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Problem setting

Problem
Given the observed behaviour of some ‘black box’ system, what can be
said about the internal structure of the black box?

Let’s consider the simplest form of the problem: given some hypothesis
about the internal structure of the black box, is it compatible with the
observed behaviour?

This should remind you of:

I Hacking, reverse engineering.

I Circuit Complexity! (Behaviour desired rather than observed.)

Formally, a ‘system’ is a morphism in a suitable monoidal category C.
(→ Baez, Spivak)
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Example: a system with two inputs and five outputs,

with hypothesis
about internal structure:

Some necessary conditions for the hypothesis to be viable can be read off:
the morphism describing the system must factor into two components.

As we will see, this type of condition is far from sufficient in general.
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But let’s talk about some formal aspects first.

What is the structure of
the set of feasible structure hypotheses?

1) There is a trivial hypothesis that always works:
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2) If some hypothesis works, then so does every ‘black boxing’ of it.

So does every hypothesis with additional internal wires.
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The poset of wiring diagrams
The structure hypotheses are wiring diagrams (→ Spivak) with the right
number of input and output wires.

Black boxing and adding additional wires defines a partial order on the
set of these wiring diagrams. This poset depends on:

I The number of inputs and outputs

I The particular flavour of monoidal category considered (symmetric,
traced, compact, etc.)

I If desired: a set of types for the wires

The feasible hypotheses for a given behaviour form a lower set in this
poset.

Question
To apply Occam’s razor:

under what conditions does this lower set have
a maximal element?
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The inflation technique
There is a general method for approaching the feasibility problem for
those monoidal categories in which the unit object is terminal,

•

=

• •

which means that systems can be discarded.

Let’s take C to be the category of stochastic matrices. Then string
diagrams in C are the same thing as Bayesian networks

1

. I will
showcase the method with two examples.

1

Where the string diagrams may contain the comonoid structures of below.
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Example: three unbiased binary variables with perfect correlation:

PABC = [000] + [111]
2

Hypothesis: at most pairwise common causes,

fA fB fC

sAB sAC sBC

A B C

We will show that this hypothesis is not feasible.
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Let’s consider a slightly different network, built out of copies of the
same components:

sAC

fA

sAB

fB

sBC

fC

sAC

A B C

• •

We call this an inflated network.



Crucial observations:

I Discarding C in the inflated network results in the same network as
discarding C in the original one,

fA

sAC sAB

fB

sBC

• •

and similarly for A.

I Discarding B disconnects the network.
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This results in conditions on the joint distribution PABC produced by the
inflated network:

I A and B are as in the original network: unbiased and perfectly
correlated.

I Likewise for B and C .

I A and C are independent.

There is no joint distribution with these properties at all! The constraints
that we have inferred about the inflation network are so strong that they
are inconsistent.

⇒ The network structure hypothesis is not feasible.
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In some categories, such as stochastic matrices, it is also possible to
make copies of systems,

•

equipping every object with a comonoid structure (not necessarily
natural).

This can be leveraged to build inflation networks which witness more
infeasbilities. Let’s see an example!
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Again in stochastic matrices, consider a two-input and two-output
morphism with binary variables:

PAB|XY (ab|xy) =
{ 1

2 if a ⊕ b = xy ,
0 otherwise.

Structure hypothesis:

fA

λ

fB

X Y

A B

This looks promising: discarding A shows that B is only a function of Y ,
which is consistent with PAB|XY .
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Inflation network:

fA fA

λ

fB fB

A0 A1 B0 B1

X0 X1 Y0 Y1

• •

Using inputs X0 = Y0 = 0 and X1 = Y1 = 1 hypothetically results in a
distribution PA0A1B0B1 where:

I A1 and B0 are perfectly correlated,
I B0 and A0 are perfectly correlated,
I A0 and B1 are perfectly correlated,
I B1 and A1 are perfectly anticorrelated.

There is no distribution with these properties! ⇒ Infeasible hypothesis.
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