
The Mathematics of Networks

John Baez, U. C. Riverside

Simons Institute of Computing,
workshop on Compositionality, 6 December 2016



In many areas of science and engineering, people use networks,
drawn as boxes connected by wires:

We need a good general theory of these!

http://math.ucr.edu/home/baez/networks/networks_1.html
http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


Networks of some particular kind, with specified inputs and
outputs, can be seen as morphisms in some symmetric monoidal
category:

X Y

Such networks let us describe open systems, meaning systems
where:
I stuff can flow in or out;
I we can combine systems to form larger systems by

composition and tensoring.



Networks of some particular kind, with specified inputs and
outputs, can be seen as morphisms in some symmetric monoidal
category:

X Y

Such networks let us describe open systems, meaning systems
where:
I stuff can flow in or out;
I we can combine systems to form larger systems by

composition and tensoring.



To use networks as a ‘syntax’ for open systems, we follow the ideas
of ‘functorial semantics’:
I Networks of some kind, with specified input and outputs, will

be morphisms in some symmetric monoidal category X.
I To ‘interpret’ these networks we use a symmetric monoidal

functor F : X→ Y, where Y is a symmetric monoidal category
good for semantics, e.g. Set or Rel.



How can we construct symmetric monoidal categories with
networks as morphisms?

One way is to use generators and relations.

We can present a (strict) symmetric monoidal category by
specifying:
I a set of generating objects;
I a set of generating morphisms;
I a set of relations between morphisms.

We can then specify a (strict) symmetric monoidal functor by
sending generators to generators in such a way that relations are
preserved.



How can we construct symmetric monoidal categories with
networks as morphisms?

One way is to use generators and relations.

We can present a (strict) symmetric monoidal category by
specifying:
I a set of generating objects;
I a set of generating morphisms;
I a set of relations between morphisms.

We can then specify a (strict) symmetric monoidal functor by
sending generators to generators in such a way that relations are
preserved.



How can we construct symmetric monoidal categories with
networks as morphisms?

One way is to use generators and relations.

We can present a (strict) symmetric monoidal category by
specifying:
I a set of generating objects;
I a set of generating morphisms;
I a set of relations between morphisms.

We can then specify a (strict) symmetric monoidal functor by
sending generators to generators in such a way that relations are
preserved.



How can we construct symmetric monoidal categories with
networks as morphisms?

One way is to use generators and relations.

We can present a (strict) symmetric monoidal category by
specifying:
I a set of generating objects;
I a set of generating morphisms;
I a set of relations between morphisms.

We can then specify a (strict) symmetric monoidal functor by
sending generators to generators in such a way that relations are
preserved.



Another way, pioneered by Brendan Fong, is to use decorated
cospans. For example, this:

X Y

is really a cospan of finite sets:

S

X
i ??

Y
o__

where S is ‘decorated’ with extra structure making it into the set
of vertices of a graph: E

s //
t
// S.



Let’s look at a more interesting example: Petri nets.

A Petri net is a bipartite graph. The two kinds of vertices are
called places and transitions.



In computer science, Petri nets became popular as models of
concurrency starting in the 1970s. But they were invented for
chemistry in 1939:

as an alternative to the more familiar reaction networks:

C + O2 → CO2

CO2 + NaOH → NaHCO3

NaHCO3 + HCl → H2O + NaCl + CO2

http://math.ucr.edu/home/baez/networks/networks_2.html
http://math.ucr.edu/home/baez/networks/networks_17.html


Now they’re used in epidemiology...

http://johncarlosbaez.wordpress.com/2012/06/27/the-mathematics-of-biodiversity-part-3/


...systems biology...

... and many other fields.

http://sbgn.github.io/sbgn/examples


In a Petri net with rates, each transition is assigned a rate
constant: a positive real number. We can then write down a rate
equation describing dynamics. For example, this Petri net with
rates:

A3
A2

A1

r1

r2

gives this rate equation:

dA1
dt = −r1 A1A2

dA2
dt = −r1 A1A2 + 2r2 A3

dA3
dt = r1 A1A2 − r2 A3



In a Petri net with rates, each transition is assigned a rate
constant: a positive real number. We can then write down a rate
equation describing dynamics. For example, this Petri net with
rates:

A3
A2

A1
r1

r2

gives this rate equation:

dA1
dt = −r1 A1A2

dA2
dt = −r1 A1A2 + 2r2 A3

dA3
dt = r1 A1A2 − r2 A3



So far these Petri nets describe closed systems.

But there’s a symmetric monoidal category of open Petri nets
with rates, called Petri, where:
I an object is a finite set;
I a morphism f : X → Y is a Petri net with rates together with

functions from X and Y to its set of places:

r1X Y



So far these Petri nets describe closed systems.

But there’s a symmetric monoidal category of open Petri nets
with rates, called Petri, where:
I an object is a finite set;
I a morphism f : X → Y is a Petri net with rates together with

functions from X and Y to its set of places:

r1X Y



I To compose morphisms f : X → Y and g : Y → Z :

X

r2

Z

r1

Y

we put them in series, identifying outputs of f with inputs of g :

r1 r2

X Z

I To tensor morphisms, we put them in parallel.



I To compose morphisms f : X → Y and g : Y → Z :

X

r2

Z

r1

Y

we put them in series, identifying outputs of f with inputs of g :

r1 r2

X Z

I To tensor morphisms, we put them in parallel.



An open Petri net with rates f : X → Y gives an open rate
equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y

I1
I2
I3

O1

gives:
dA1
dt = −r1 A1A2 + I1(t)

dA2
dt = −r1 A1A2 + I2(t) + I3(t)

dA3
dt = 2r1 A1A2 − O1(t)



An open Petri net with rates f : X → Y gives an open rate
equation involving flows in and out, which can be arbitrary
smooth functions of time. For example this:

A1
A3

A2

r1

X Y
I1
I2
I3

O1

gives:
dA1
dt = −r1 A1A2 + I1(t)

dA2
dt = −r1 A1A2 + I2(t) + I3(t)

dA3
dt = 2r1 A1A2 − O1(t)



So: open Petri nets with rates serve as a ‘syntax’, with open
dynamical systems providing one possible ‘semantics’.

Let’s understand this using functorial semantics! We’ll get a
symmetric monoidal functor

� : Petri→ Dynam

Other choices of semantics correspond to other symmetric
monoidal functors.



There is a symmetric monoidal category Dynam where:
I an object is a finite set;
I a morphism f : X → Y is an open dynamical system,

meaning a cospan of finite sets

S

X
i ??

Y
o__

equipped with a smooth vector field v on RS .

Given input and output flows I(t) ∈ RX , O(t) ∈ RY , an open
dynamical system describes how a point A(t) ∈ RS changes with
time:

d
dt A(t) = v(A(t)) + i∗(I(t))− o∗(O(t))

where i∗, o∗ push forward R-valued functions from X ,Y to S.



There is a symmetric monoidal category Dynam where:
I an object is a finite set;
I a morphism f : X → Y is an open dynamical system,

meaning a cospan of finite sets

S

X
i ??

Y
o__

equipped with a smooth vector field v on RS .

Given input and output flows I(t) ∈ RX , O(t) ∈ RY , an open
dynamical system describes how a point A(t) ∈ RS changes with
time:

d
dt A(t) = v(A(t)) + i∗(I(t))− o∗(O(t))

where i∗, o∗ push forward R-valued functions from X ,Y to S.



Theorem (JB–Blake Pollard)
There is a symmetric monoidal functor � : Petri→ Dynam
sending any open Petri net with rates to its open dynamical
system.

This is a statement of compositionality: we can determine the rate
equation of a Petri net with rates by breaking it down into a
composite and/or tensor product of simpler open Petri nets with
rates, and repeatedly using:

�(fg) = �(f )�(g)

�(f ⊗ g) = �(f )⊗�(g).

http://math.ucr.edu/home/baez/RxNet.pdf


How do we prove this theorem? We use Fong’s theory of decorated
cospans.

Say we start with a category C with finite colimits: in our example,
C = FinSet. We can build a bicategory where morphisms are
cospans in C:

N

X
i ??

Y
o__

and composition is done by pushout:

N +Y N ′

N

??

N ′
__

X

i ??

Y

o__ i ′ ??

Z

o′__

http://arxiv.org/abs/1502.00872
http://arxiv.org/abs/1502.00872


Pushouts are defined only up to isomorphism, which is why we get
a bicategory. But there is a category Cospan(C) where morphisms
are isomorphism classes of cospans in C.

Next, if we choose a functor F : C→ Set, we can try to build a
category where a morphism is an isomorphism class of cospans

S

X
i ??

Y
o__

with S ‘decorated’ by an element of F (S).

In the case of Petri, F (S) is the set of all ways of making S into
the set of places in some Petri net with rates.

But how do we ‘compose the decorations’ when we compose
cospans?



Pushouts are defined only up to isomorphism, which is why we get
a bicategory. But there is a category Cospan(C) where morphisms
are isomorphism classes of cospans in C.

Next, if we choose a functor F : C→ Set, we can try to build a
category where a morphism is an isomorphism class of cospans

S

X
i ??

Y
o__

with S ‘decorated’ by an element of F (S).

In the case of Petri, F (S) is the set of all ways of making S into
the set of places in some Petri net with rates.

But how do we ‘compose the decorations’ when we compose
cospans?



Pushouts are defined only up to isomorphism, which is why we get
a bicategory. But there is a category Cospan(C) where morphisms
are isomorphism classes of cospans in C.

Next, if we choose a functor F : C→ Set, we can try to build a
category where a morphism is an isomorphism class of cospans

S

X
i ??

Y
o__

with S ‘decorated’ by an element of F (S).

In the case of Petri, F (S) is the set of all ways of making S into
the set of places in some Petri net with rates.

But how do we ‘compose the decorations’ when we compose
cospans?



Given composable morphisms

S

X
i ??

Y
o__

d ∈ F (S)

S ′

Y
i ??

Z
o__

d ′ ∈ F (S ′)

we compose the cospans by taking a pushout. We compose the
decorations by taking (d , d ′) ∈ F (S)× F (S ′) and applying the
composite function

F (S)× F (S ′) −→ F (S + S ′) −→ F (S +Y S ′)

where the first step comes from F being a lax monoidal functor.



Theorem (Brendan Fong)
Suppose that C has finite colimits and

F : (C,+) −→ (Set,×)

is a lax symmetric monoidal functor. Then there is a symmetric
monoidal category of F -decorated cospans, FCospan, where:
I an object is an object of C;
I a morphism from X to Y is a cospan

S

X
i ??

Y
o__

together with a decoration d ∈ F (S).

(Just kidding: actually,
a morphism is an isomorphism class of these!)

http://arxiv.org/abs/1502.00872


Theorem (Brendan Fong)
Suppose that C has finite colimits and

F : (C,+) −→ (Set,×)

is a lax symmetric monoidal functor. Then there is a symmetric
monoidal category of F -decorated cospans, FCospan, where:
I an object is an object of C;
I a morphism from X to Y is a cospan

S

X
i ??

Y
o__

together with a decoration d ∈ F (S). (Just kidding: actually,
a morphism is an isomorphism class of these!)

http://arxiv.org/abs/1502.00872


Corollary (JB–Blake Pollard)
There is a symmetric monoidal category Petri where:
I an object is a finite set;
I a morphism f : X → Y is a cospan of finite sets

S

X
i ??

Y
o__

together with a Petri net with rates having S as its set of
places.

(Just kidding: actually an isomorphism class of such
cospans!)

So, a morphism looks like this:

r1 r2X Y

http://math.ucr.edu/home/baez/RxNet.pdf


Corollary (JB–Blake Pollard)
There is a symmetric monoidal category Petri where:
I an object is a finite set;
I a morphism f : X → Y is a cospan of finite sets

S

X
i ??

Y
o__

together with a Petri net with rates having S as its set of
places. (Just kidding: actually an isomorphism class of such
cospans!)

So, a morphism looks like this:

r1 r2X Y

http://math.ucr.edu/home/baez/RxNet.pdf


Corollary (JB–Blake Pollard)
There is a symmetric monoidal category Dynam where:
I an object is a finite set;
I a morphism f : X → Y is a cospan of finite sets

S

X
i ??

Y
o__

together with a smooth vector field on RS .

(Just kidding:
actually an isomorphism class of these!)

http://math.ucr.edu/home/baez/RxNet.pdf


Corollary (JB–Blake Pollard)
There is a symmetric monoidal category Dynam where:
I an object is a finite set;
I a morphism f : X → Y is a cospan of finite sets

S

X
i ??

Y
o__

together with a smooth vector field on RS . (Just kidding:
actually an isomorphism class of these!)

http://math.ucr.edu/home/baez/RxNet.pdf


Next, how do we get our symmetric monoidal functor

� : Petri→ Dynam ?

Theorem (Brendan Fong)
Suppose C has finite colimits,

F ,G : (C,+) −→ (Set,×)

are lax symmetric monoidal functors, and

θ : F ⇒ G

is a monoidal natural transformation. Then we obtain a symmetric
monoidal functor

Tθ : FCospan→ GCospan.

http://arxiv.org/abs/1502.00872


Next, how do we get our symmetric monoidal functor

� : Petri→ Dynam ?

Theorem (Brendan Fong)
Suppose C has finite colimits,

F ,G : (C,+) −→ (Set,×)

are lax symmetric monoidal functors, and

θ : F ⇒ G

is a monoidal natural transformation. Then we obtain a symmetric
monoidal functor

Tθ : FCospan→ GCospan.

http://arxiv.org/abs/1502.00872


Corollary (JB–Blake Pollard)
There is a symmetric monoidal functor � : Petri→ Dynam
sending any open Petri net with rates to the corresponding open
dynamical system.

http://math.ucr.edu/home/baez/RxNet.pdf


The same methods, and also the ‘generators and relations’
approach, let us study many categories of networks — and how
they’re connected by functors.

I Electrical circuits: JB and B. Fong, A compositional
framework for passive linear networks.

X Y

2

3
1 1

http://http://arxiv.org/abs/1504.05625
http://http://arxiv.org/abs/1504.05625


The same methods, and also the ‘generators and relations’
approach, let us study many categories of networks — and how
they’re connected by functors.

I Electrical circuits: JB and B. Fong, A compositional
framework for passive linear networks.

X Y

2

3
1 1

http://http://arxiv.org/abs/1504.05625
http://http://arxiv.org/abs/1504.05625


I Markov processes: JB, B. Fong and B. Pollard, A
compositional framework for Markov processes.

X Y
4.3

2.1
1.7

0.6

3.9

http://arxiv.org/abs/1508.06448
http://arxiv.org/abs/1508.06448


I Signal-flow graphs in control theory:
Jason Erbele, Categories in Control: Applied PROPs.
B. Fong, The Algebra of Open and Interconnected Systems.

−mg

1
M

∫

∫

−1
l

∫
g
l ∫

https://arxiv.org/abs/1611.07591
https://arxiv.org/abs/1609.05382


We find a ‘network of network languages’: interesting symmetric
monoidal categories connected by symmetric monoidal functors:

Petri

Dynam

Rel

MarkovResCirc

Circ

SigFlow LinRel(C(z))

�

steady states

� steady states



We find a ‘network of network languages’: interesting symmetric
monoidal categories connected by symmetric monoidal functors:

Petri

Dynam

Rel

MarkovResCirc

Circ

SigFlow LinRel(C(z))

�

steady states

� steady states



We find a ‘network of network languages’: interesting symmetric
monoidal categories connected by symmetric monoidal functors:

Petri

Dynam

Rel

Markov

ResCirc

Circ

SigFlow LinRel(C(z))

�

steady states

� steady states



We find a ‘network of network languages’: interesting symmetric
monoidal categories connected by symmetric monoidal functors:

Petri

Dynam

Rel

MarkovResCirc

Circ

SigFlow LinRel(C(z))

�

steady states

� steady states



We find a ‘network of network languages’: interesting symmetric
monoidal categories connected by symmetric monoidal functors:

Petri

Dynam

Rel

MarkovResCirc

Circ

SigFlow LinRel(C(z))

�

steady states

� steady states



We find a ‘network of network languages’: interesting symmetric
monoidal categories connected by symmetric monoidal functors:

Petri

Dynam

Rel

MarkovResCirc

Circ

SigFlow

LinRel(C(z))

�

steady states

� steady states



We find a ‘network of network languages’: interesting symmetric
monoidal categories connected by symmetric monoidal functors:

Petri

Dynam

Rel

MarkovResCirc

Circ

SigFlow LinRel(C(z))

�

steady states

�

steady states



We find a ‘network of network languages’: interesting symmetric
monoidal categories connected by symmetric monoidal functors:

Petri

Dynam

Rel

MarkovResCirc

Circ

SigFlow LinRel(C(z))

�

steady states

� steady states



There is also more to say about decorated cospans! For example:

Theorem (Courser)
Suppose that C has finite colimits and F : (C,+) −→ (Set,×) is a
lax symmetric monoidal functor. Then there is a symmetric
monoidal bicategory where:
I an object is an object of C;

I a morphism from X to Y is a cospan

S

X
i ??

Y
o__

together
with a decoration d ∈ F (S);

I a 2-morphism is a map of cospans

S

f
��

X
i ??

i ′ ��

Y
o__

o′��

S ′

such that

F (f ) maps d ∈ F (S) to the decoration d ′ ∈ F (S ′).

http://arxiv.org/abs/1502.00872

