Modelling interconnected systems with decorated corelations

Brendan Fong
University of Pennsylvania

Workshop on Compositionality, 5–9 December 2016
Simons Institute for the Theory of Computing, Berkeley
All hypergraph categories are decorated corelation categories.
David (yesterday): Introduced hypergraph categories.

John (this morning): Introduced decorated cospans.

Me (now): All hypergraph categories are decorated corelation categories.

Dan (next): Hypergraph categories via relations.

Ross (tomorrow): Hypergraph categories in categorical quantum mechanics.
Hypergraph categories model network compositionality
Hypergraph categories model network compositionality

A

B

C

A

f

A

A

A

C

C

C

A

g

C

C

Hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
Hypergraph categories model network compositionality

A **hypergraph category** is a **symmetric monoidal category** in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
Hypergraph categories model network compositionality

A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
Hypergraph categories model network compositionality

A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
Hypergraph categories model network compositionality

A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
Hypergraph categories model network compositionality

A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
Hypergraph categories model network compositionality

A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
A **hypergraph category** is a symmetric monoidal category in which each object is equipped with a **special commutative Frobenius monoid** in a way coherent with the monoidal product.
A hypergraph category is a symmetric monoidal category in which each object is equipped with a special commutative Frobenius monoid in a way coherent with the monoidal product.
Recall from John Baez’s talk . . .

In many areas of science and engineering, people use networks, drawn as boxes connected by wires:

We need a good general theory of these!
Let C have finite colimits. Then $\text{Cospan}(C)$ is a hypergraph category.

The monoidal product is the coproduct $+$ in C.

The Frobenius maps are given by the codiagonal map $\nabla: X + X \to X$ and the initial map $!: \emptyset \to X$.

Decorated cospan categories inherit this hypergraph structure via the embedding $\text{Cospan}(C) \to F\text{Cospan}$.
Decorated cospans build hypergraph categories

Also recall...

Say we start with a category \mathbf{C} with finite colimits: in our example, $\mathbf{C} = \mathbf{FinSet}$. We can build a bicategory where morphisms are cospans in \mathbf{C}:

$$
\begin{array}{ccc}
N & \overset{o}{\xleftarrow{i}} & N' \\
X & \overset{\text{id}}{\swarrow} & Y \\
\end{array}
$$

and composition is done by pushout:

$$
\begin{array}{ccc}
N +_Y N' & \overset{o}{\xleftarrow{i}} & N' \\
X & \overset{\text{id}}{\swarrow} & Y & \overset{\text{id}}{\swarrow} & Z \\
\end{array}
$$
Decorated cospans build hypergraph categories

Let C have finite colimits. Then $\text{Cospan}(C)$ is a hypergraph category.
Decorated cospans build hypergraph categories

Let C have finite colimits. Then $\text{Cospan}(C)$ is a hypergraph category. The monoidal product is the coproduct $+$ in C.
Decorated cospans build hypergraph categories

Let C have finite colimits. Then $\text{Cospan}(C)$ is a hypergraph category.

The monoidal product is the coproduct $+$ in C.

The Frobenius maps are given by the codiagonal map $\nabla : X + X \to X$ and the initial map $!: \emptyset \to X$.
Let \mathcal{C} have finite colimits. Then $\text{Cospan}(\mathcal{C})$ is a hypergraph category. The monoidal product is the coproduct $+$ in \mathcal{C}. The Frobenius maps are given by the codiagonal map $\nabla : X + X \to X$ and the initial map $!: \emptyset \to X$.

Decorated cospan categories inherit this hypergraph structure via the embedding $\text{Cospan}(\mathcal{C}) \to F\text{Cospan}$.
Decorated cospan categories are good for syntax.

But when composing decorated cospans, the morphism grows.
Decorated cospan categories are good for syntax

But when composing decorated cospans, the morphism grows
Decorated cospan categories are good for syntax.

But when composing decorated cospans, the morphism grows.
Decorated cospan categories are good for syntax

But when composing decorated cospans, the morphism grows, and grows...
Decorated cospan categories are good for syntax

But when composing decorated cospans, the morphism grows, and grows, and grows...
What about hypergraph categories for semantics?
Decorated corelations are better for semantics

Consider the pair of decorated cospans

\[
\begin{array}{cccc}
X & \rightarrow & N & \rightarrow & Y \\
\downarrow & & \uparrow & & \downarrow \\
N & & 1\Omega & & N'
\end{array}
\]

Their composite is

\[
1\Omega
\]

But this is, in an extensional sense, the same as

\[
2\Omega
\]

To construct a category which does not see the difference between these two circuits, we use decorated corelations. The key idea is that we only want the part of a decoration that lives on the boundary.
Decorated corelations are better for semantics

Consider the pair of decorated cospans

\[\begin{array}{ccc}
X & \rightarrow & N \\
\downarrow & & \downarrow \\
Y & \rightarrow & N' \\
\end{array} \]

Their composite is

\[\begin{array}{ccc}
\bullet & \rightarrow & \bullet \\
\downarrow & & \downarrow \\
\bullet & \rightarrow & \bullet \\
\end{array} \]
Decorated corelations are better for semantics

Consider the pair of decorated cospans

\[
\begin{align*}
X & \to N & 1\Omega & \to N' & \to Y & \to Z \\
& \downarrow & & & \downarrow & \downarrow \\
& & 1\Omega & & 1\Omega & & 1\Omega \\
& & N & & N' & & Z
\end{align*}
\]

Their composite is

\[
\begin{align*}
X & \to N & 1\Omega & \to N' & \to Y & \to Z \\
& \downarrow & & & \downarrow & \downarrow \\
& & 1\Omega & & 1\Omega & & 1\Omega \\
& & N & & N' & & Z
\end{align*}
\]

But this is, in an extensional sense, the same as

\[
\begin{align*}
X & \to N & 1\Omega & \to N' & \to Y & \to Z \\
& \downarrow & & & \downarrow & \downarrow \\
& & 1\Omega & & 1\Omega & & 1\Omega \\
& & N & & N' & & Z
\end{align*}
\]
Decorated corelations are better for semantics

Consider the pair of decorated cospans

\[
\begin{align*}
X & \rightarrow & 1\Omega & \rightarrow & N & \rightarrow & 1\Omega & \rightarrow & Y & \rightarrow & N' & \rightarrow & Z \\
& & \downarrow & & \downarrow
\end{align*}
\]

Their composite is

\[
\begin{align*}
\rightarrow & \rightarrow & 1\Omega & \rightarrow & 1\Omega & \rightarrow & Z & \rightarrow
\end{align*}
\]

But this is, in an extensional sense, the same as

\[
\begin{align*}
\rightarrow & \rightarrow & 2\Omega & \rightarrow & Z & \rightarrow
\end{align*}
\]

To construct a category which does not see the difference between these two circuits, we use decorated corelations.
Decorated corelations are better for semantics

Consider the pair of decorated cospans

\[X \xrightarrow{1\Omega} N \xleftarrow{1\Omega} Y \xrightarrow{1\Omega} N' \xleftarrow{} Z \]

Their composite is

\[\cdot \xrightarrow{1\Omega} \cdot \xrightarrow{1\Omega} \cdot \xleftarrow{} \cdot \]

But this is, in an extensional sense, the same as

\[\cdot \xrightarrow{2\Omega} \cdot \xleftarrow{} \cdot \]

To construct a category which does not see the difference between these two circuits, we use decorated corelations.

The key idea is that we only want the part of a decoration that lives on the boundary.
Decorated corelations are better for semantics

\[
\begin{align*}
\{ (x, y, z, x - y, 2y - (x + z), z - y) \}
\subseteq \mathbb{R}^{N + Y N'} \oplus \mathbb{R}^{N + Y N'} \\
\{ (x, y, x - y, y - x) \} \subseteq \mathbb{R}^N \oplus \mathbb{R}^N
\end{align*}
\]
Decorated corelations are better for semantics

\[\{(x, y, z, x - y, 2y - (x + z), z - y)\} \subseteq \mathbb{R}^{N+YN'} \oplus \mathbb{R}^{N+YN'} \]
Decorated corelations are better for semantics

\[
\{ (x, y, z, x - y, 2y - (x + z), z - y) \}
\subseteq \mathbb{R}^{N + Y} N' \oplus \mathbb{R}^{N + Y} N'
\]
Decorated corelations are better for semantics

\[
\left\{ \left(x, z, \frac{1}{2}(x - z), \frac{1}{2}(z - x) \right) \right\}
\subseteq \mathbb{R}^{\text{Im} f} \oplus \mathbb{R}^{\text{Im} f}
\]

\[
\left\{ \left(x, y, z, x - y, 2y - (x + z), z - y \right) \right\}
\subseteq \mathbb{R}^{N + Y N'} \oplus \mathbb{R}^{N + Y N'}
\]
Decorated correlations are better for semantics

\[
\left\{ \left(x, z, \frac{1}{2}(x - z), \frac{1}{2}(z - x) \right) \right\} \\
\subseteq \mathbb{R}^{\text{Im} f} \oplus \mathbb{R}^{\text{Im} f}
\]
Decorated corelations are better for semantics

\[\{ (x, z, \frac{1}{2}(x - z), \frac{1}{2}(z - x)) \} \subseteq \mathbb{R}^{\text{Im} f} \oplus \mathbb{R}^{\text{Im} f} \]
Decorated corelations are better for semantics

\[\{ (x, z, \frac{1}{2}(x - z), \frac{1}{2}(z - x)) \} \subseteq \mathbb{R}^{\text{Im} f} \oplus \mathbb{R}^{\text{Im} f} \]
Decorated corelations are better for semantics

\[
\begin{align*}
\{ (x, z, \frac{1}{2}(x - z), \frac{1}{2}(z - x)) \} \\ \subseteq \mathbb{R}^{\text{Im} f} \oplus \mathbb{R}^{\text{Im} f}
\end{align*}
\]

\[
\begin{align*}
\{ (x, y, z, x - y, 2y - (x + z), z - y) \} \\ \subseteq \mathbb{R}^{N + Y N'} \oplus \mathbb{R}^{N + Y N'}
\end{align*}
\]

\[
\begin{align*}
\{ (x, y, x - y, y - x) \} \\ \subseteq \mathbb{R}^{N} \oplus \mathbb{R}^{N}
\end{align*}
\]

\[
\begin{align*}
\{ (y', z, y' - z, z - y') \} \\ \subseteq \mathbb{R}^{N'} \oplus \mathbb{R}^{N'}
\end{align*}
\]
Decorated corelations are better for semantics

\[
\begin{align*}
\{ (x, z, \frac{1}{2}(x - z), \frac{1}{2}(z - x)) \}
\subseteq \mathbb{R}^{\text{Im}f} \oplus \mathbb{R}^{\text{Im}f} \\
\{ (x, y, z, x - y, 2y - (x + z), z - y) \}
\subseteq \mathbb{R}^{N+Y \ N'} \oplus \mathbb{R}^{N+Y \ N'} \\
\{ (x, y, x - y, y - x) \} \quad \{ (y', z, y' - z, z - y') \}
\subseteq \mathbb{R}^{N} \oplus \mathbb{R}^{N} \\
\quad \subseteq \mathbb{R}^{N'} \oplus \mathbb{R}^{N'}
\end{align*}
\]
Decorated corelations are better for semantics

\[\{(x, z, \frac{1}{2}(x - z), \frac{1}{2}(z - x))\} \subseteq \mathbb{R}^{\text{Im}f} \oplus \mathbb{R}^{\text{Im}f} \]

\[\{(x, y, z, x - y, 2y - (x + z), z - y)\} \subseteq \mathbb{R}^{N + Y N'} \oplus \mathbb{R}^{N + Y N'} \]

\[\{(x, y, x - y, y - x)\} \subseteq \mathbb{R}^{N} \oplus \mathbb{R}^{N} \]

\[\{(y', z, y' - z, z - y')\} \subseteq \mathbb{R}^{N'} \oplus \mathbb{R}^{N'} \]
To recap:

- Write cospan $f : X + Z \to N + \gamma N'$.
To recap:

- Write cospan $f: X + Z \rightarrow N + Y N'$.
- Factor $f = m \circ e$, where $m \in \text{Inj}$ and $e \in \text{Sur}$.
Decorated corelation categories

To recap:

- Write cospan \(f : X + Z \to N +_Y N' \).
- Factor \(f = m \circ e \), where \(m \in \text{Inj} \) and \(e \in \text{Sur} \).
- Transfer decoration along \(\xrightarrow{c} \xleftarrow{m} \).
Decorated corelation categories

To recap:

- Write cospan \(f : X + Z \longrightarrow N +_Y N' \).
- Factor \(f = m \circ e \), where \(m \in \text{Inj} \) and \(e \in \text{Sur} \).
- Transfer decoration along \(\xymatrix{ c & m \ar[l] \ar[r] } \).

More generally, we need a **costable factorisation system** \((\mathcal{E}, \mathcal{M})\) on \(\mathcal{C}\).
To recap:

- Write cospan \(f : X + Z \to N + Y N' \).
- Factor \(f = m \circ e \), where \(m \in \text{Inj} \) and \(e \in \text{Sur} \).
- Transfer decoration along \(c \to m \leftarrow e \).

More generally, we need a costable factorisation system \((\mathcal{E}, \mathcal{M})\) on \(\mathcal{C} \).

Here \(\mathcal{C} = \text{FinSet} \), \((\mathcal{E}, \mathcal{M}) = (\text{Sur}, \text{Inj})\).
Decorated corelation categories

To recap:

- Write cospan $f : X + Z \to N + \text{Im } Y N'$.
- Factor $f = m \circ e$, where $m \in \text{Inj}$ and $e \in \text{Sur}$.
- Transfer decoration along $\frac{c}{\to} \frac{m}{\leftarrow}$.

More generally, we need a costable factorisation system $(\mathcal{E}, \mathcal{M})$ on \mathcal{C}.

Here $\mathcal{C} = \text{FinSet}$, $(\mathcal{E}, \mathcal{M}) = (\text{Sur}, \text{Inj})$.

We write $\mathcal{C}; \mathcal{M}^{\text{op}}$ for the category with $\frac{c}{\to} \frac{m}{\leftarrow}$ as morphisms.
Decorated corelation categories

Theorem

Suppose that C has finite colimits and a costable factorisation system $(\mathcal{E}, \mathcal{M})$, and

$$F: (C; \mathcal{M}^{\text{op}}, +) \longrightarrow (\text{Set}, \times)$$

is a lax symmetric monoidal functor.
Theorem

Suppose that C has finite colimits and a costable factorisation system $(\mathcal{E}, \mathcal{M})$, and

$$F : (C; \mathcal{M}^{\text{op}}, +) \rightarrow (\text{Set}, \times)$$

is a lax symmetric monoidal functor. Then there is a hypergraph category of F-decorated corelations, $F\text{Corel}$ where

- an object is an object of C
- a morphism from X to Y is a cospan

such that $[f, g] : X + Y \rightarrow N$ lies in \mathcal{E}, together with a decoration $d \in F(N)$. (Actually, an isomorphism class of these!)
Decorated corelation functors

A hypergraph functor is a strong monoidal functor that preserves the Frobenius maps.
A hypergraph functor is a strong monoidal functor that preserves the Frobenius maps.

Theorem

Suppose that C has finite colimits and a costable factorisation system $(\mathcal{E}, \mathcal{M})$, and $F, G : (C; \mathcal{M}^{\text{op}}) \to (\text{Set}, \times)$ are lax symmetric monoidal functors, and

$$\theta : F \Rightarrow G$$

is a monoidal natural transformation.
Decorated corelation functors

A hypergraph functor is a strong monoidal functor that preserves the Frobenius maps.

Theorem

Suppose that \mathcal{C} has finite colimits and a costable factorisation system $(\mathcal{E}, \mathcal{M})$, and $F, G : (\mathcal{C}; \mathcal{M}^{\text{op}}) \rightarrow (\text{Set}, \times)$ are lax symmetric monoidal functors, and

$$\theta : F \Rightarrow G$$

is a monoidal natural transformation. Then we obtain a hypergraph functor

$$T_\theta : F\text{Corel} \rightarrow G\text{Corel}.$$
Theorem
Every hypergraph category is equivalent, as a hypergraph category, to a decorated corelation category.
Theorem
Every hypergraph category is equivalent, as a hypergraph category, to a decorated correlation category.

In fact, allowing changes of the base category \mathcal{C} and factorisation system $(\mathcal{E}, \mathcal{M})$, we can define a category of decorated correlation categories. This category is equivalent to the category of hypergraph categories.
Summary

Hypergraph categories model network compositionality.
Summary

Hypergraph categories model network compositionality.

Decorated cospans give hypergraph categories, but ‘freely so’.
Summary

Hypergraph categories model network compositionality.

Decorated cospans give hypergraph categories, but ‘freely so’.

For coarser, ‘black box’ semantics, we can use decorated corelations.
Summary

Hypergraph categories model network compositionality.

Decorated cospans give hypergraph categories, but ‘freely so’.

For coarser, ‘black box’ semantics, we can use decorated corelations.

This solution is general:

All hypergraph categories are decorated corelation categories.
Thanks for listening.

For more
John Baez's network theory program: http://math.ucr.edu/baez/networks/
These slides are available at: http://www.brendanfong.com/fcorel.pdf/