories the macroscopic laboratory devices
are standardly assumed to be classically describable, but are

not further analyzed. The “position” of the switch at the
transformation device or the record on the observation screen
have only an abstract meaning and are not linked to the con-
cepts of position, time, direction, or energy of “traditional”
physics (or to use Barnum’s words “the full, meaty physical
theory” is still missing31). As a result of the reconstructions
of quantum theory, one derives a finite-dimensional, or count-
able infinite-dimensional, Hilbert space as an operationally
testable, abstract formalism concerned with predictions of fre-
quency counts in future experiments with no appointment of
concrete physical labels to physical states or measurement
outcomes. In standard textbook approach to quantum me-
chanics this appointment is “inherited” from classical me-
chanics and is formalized through the first quantization – the
set of explicit rules that relate classical phase variables with
quantum-mechanical operators. However, these rules lack an
immediate operational justification. This calls for a “comple-
tion” of operational approaches to quantum mechanics with
the “meaty physics”. Our work can be understood as a step in
this direction.

In an operational approach one interprets parameters that
describe physical states, transformations, and measurements,
as the parameters that specify the configurations of macro-
scopic instruments in physical space by which the state is pre-
pared, transformed, and measured. Within this approach it
is natural to assume the state space and the physical space
to be isomorphic to each other. The isomorphism of the
two spaces is realized in quantum mechanics for the ele-
mentary directional degree of freedom (spin-1/2). The state
space of the spin is a three-dimensional unit ball (the Bloch
ball) and its dimension and the symmetry coincide with those
of the Euclidian (non-relativistic) three-dimensional space in
which classical macroscopic instruments are embedded. This
was first pointed out by von Weizsäcker who writes32: “It

But maybe this is false
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3. Multipartite interaction?

In QT, multipartite interactions can be decomposed into pairs:
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In the operational approach to general probabilistic theories one distinguishes two spaces, the state space of
the “elementary systems” and the physical space in which “laboratory devices” are embedded. Each of those
spaces has its own dimension– the minimal number of real parameters (coordinates) needed to specify the state
of system or a point within the physical space. Within an operational framework to a physical theory, the two
dimensions coincide in a natural way under the following “closeness” requirement: the dynamics of a single
elementary system can be generated by the invariant interaction between the system and the “macroscopic trans-
formation device” that itself is described from within the theory in the macroscopic (classical) limit. Quantum
mechanics fulfils this requirement since an arbitrary unitary transformation of an elementary system (spin-1/2
or qubit) can be generated by the pairwise invariant interaction between the spin and the constituents of a large
coherent state (“classical magnetic field”). Both the spin state space and the “classical field” are then embedded
in the Euclidean three-dimensional space. Can we have a general probabilistic theory, other than quantum the-
ory, in which the elementary system (“generalized spin”) and the “classical fields” generating its dynamics are
embedded in a higher-dimensional physical space? We show that as long as the interaction is pairwise, this is
impossible, and quantum mechanics and the three-dimensional space remain the only solution. However, having
multi-particle interactions and a generalized notion of “classical field” may open up such a possibility.

I. INTRODUCTION

“Physical space is not a space of states” writes Bengtsson
in his article entitled “Why is space three dimensional?”1. In-
deed, although the state space dimension for a macroscopic
object is exponentially large (in the number of object’s con-
stituents), we still find ourselves organizing data into a three-
dimensional manifold called “space”. Why is this discrep-
ancy? Can there be more dimensions? In past different ap-
proaches have been taken to show that the three-dimensional
space is special, such as bio-topological argument2, stabil-
ity of planet orbits2, stability of atoms3 or elementary parti-
cle properties4. The existence of extra dimensions has been
proposed as a possibility for physics beyond the standard
model5–10.

In this work we will address the questions given above
within the operational approach to general probabilistic theo-
ries11,12,16. There the basic ingredients of the theory are primi-
tive laboratory procedures by which physical systems are pre-
pared, transformed and measured by laboratory devices, but
the systems are not necessarily described by quantum theory.
General probabilistic theories are shown to share many fea-
tures that one previously have expected to be uniquely quan-
tum, such as probabilistic predictions for individual outcomes,
the impossibility of copying unknown states (no cloning)14, or
violation of Bell’s inequalities13,58. Why then nature obeys
quantum mechanics rather than other probabilistic theory?
Recently, there have been several approaches, answering this
question by reconstructing quantum theory from a plausible
set of axioms that demarcate phenomena that are exclusively
quantum from those that are common to more general proba-
bilistic theories15–30.

In probabilistic theories the macroscopic laboratory devices
are standardly assumed to be classically describable, but are

not further analyzed. The “position” of the switch at the
transformation device or the record on the observation screen
have only an abstract meaning and are not linked to the con-
cepts of position, time, direction, or energy of “traditional”
physics (or to use Barnum’s words “the full, meaty physical
theory” is still missing31). As a result of the reconstructions
of quantum theory, one derives a finite-dimensional, or count-
able infinite-dimensional, Hilbert space as an operationally
testable, abstract formalism concerned with predictions of fre-
quency counts in future experiments with no appointment of
concrete physical labels to physical states or measurement
outcomes. In standard textbook approach to quantum me-
chanics this appointment is “inherited” from classical me-
chanics and is formalized through the first quantization – the
set of explicit rules that relate classical phase variables with
quantum-mechanical operators. However, these rules lack an
immediate operational justification. This calls for a “comple-
tion” of operational approaches to quantum mechanics with
the “meaty physics”. Our work can be understood as a step in
this direction.

In an operational approach one interprets parameters that
describe physical states, transformations, and measurements,
as the parameters that specify the configurations of macro-
scopic instruments in physical space by which the state is pre-
pared, transformed, and measured. Within this approach it
is natural to assume the state space and the physical space
to be isomorphic to each other. The isomorphism of the
two spaces is realized in quantum mechanics for the ele-
mentary directional degree of freedom (spin-1/2). The state
space of the spin is a three-dimensional unit ball (the Bloch
ball) and its dimension and the symmetry coincide with those
of the Euclidian (non-relativistic) three-dimensional space in
which classical macroscopic instruments are embedded. This
was first pointed out by von Weizsäcker who writes32: “It

ar
X

iv
:1

30
7.

39
84

v1
  [

qu
an

t-p
h]

  1
5 

Ju
l 2

01
3

The classical limit of a physical theory and the dimensionality of space
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In the operational approach to general probabilistic theories one distinguishes two spaces, the state space of
the “elementary systems” and the physical space in which “laboratory devices” are embedded. Each of those
spaces has its own dimension– the minimal number of real parameters (coordinates) needed to specify the state
of system or a point within the physical space. Within an operational framework to a physical theory, the two
dimensions coincide in a natural way under the following “closeness” requirement: the dynamics of a single
elementary system can be generated by the invariant interaction between the system and the “macroscopic trans-
formation device” that itself is described from within the theory in the macroscopic (classical) limit. Quantum
mechanics fulfils this requirement since an arbitrary unitary transformation of an elementary system (spin-1/2
or qubit) can be generated by the pairwise invariant interaction between the spin and the constituents of a large
coherent state (“classical magnetic field”). Both the spin state space and the “classical field” are then embedded
in the Euclidean three-dimensional space. Can we have a general probabilistic theory, other than quantum the-
ory, in which the elementary system (“generalized spin”) and the “classical fields” generating its dynamics are
embedded in a higher-dimensional physical space? We show that as long as the interaction is pairwise, this is
impossible, and quantum mechanics and the three-dimensional space remain the only solution. However, having
multi-particle interactions and a generalized notion of “classical field” may open up such a possibility.

I. INTRODUCTION

“Physical space is not a space of states” writes Bengtsson
in his article entitled “Why is space three dimensional?”1. In-
deed, although the state space dimension for a macroscopic
object is exponentially large (in the number of object’s con-
stituents), we still find ourselves organizing data into a three-
dimensional manifold called “space”. Why is this discrep-
ancy? Can there be more dimensions? In past different ap-
proaches have been taken to show that the three-dimensional
space is special, such as bio-topological argument2, stabil-
ity of planet orbits2, stability of atoms3 or elementary parti-
cle properties4. The existence of extra dimensions has been
proposed as a possibility for physics beyond the standard
model5–10.

In this work we will address the questions given above
within the operational approach to general probabilistic theo-
ries11,12,16. There the basic ingredients of the theory are primi-
tive laboratory procedures by which physical systems are pre-
pared, transformed and measured by laboratory devices, but
the systems are not necessarily described by quantum theory.
General probabilistic theories are shown to share many fea-
tures that one previously have expected to be uniquely quan-
tum, such as probabilistic predictions for individual outcomes,
the impossibility of copying unknown states (no cloning)14, or
violation of Bell’s inequalities13,58. Why then nature obeys
quantum mechanics rather than other probabilistic theory?
Recently, there have been several approaches, answering this
question by reconstructing quantum theory from a plausible
set of axioms that demarcate phenomena that are exclusively
quantum from those that are common to more general proba-
bilistic theories15–30.

In probabilistic theories the macroscopic laboratory devices
are standardly assumed to be classically describable, but are

not further analyzed. The “position” of the switch at the
transformation device or the record on the observation screen
have only an abstract meaning and are not linked to the con-
cepts of position, time, direction, or energy of “traditional”
physics (or to use Barnum’s words “the full, meaty physical
theory” is still missing31). As a result of the reconstructions
of quantum theory, one derives a finite-dimensional, or count-
able infinite-dimensional, Hilbert space as an operationally
testable, abstract formalism concerned with predictions of fre-
quency counts in future experiments with no appointment of
concrete physical labels to physical states or measurement
outcomes. In standard textbook approach to quantum me-
chanics this appointment is “inherited” from classical me-
chanics and is formalized through the first quantization – the
set of explicit rules that relate classical phase variables with
quantum-mechanical operators. However, these rules lack an
immediate operational justification. This calls for a “comple-
tion” of operational approaches to quantum mechanics with
the “meaty physics”. Our work can be understood as a step in
this direction.

In an operational approach one interprets parameters that
describe physical states, transformations, and measurements,
as the parameters that specify the configurations of macro-
scopic instruments in physical space by which the state is pre-
pared, transformed, and measured. Within this approach it
is natural to assume the state space and the physical space
to be isomorphic to each other. The isomorphism of the
two spaces is realized in quantum mechanics for the ele-
mentary directional degree of freedom (spin-1/2). The state
space of the spin is a three-dimensional unit ball (the Bloch
ball) and its dimension and the symmetry coincide with those
of the Euclidian (non-relativistic) three-dimensional space in
which classical macroscopic instruments are embedded. This
was first pointed out by von Weizsäcker who writes32: “It
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Theorem: There is no tomographically local interaction among
n � 2 many d-ball state spaces, if d 2 {5, 7, 9, 11, 13, . . .}
and if the group of local reversible transformations is SO(d).

Disproves part of Brukner's and Dakic's conjecture.
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Summary

Conjecture: 
If some ⌦AB is a locally tomographic composite of some

⌦A and ⌦B , and all three state spaces satisfy reversibility, and

there is at least one reversible transformation TAB 6= TA ⌦ TB ,

then ⌦AB is a (subspace of a) quantum state space.

• Counterexamples would be extremely interesting for physics, 
mathematics and computer science.

• Evidence for conjecture: only pairs of quantum Bloch balls can 
interact reversibly (singling out d=3 and the quantum state space).

• Hope for "counterex".: multipartite interaction. Being killed now. :(

Ll. Masanes, MM, D. Pérez-García, R. Augusiak, Entanglement and the three- 
dimensionality of the Bloch ball, J. Math. Phys. 55, 122203 (2014).


