Locally Testable Codes and $\ell J 1$ — Embeddings of Cayley Graphs

Parikshit Gopalan (MSR-SVC) with Salil Vadhan (Harvard), Yuan Zhou (CMU).

Locally Testable Codes

Local Tester for an [n,k,d]¹2 linear code C:

- Queries few co-ordinates.
- Accepts codewords.
- Rejects words far from the code with high probability.

[BenSasson-Harsha-Raskhodnikova]: A local tester is a distribution \mathcal{D} on (low-weight) dual codewords.

Locally Testable Codes

[Blum-Luby-Rubinfeld'90, Rubinfeld-Sudan'92, Freidl-Sudan'95] Randomized Tester for an [*n*,*k*,*d*]↓2 code:

- Queries coordinates according to \mathcal{D} on $\mathcal{C}\mathcal{T}\bot$.
- ϵ -smooth: queries each coordinate w.p. $\leq \epsilon$.

Rejects words at distance d' with prob $\delta d'$. Must have $\delta \leq \epsilon$, would like $\delta = \Omega(\epsilon)$.

The Price of Locality?

Asymptotically good regime: $r = \Omega(1), \delta = \Omega(1)$. Are there asymptotically good 3-query LTCs?

- Existential question! [Goldreich-Sudan'02]
- LTCs with 3 queries, n=k (logk)1c , d=Ω(n). [Dinur'05, ...,Viderman'13]

Rate 1 regime: Let d be a (large) constant and $n \rightarrow \infty$. How large can k be for an [n,k,d] 12 LTC?

Fix smoothness $\epsilon = \Theta(1/d)$.

The Price of Locality?

Asymptotically good regime: $r=\Omega(1)$, $\delta=\Omega(1)$. Are there asymptotically good 3-query LTCs?

- Existential question! [Goldreich-Sudan'02]
- LTCs with 3 queries, n=k (logk) 1c , d=Ω(n). [Dinur'05, ...,Viderman'13]

Rate 1 regime: Let *d* be a (large) constant and $n \rightarrow \infty$. How large can *k* be for an $[n,k,d]\downarrow 2$ LTC?

- Fix smoothness $\epsilon = \Theta(1/d)$.
- BCH gives $n k = d/2\log(n)$. But not locally testable.
- [BKSSZ'08]:[n, n (log n) flog(d), d] LTC from Reed-Muller.
- Can we have $n k = O \downarrow d(\log(n))$?

Cayley Graphs on FJ27h

Graph $\mathcal{G}(\mathbb{F}J2\hbar, S)$ $S = \{sJ1, ..., sJn\} \subseteq \mathbb{F}J2\hbar$ Vertices: $\mathbb{F}J2\hbar$ Edges: $\{(x, x+sJi): x \in \mathbb{F}J2\hbar, i \in [n]\}$.

Hypercube: $S = (e \downarrow 1, ..., e \downarrow h)$ so h = n. We are interested in n > h.

Def: S is d-wise independent if every $T \subseteq S$ where |T| < d is linearly independent.

Cayley Graphs on FJ27h

Graph $G(\mathbb{F}^{12\hbar}, S)$

 $S = \{s \downarrow 1, ..., s \downarrow n\} \subseteq \mathbb{F} \downarrow 2 \uparrow h$ is d-wise independent.

Vertices: FJ21h

Edges: $\{(x,x+s\downarrow i): x \in \mathbb{F} \downarrow 2\uparrow h, i \in [n]\}$.

d-wise independence: Abelian analogue of large girth.

- Cycles occur when edge labels sum to 0.
- $G(\mathbb{F}^{12}h, S)$ will have 4 cycles.

Cayley Graphs on FJ27h

Graph $G(\mathbb{F}/2\hbar, S)$

 $S = \{s \downarrow 1, ..., s \downarrow n\} \subseteq \mathbb{F} \downarrow 2 \uparrow h$ is d-wise independent.

Vertices: F121h

Edges: { $(x,x+s\downarrow i):x\in \mathbb{F}\downarrow 2\uparrow h, i\in [n]$ }.

d-wise independence: Abelian analogue of large girth.

- Cycles occur when edge labels sum to 0.
- $G(\mathbb{F}_{121h,S})$ will have 4 cycles.
- Non-trivial cycles have length at least *d*.

Cayley Graphs on $\mathbb{F}_{12}h$

Graph $G(\mathbb{F}/2\hbar, S)$

 $S = \{s \downarrow 1, ..., s \downarrow n\} \subseteq \mathbb{F} \downarrow 2 \uparrow h$ is d-wise independent.

Vertices: FJ21h

Edges: { $(x,x+s\downarrow i):x\in \mathbb{F}\downarrow 2\uparrow h, i\in [n]$ }.

d-wise independence: Abelian analogue of large girth.

- Cycles occur when edge labels sum to 0.
- $G(\mathbb{F}^{121h}, S)$ will have 4 cycles.
- Non-trivial cycles have length at least *d*.
- d/2-neighborhood of any vertex is isomorphic to B(n,d/2), but the vertex set has dimension h << n.

$\ell \downarrow 1$ – Embeddings of graphs

Embedding $f: V(\mathcal{G}) \to \mathbb{R} \uparrow d$ has distortion c if $|f(x) - f(y)| \downarrow 1 \le d \downarrow \mathcal{G} (x, y) \le c |f(x) - f(y)| \downarrow 1$

 $c \downarrow 1$ (G) = minimum distortion over all embeddings.

Main Theorem: The following are equivalent:

- An [n,k,d] 12 code C with a tester of smoothness ε and soundness δ.
- A Cayley graph $G(\mathbb{F} \downarrow 2 \uparrow n k , S)$ where |S| = n, S is d-wise independent with an embedding of distortion ϵ/δ .

[Khot-Naor'06]: Codes with large dual distance give Cayley graphs where $c \downarrow 1$ (G)= $\omega(1)$.

Main Theorem: The following are equivalent:

- An [n,k,d] 12 code C with a tester of smoothness ε and soundness δ.
- A Cayley graph $G(\mathbb{F} \downarrow 2 \uparrow n k, S)$ where |S| = n, Sis d-wise independent with an embedding of distortion ϵ/δ .

Corollary: There exist asymptotically good strong LTCs iff there exist Cayley graphs $G(\mathbb{F}^{12}\hbar, S)$ where

- $|S| = (1 + \Omega(1))h$,
- S is $\Omega(h)$ -wise independent,
- $c \downarrow 1 (\mathcal{G}) = \mathcal{O}(1).$

Main Theorem: The following are equivalent:

- An [n,k,d]¹2 code C with a tester of smoothness ε and soundness δ.
- A Cayley graph $G(\mathbb{F} \downarrow 2 \uparrow n k, S)$ where |S| = n, Sis d-wise independent with an embedding of distortion ϵ/δ .

Corollary: There exist $[n,n - O\downarrow d (\log(n)),d]\downarrow 2$ strong LTCs iff there exist Cayley graphs $\mathcal{G}(\mathbb{F}\downarrow 2\uparrow h,S)$ where

- $|S|=2\,\Omega\,d(h)\,,$
- S is d-wise independent,
- $c \downarrow 1 (\mathcal{G}) = \mathcal{O}(1).$

Main Theorem: The following are equivalent:

- An [n,k,d] 12 code C with a tester of smoothness ε and soundness δ.
- A Cayley graph $G(\mathbb{F} \downarrow 2 \uparrow n k, S)$ where |S| = n, Sis d-wise independent with an embedding of distortion ϵ/δ .

Proof Sketch:

- Codes from Graphs (and vice versa).
- Testers from Embeddings (and vice versa).

Some Applications.

Codes and Cayley Graphs

Graph $G(\mathbb{F} \downarrow 2 \uparrow h, S)$: S={s $\downarrow 1$,...,s $\downarrow n$ } $\subseteq \mathbb{F} \downarrow 2 \uparrow h$ is d-wise independent.

[*n*, *n*-*h*,*d*]¹2 Code C: $h \times n$ Parity check matrix: [*s*¹1 ,..., *s*¹*n*] Codewords: $x \in \mathbb{F}$ ¹2 *în* such that $\sum i \hat{i} = 0$.

What does the shortest path metric in \mathcal{G} correspond to? The (quotiented) Hamming metric on $\mathbb{F}J2\ln/\mathcal{C}$.

The Quotiented Hamming metric

Let $x = \{x + C\}$ be a coset of C.

Let $wt(x) = \min_{\tau \in \mathcal{C}} wt(x+c)$ and d(x,y) = wt(x+y).

View cosets as received words grouped by error vector. wt(x) is the number of errors.

Codes and Cayley Graphs

Graph $G(\mathbb{F} \downarrow 2 \uparrow h, S)$: S={s $\downarrow 1$,...,s $\downarrow n$ } $\subseteq \mathbb{F} \downarrow 2 \uparrow h$ is d-wise independent.

[n, n-h,d]12 code $C:x \in \mathbb{F}$ 12 în such that $\sum i \hat{I} = 0$.

Shortest path metric \equiv Quotiented Hamming metric.

Each vertex in \mathcal{G} corresponds to a coset of \mathcal{C} . Start at 0, take a walk according to $x \in \{0,1\}$ *în*. For $i \in [n]$, if $x \downarrow i = 1$, take the edge labelled $s \downarrow i$. Reach the vertex $\sum i \uparrow = x \downarrow i \ s \downarrow i \in \mathbb{F} \downarrow 2 \ h$. Set of x leading to any vertex is a coset of \mathcal{C} .

Codes and Cayley Graphs

Graph $G(\mathbb{F}/2\hbar, S)$: S={s/1,...,s/n} $\subseteq \mathbb{F}/2\hbar$ is d-wise independent.

[n, n-h, d] 2 code C: $x \in \mathbb{F} \downarrow 2 \uparrow n$ such that $\sum i \uparrow m x \downarrow i s \downarrow i = 0$.

Shortest path metric \equiv Quotiented Hamming metric.

- Each vertex in \mathcal{G} corresponds to a coset of \mathcal{C} .
- Shortest path to x corresponds to smallest weight $x \in x$.

$\ell \downarrow 1$ – Embeddings of graphs

Embedding $f: \mathcal{G} \to \mathbb{R}^{\uparrow} d$ has distortion c if $|f(x) - f(y)| \downarrow 1 \le d \downarrow \mathcal{G} (x, y) \le c |f(x) - f(y)| \downarrow 1$

 $c \downarrow 1$ (G) = minimum distortion over all embeddings.

Cut-cone Characterization of $\ell \downarrow 1$

Cut-cone Characterization of $\ell \downarrow 1$

Cut-cone Characterization of *ℓ↓*1

Distribution \mathcal{D} on cuts $f:V(\mathcal{G}) \rightarrow \{-1,1\}$. $\rho(x,y) = \Pr + \mathcal{D} [f(x) \neq f(y)]$. Embedding \mathcal{D} has distortion c if there exists $\alpha \in \mathbb{R}$ such that $\alpha d\downarrow \mathcal{G} (x,y) \leq \rho(x,y) \leq c \cdot \alpha d\downarrow \mathcal{G} (x,y)$

Embeddings from Testers

Given tester \mathcal{D} distribution on $\mathcal{C}\mathcal{I}\bot$. Each $\alpha \in \mathcal{C}\mathcal{I}\bot$ defines a cut on $V(\mathcal{G}) = \mathbb{F}\mathcal{I}\mathcal{I}\mathcal{I}n / \mathcal{C}$.

Claim: The embedding \mathcal{D} has distortion ϵ/δ . Proof: Suffices to consider (x,0) by linearity. $d\mathcal{I}\mathcal{G}(x,0) = wt(x)$. $\delta \cdot wt(x) \not \Rightarrow (x,0) = \Pr[\mathcal{D} \ rejects \ x] \leq \epsilon \cdot wt(x)$

Testers from Embeddings

Distribution \mathcal{D} on $f: \mathbb{F} \downarrow 2 \ln / \mathcal{C} \rightarrow \{-1, 1\}$ giving distortion c.

If \mathcal{D} was supported on linear functions, we'd be (essentially) done.

Claim: There is a distribution \mathcal{D}' on linear functions with distortion c.

Proof Outline:

- Extend f to all of $\mathbb{F}\sqrt{2}n$.
- Its Fourier expansion is supported on $CT \perp$:

 $f(x) = \sum \alpha \in \mathcal{C} \uparrow \perp \uparrow = f(\alpha) \chi \downarrow \alpha(x).$

• If \mathcal{D} samples f, \mathcal{D}' samples α with probability $|f(\alpha)|^{12}$.

Why does this work?

Distributions *Far,Near* on *V×V*.

Distributions of the form $(\mathcal{U}, \mathcal{U} + \mathcal{A})$.

 $f: V \rightarrow \{-1, 1\}$

 $\chi \downarrow \alpha : \mathbb{F} \downarrow 2 \uparrow n / \mathcal{C} \rightarrow \{-1, 1\}$

 $\mathbb{E} \downarrow x \in \mathcal{U}, a \in \mathcal{A} \left[f(x, x+a) \right] = \sum \alpha \in \mathcal{C} \uparrow \perp \uparrow = f(\alpha) \uparrow 2 \quad \mathbb{E} \downarrow a \in \mathcal{A} \left[\chi \downarrow \alpha \left(a \right) \right]$

Applications ...

[Khot-Naor'06]: If $C \uparrow \bot$ is asymptotically good, then $c \downarrow 1$ $(G) = \Omega(n)$.

Proof: Suffices to lower bound ϵ/δ .

- Since $d\uparrow \perp = \Omega(n)$, $\epsilon = \Omega(1)$.
- Let t be the covering radius of C. Then δ≤1/t.
 We have t=Ω(n), since C1⊥ has rate Ω(n).
- So $\delta = O(1/n)$ and $\epsilon/\delta = \Omega(n)$.

Analogue of [BenSasson-Harsha-Raskhodnikova'03]: Small dual distance necessary for Local testing.

[BHR'03]: Codes where dt = 0(1), but not locally testable.

A spectral view of LTCs

[G-Vadhan-Zhou]: [n,k,d] /2 LTCs are equivalent to Cayley graphs on \mathbb{F} /2 n-k whose eigenvalue spectrum resembles the *n*-dimensional ϵ -noisy hypercube for $\epsilon=1/d$.

Gives a converse to a result of Barak-G.-Hastad-Meka-Raghavendra-Steurer'2012.

Conclusions

- Many known connections between codes and graphs: Relate pseudorandom objects.
 - This work relates objects whose existence is unclear!
- Can it be used for better constructions?
- Or better lower bounds?