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Background

Here, we consider agnostic learning, with a special focus on
linear threshold functions, over finite discrete domains.

We say that f : {—1,1}" — {—1,1} is a linear threshold function
(LTF) if there exists weights{w;}"_, such that

f(@) = sgn(wo + >_;—; wiz;)




Background

Here, we consider agnostic learning, with a special focus on
linear threshold functions, over finite discrete domains.

We say thatC is agnostically learnable with respect toD
if there is an efficient algorithm that outputs & such that

Prey~plt(x) # h(x)] < minfec Preyplt(x) # f(x)| + €

for a target function t.



Background

[KlivansO’DonnellServedio02] showed that intersections of k
LTF’s are learnable in time n®®*°/<) _(Uniform on{—1,1}" )

The algorithm [LinialMansourNisan91] is simple regression: solve
min ||£ — p|3
s.t. deg(p) < d

with d = O(k?/€?*) . Output h = sgn(p)



Background

[KKMSO05] showed that intersections of k LTF’s are agnostically
learnable in time n°*"/<) _(Uniform on{—1,1}")

The algorithm [KKMSO05] is simple regression: solve
min ||t — pl|4
s.t. deg(p) < d
withd = O(k*/€*) . Output » = sgn(p) .

These proofs use the noise sensitivity method.



Background

fo{-L1}" = {-1,1}
Inf)(f) = Pra[f(a) # f(x®)

NS;(f) = Pra[f(z) # f(Ns(x))]

z) : o
FHOER LRSI

Independently mark each coordinate frozen with probability1 —9 .

Ns(

Rerandomize the unfrozen coordinates



Background
NSs(f) = Pra[f(x) # f(Ns(x))]

Key fact: NSé(f) — ng[n](% - %(1 — 25)|S|)f(5)2
where [ = ng[n] f(S)xs

Parseval: ) g £(S)2 =1 for Boolean functions

The distance from % for the multiplier at degree ¢ = | S| decays
at an exponential rate in the degree.

Low noise sensitivity E> lots of mass on low-degree terms E>
Low degree approximator I:> agnostic learning via regression
[KKMSO5]



Background

NSs(f) = Pra|f(x) # f(Ns(x))]
f:{_lal}n >{ 171}

[Peres]: If fis an LTF, thenNS;( f) < Vo .

Union bound: If f depends on k LTF’s, then NS5(f) < k\/g :

Setting 0 = €*/k* gives NS;(f) < O(¢?), which implies a good
approximator in ¢, distance (via ¢2 distance).

Works in product distributions too. [BlaisO’DonnellW.08]



Background
NSs(f) = Pra[f(x) # f(Ns(x))]

approximator in ¢, distance (via ¢2 distance).

Works in product distributions too. [BlaisO’DonnellW.08]



The setup

A permutation invariant distribution is a distribution D over
{—1,1}" such that D(z) = D(oz) for any permutation o .

A distribution is permutation invariant if and only if it is a
mixture of distributions that are uniform over (") .

For learning, we can focus on learning algorithms for the
uniform distribution over (7)) .

We unify these cases by appealing to the symmetric group.



The setup

The uniform distribution over () is interesting, and can be
helpful over problems over{—1,1}".

This leads to optimally weak-learning monotone functions,
settling a question of [BlumBurchLangford95].




The setup
qg: ([Z]) — R

g( -1 -1 1 1 1 -1 )

!

f( k+32 k+6 3 k 1 k-1 )

This is a k!(n-k)!-to-one mapping,
so the uniform distribution is induced.

SRS




Roadmap to agnostic learning

CSymn 2RO

Define NSs(f), and obtain a nice Fourier representation.

Show that the distance from % for the multipliers decays at an
exponential rate in the degree.

BoundNSs( f) for LTF’s (and functions of LTF’s by union bound).

Efficient agnostic learning over permutation invariant
distributions follows from [KKMSO05].



Representation theory basics

f:Sym, — R

degree

A representation is a map p : Sym,, — R% x4 suych that

p(o102) = p(o1)p(o2)

_ 0
Irreducible: can not be written as C L [ /001 05 ] C

Young’s Orthogonal Representation (YOR) gives a complete
set of irreducible representations.



Representation theory basics

f:Sym, — R

degree

A representation is a map p : Sym,, — R% x4 suych that

contributes d%

p(o102) = p(01)p(02) many function:

Young’s Orthogonal Representation (YOR) gives a complete
set of irreducible representations.

The functions {p:;} form an orthogonal basis for the vector
space of functions f : Sym, — R.



Representation theory basics

f:Sym, — R

degree

A representation is a map p : Sym,, — R% x4 suych that Not too bad

plo1oz) = p(o1)p(o2)
fo = E[f(a)p(o)] f=3"dptr(f) p(o))

Frobenius norm;
Parseval: f:Sym, — {—17 1} imp“eszdepr? _ 1 sumsqg’s of entries
P



Representation theory basics

f:Sym, — R

degree

A representation is a map p : Sym,, — R% x4 suych that

p(o102) = p(o1)p(o2)

Fantastic result: these irreducible representations can be indexed
by partitions of n.

AR, A= (A, Ag, .. M), A > 0

We will often refer to representations by the corresponding
partition.



Partitions
AFEn, A=A, A, ), A >0

Visualized as Young diagrams:

(4) 31 (22 (2.1 (1,1,1,1)
ne Standard Young tableaux:
1{2 113
11213 1124 11314 1]2 113 3 2
4 3 2 34 214 4 4

(\)
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Partitions
AFEn, A=A, A, ), A >0

Letdx be the number of standard Young tableaux with shape.

dy =d,,

Inc.

Standard Young tableaux: 1

1 1 114 |2

1 3 1 11314 1]2 1{3 3 2 2 3
4 3 2 34 214 4 4 3 4
112]9 2 2 2 2 2 |
1«4+ 3“4+ 2 + 3+ 1 = 24 = 4!



Partitions
)\I—n,)\: ()\1,)\2,...,)\7«),)\2‘ > 0

As “polynomials overSym,,”, the degree of the representations
corresponding to A have degree n — ;. (Over{l[za(i) = jlti<ij<n ,
or transferring from Symxinto a subset ofi0, 1} )

Standard Young tableaux:

Inc. . 1

linear 1121 [113] [174] [2

112731 [11274] [17374] [172] 1131 I3 5 o1 I3

4 3 2 3lal 202] [4 4 31 |4
1127374

sign of permutation
constant




Noise Sensitivity

First step: Influence of a set

Inf®) = Pr, [f(o) # (o))

O'(S) has coordinates in S shuffled

Inf(3:%6)

W
1
cO 0O OO b b
[EEY
S B~ OO B 0O
~ O B 00 O 00



Noise Sensitivity

k=2

Iﬂf(s) — PI‘O. [f(o') # f(o-(s))] [Diaconis89]

There is a nice expression for the average of thaam
. This is nontrivial.

1 1dy/
= S (- 1 I
— AFn

dk/(k) is the number of Frobenius norm

1121314} -1k contributes nothing to influence
(constant)

contributes lots to influence
(sign of permutation)




Noise Sensitivity

Forf: Sym, — {—1,1} , we define noise sensitivity NS;(f) as:

NS;5(f) = Pro ny(o)f(0) # f(Ns(o))]

T ae s 0 00

Independently mark each coordinate frozen with probability1 —9 .

N

Uniformly shuffle the unfrozen coordinates

Trick: pick the number of unfrozen coordinates first.



Noise Sensitivity

Forf: Sym, — {—1,1} , we define noise sensitivity NSs(f) as:

NS;5(f) = Pro ny(o)f(0) # f(Ns(o))]

U amr o e

NS5(f) = tk[an|s|:kInfS(f)]
k ~ Binomial(n, )




Noise Sensitivity

NSs(f) = Eg [an|s|:kInfS(f)]
k ~ Binomial(n, )

d A
N8(/) = B [ (5 - 3 242 ) ]

NS5 () = S (Ex |5 - ]) NG

Y Al =1

AEn

Analyze this



Roadmap to agnostic learning

(sw 2RO

;eﬁne NS(S , and obtain a nice Fourier representation.

Show that the distance from % for the multipliers decays at an
exponential rate in the degree.

Bound NS ( f) for LTF’s (and functions of LTF’s by union bound).

Efficient agnostic learning over permutation invariant
distributions follows from [KKMSO05].



Minimum noise

\dard Young tableaux

k=2
d [Diaconis89]
ki 96] give a handy formula for AC;(’“) :

\EEE k A
. S Ty k4

4 dy/e)  dsjk) .
1: > f D>
W.] 5 dﬁ 1 > 3

5 <> Vr 22:1 Ai > 22:1 Bi

Maximum noise




Standard Young tableaux

W S B8/ g

Theorem [W.]: d)\ = Clﬁ

A B VrY N> B

Proof sketch: By induction, suffices to show the theorem for
A= (t+1,tt,....,t,t—1) and B = (t,t,¢,...,t,1),

This case and the induction heavily use the [0096] formula.

This confirms that “tall” partitions are noisier than “wide” partitions.



Standard Young tableaux

k—1
Lemma [W.]: dA/(k) < d>‘/(2)
d d

Proof: Induction, manipulatorics, and [0096)].



Standard Young tableaux

k—1
Lemma [W.]: dA/(k) < d>‘/(2)
d d

Corollary: k ~ Binomial(n, )
d d fl d "
Eg [ Z(k)] < Eg ( >;i/(2>> — ddA (1 — 9 (1 — 11/(2)>>
A A A (2) A

using the moment generating function for the binomial distribution.



Standard Young tableaux

k—1
Lemma [W.]: dA/(k) < d>‘/(2)
dx d

Corollary: k ~ Binomial(n, )
d d k-1 d "
Ek[ A/(k)] <E, ( A/<2>> __dy (1_5(1_ A/<2>>>
d,\ d>\ d)\/(g) d/\

using the moment generating function for the binomial distribution.

Now use the Theorem to maximize this expression.



Noise Sensitivity
NSs(f) = Eg [an|s|:kInfS(f)]
k ~ Binomial(n, )

d .
N8(f) = B [ S (5 - 3 24 ) P

d A
N A LG

S dllfl? =1

AEn



Standard Young tableaux

dr — dg -
AD> [ << Vr 22:1 Aj > Zgzl Bi

dwks)] (d/\/@) ) o dx ( ( dwm))”
E <E _ 1-6(1—
§ [ =k d dx/(2) d

Over partitions withA1 < n —d, this is maximized for A = (n — d,d).

Theorem [W.]:

We get roughly 1 — /) = d/n-the expression becomes roughly
dx exp(—dd)

Polynomial degree at least d

Thus the noise exponentially approaches % as the degree increases,
and low noise sensitivity implies low degree concentration.



Roadmap to agnostic learning

(sw 2RO

;eﬁne NS(S , and obtain a nice Fourier representation.

;how that the distance from % for the multipliers decays at an
exponential rate in the degree.

Bound NS ( f) for LTF’s (and functions of LTF’s by union bound).

Efficient agnostic learning over permutation invariant
distributions follows from [KKMSO05].



Linear threshold functions

We say that f : Sym,, = {—1,1} is a linear threshold function
(LTF) if there exist weights{wij}1<i j<n and® such that

= sgn (Z w;,; 1 = j] — 9)

Indicator variables

Equivalently, f(o) = sgu(tr(W" P(0)) — 0) , where W is the matrix
of weights, and P represents the permutation matrix encoding.

Theorem [W.]: Iff : Symn = {=1,1} js an LTF, then

NSs(f) < O(V9)




Linear threshold functions

Theorem [W.]: Iff : Symn = {=1,1} js an LTF, then

NSs(f) < O(V9)

Proof: Reduction to hypercube case.

NS;5(f) = Pro,ns(o)f(0) # f(Ns(o))]

Assume that1/6 = m is an integer. Partition the coordinates into
m buckets, independently putting each in any bucket with
probability 1/m.



Linear threshold functions

Theorem [W.]: Iff : Symn = {=1,1} js an LTF, then

NSs(f) < O(V9)

Example: n=7, m=3, and the buckets are {1,2,3},{4,5}, and {6,7}.

6

Draw o,
2 1 7 5 3
0
1
7 2 1 5 3

[EY

6

4

Draw a permutation that only shuffles coordinates in each bucket.



Linear threshold functions

Theorem [W.]: Iff : Symn = {=1,1} js an LTF, then

NSs(f) < O(V9)

Letg: {0,1}™ — {—1,1} be defined so that 9(z) = f(9) using the
buckets in the natural way.

2 1 7| |5 3 |4 6

NS (f) = Efave Inf®(g)] < O(1/y/m) = O(v/9)

Dra permutation that only shuttles coordinates In each bu



Roadmap to agnostic learning

o>

!eﬁne NS5 , and obtain a nice Fourier representation.

!!ow that the distance from % for the multipliers decays at an
exponential rate in the degree.

ound NS;(f) for LTF’s (and functions of LTF’s by union bound).

Efficient agnostic learning over permutation invaria
distributions follows from [KKMSO5].




But wait, there’s more!

NSs(f) = Elavg Inf" (g)] < O(1/ym) = O(V/9)

Actually, the only LTF properties used are (a) bounded avg Inf¥ (g)
in the Boolean analogue, and (b) closed under natural restrictions.

So the same proof works for AC? circuits, degree-d PTFs, etc.

Further, the time and sample complexity for permutation

Invariant distributions is comparable to the uniform distribution
case.



Thank youl!

o




