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o A data set is obtained.
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Interactive learning: the learning machine engages adaptively with an
information source (e.g. human) during learning




Example: learning a classifier via label queries

Unlabeled data is often plentiful and cheap: documents off the web,
speech samples, images, video. But labeling can be expensive.
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Unlabeled data is often plentiful and cheap: documents off the web,
speech samples, images, video. But labeling can be expensive.

“Active learning”: Machine queries just a few labels, choosing wisely and

adaptively.
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e Good querying schemes?

e Tradeoff between # labels and error rate of final classifier?
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e How to deal with ambiguity of feedback?



Example: interaction for unsupervised learning



Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.
e Show human the restriction of C to O(1) points from X.



Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.
e Show human the restriction of C to O(1) points from X.

Flat clustering

whale
elephant



Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.
e Show human the restriction of C to O(1) points from X.

Flat clustering

whale
elephant

E.g. must-link dolphin-whale



Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.
e Show human the restriction of C to O(1) points from X.

Flat clustering Hierarchical clustering

whale zebra dolphin
elephant

elephant whale mouse rabbit

E.g. must-link dolphin-whale



Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.
e Show human the restriction of C to O(1) points from X.

Flat clustering Hierarchical clustering

whale zebra dolphin
elephant

elephant whale mouse rabbit

E.g. must-link dolphin-whale E.g. triplet constraint

({dolphin, whale}, zebra)



Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.
e Show human the restriction of C to O(1) points from X.

Flat clustering Hierarchical clustering

whale zebra dolphin
elephant

elephant whale mouse rabbit

E.g. must-link dolphin-whale E.g. triplet constraint

({dolphin, whale}, zebra)

How to choose substructure? How much feedback is needed?
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Some questions of interest

@ Efficient interaction algorithms.
How much interaction is needed to learn?

@ Interaction versus computational complexity.
Situations where interaction circumvents computational hardness.

©® Modes of interaction.

e What kinds of interaction are easy and pleasant for the human, and
produce reliable feedback?
e Does it help to have a “don’t know” option?

@O The communication gap between human and machine.



QOutline

@ What is interactive learning?
® Query learning of classifiers
© Query learning of other structures

O Interaction in practice



Typical heuristics for “active learning”

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)
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Typical heuristics for “active learning”

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)
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The statistical learning theory framework

Unknown, underlying distribution P on the (data, label) space.
Hypothesis class H of candidate classifiers.
Target: the h* € H that has fewest errors on P.

Get n samples from P, choose h, € H that does well on these.

We'd like: h, — h*, as rapidly as possible.
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Typical heuristics for “active learning”

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)
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Sampling bias

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

Example: data in R, H = {thresholds}.
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Sampling bias

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

Example: data in R, H = {thresholds}.

-

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5% error
instead of the best achievable, 2.5%. Not consistent.

Question: Is there a generic fix to uncertainty-based heuristics that
makes them consistent?



How much can active learning help?

Threshold functions on the real line (¥ =R, Y = {+1,-1}):
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Supervised: for misclassification error < ¢, need ~ 1/¢ labeled points.
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inferred. Exponential improvement in label complexity.
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Threshold functions on the real line (¥ =R, Y = {+1,-1}):

H={hy:weR} —_— | +
hw(x) = 1(x > w) vlv

Supervised: for misclassification error < ¢, need ~ 1/¢ labeled points.

Active learning: instead, start with 1/e unlabeled points.
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Binary search: need just log1/e¢ labels, from which the rest can be
inferred. Exponential improvement in label complexity.

What about other hypothesis classes?
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Generalized binary search?

For supervised learning of a hypothesis class H of VC dimension d, we
need about d/e labeled points.

Start with d/e unlabeled points.

At most (d/€)? different ways to classify these using .

Ask queries that cut this space in half each time.

Then just dlog(d/€) queries are needed.

Problems:
e Halving queries might not exist.
e Computational complexity of maintaining the version space.

e \What if there is no classifier with zero error?

Several methods: variants of greedy (Bilmes-Guillory, D, Golovin-Krause,
Nowak), query-by-committee (Freund-Shamir-Sompolinsky-Tishby), ...



Three types of active learning results

@ Mellow active learning.
® Margin-based active learning.

©® Active annotation.



A mellow active learner (Cohn-Atlas-Ladner)

For separable data that is streaming in.

H1 = hypothesis class
Repeat for t =1,2,...
Receive unlabeled point x; € X
If there is any disagreement within H; about x:'s label:
query label y; and set Hei1 = {h € He @ h(x) = yi}

else
Her1 = He
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A mellow active learner (cohn-Atlas-Ladner)

For separable data that is streaming in.

H1 = hypothesis class
Repeat for t =1,2,...
Receive unlabeled point x; € X
If there is any disagreement within H; about x:'s label:
query label y; and set Her1 = {h € He s h(xe) = v}

else
Hirr = He
[ ]
[ ] [ ]

O

[ ]

([ ] [ ]

[ ]

Is a label needed? H ¢ = current candidate Region of disagreement

hypotheses

No need to explicitly maintain ;.



Label complexity bounds (Hanneke)

Label complexity can be upper-bounded in terms of:
e the VC dimension d of H

e the disagreement coefficient 0, which depends on H and also on
the distribution P on X

To achieve misclassification rate € w.p. 0.9, suffices to have
d
# labels =~ 6dlog —.
€

Usual supervised requirement: d/e.



Label complexity bounds (Hanneke)

Label complexity can be upper-bounded in terms of:
e the VC dimension d of H

e the disagreement coefficient 0, which depends on H and also on
the distribution P on X

To achieve misclassification rate € w.p. 0.9, suffices to have
d
# labels =~ 6dlog —.
€
Usual supervised requirement: d/e.

A variety of generalizations to non-separable situations (by various
subsets of Balcan, Beygelzimer, Chaudhuri, D, Hanneke, Hsu, Langford,
Monteleoni, Zhang, ...).



Label complexity: intuition

P = underlying distribution on input space X.

o After t points are seen, version space H; consists of classifiers with
error at most about A; = d/t.

o Let DIS(#H:) C X be the part of the input space on which there is
disagreement within H;.
Any point outside DIS(#;) is not queried.

e The disagreement coefficient 6 tells us P(DIS(H;)) < 6A,.
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Label complexity: intuition

P = underlying distribution on input space X.

After t points are seen, version space H; consists of classifiers with
error at most about A; = d/t.

Let DIS(H;) C X be the part of the input space on which there is
disagreement within H;.
Any point outside DIS(#;) is not queried.

The disagreement coefficient 6 tells us P(DIS(H;)) < 6A,.
The expected number of queries, upto time T, is thus:

T T T d
> P(DIS(H:)) < 0 Ar = 92; ~ Odlog T.
t=1 t=1 t=1

e To get error < ¢, take T =~ d/e.

The disagreement coefficient bounds the probability mass of the region of
disagreement in X'... how is it defined?



Geometry of hypothesis class

P = probability distribution on input space X.
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Geometry of hypothesis class

P = probability distribution on input space X.
Induced pseudo-metric on hypotheses: d(h, ') = P[h(X) # h'(X)].
Corresponding notion of ball B(h,r) = {h" € H : d(h,h') < r}.

Example: X =R, H = {thresholds}.

Wk
—

d(h*,h) = P[h*(X) # h(X)] = probability mass of red region

B(h*, r) consists of thresholds within probability mass r of h*:
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Disagreement coefficient

Disagreement region of any set of candidate hypotheses V C H:
DIS(V) = {x € X : 3h,h" € V such that h(x) # h'(x)}.
Need only consider V' = B(h*,r), where h* = target hypothesis.

Disagreement coefficient:

sup P[DIS(B(h*,r))]

- r

0:

Example: X =R, H = {thresholds}.
B(h*, r) consists of thresholds within r probability mass of h*:

Therefore § = 2, implying label complexity O(log1/e).
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Disagreement coefficient: linear separators

H: through-the-origin linear separators in R?
X unit sphere, P: uniform distribution

Then 6 < V/d, implying label complexity O(d*/?log d/e).

h n

d(h W) = B(h(X) # (X)) — 2nBle bebween h, A

™
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H = through-the-origin linear separators in RY = unit sphere
X' unit sphere, P: uniform distribution
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Disagreement coefficient: linear separators

H = through-the-origin linear separators in RY = unit sphere
X' unit sphere, P: uniform distribution

R* B, r)

DIS(B(h*, 7))

e Uniform distribution on unit sphere = N(0, (1/d)/y)
e Marginal in h*-direction ~ N(0,1/d)
o Therefore P(DIS(h*,r)) = rvd = 0~ +/d.



Three types of active learning results

@ Mellow active learning.
® Margin-based active learning.

©® Active annotation.



Margin-based active learning (Balcan-Long)

An active learning blueprint for linear separators (D-Kalai-Monteleoni,
Balcan-Broder-Zhang, CesaBianchi-Gentile-Orabona, Balcan-Long):
e Let's say all x have ||x|| =1.
e Fort=1,2,3,...:
e w; = classifier based on data so far

e Randomly choose points amongst those with |x - w| < m;
e Query their labels

Here (m;) is a schedule of margins that decreases to zero.
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Margin-based active learning (Baican-Long)

An active learning blueprint for linear separators (D-Kalai-Monteleoni,
Balcan-Broder-Zhang, CesaBianchi-Gentile-Orabona, Balcan-Long):
e Let's say all x have ||x|| = 1.
e Fort=1,2,3,...:
e w; = classifier based on data so far

e Randomly choose points amongst those with |x - w| < m;
e Query their labels

Here (m;) is a schedule of margins that decreases to zero.

Results:

e Yields a classifier of error < € using O(d log(1/€)) labels if the
marginal distribution of x is logconcave and isotropic.

e Can handle a variant of “Tsybakov noise”.

Question: Make this practical while retaining statistical guarantees.
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® Margin-based active learning.
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Active annotation

Input:

e Finite set of data points {xi,...,x,}, each of which has an
associated label y; that is initially missing.

e Parameters 0 < §,¢ < 1.
e Access to an oracle that can supply any label y;.

Output:
A set of labels yi, ..., ¥, such that with probability at least 1 — §, at
most an ¢ fraction of these labels are incorrect, that is,

S 10i #£7) < en.

i

Goal: Minimize calls to the oracle.



Active learning on graphs

Input: a neighborhood graph G whose nodes are the data points x.
e Each node has an unknown label.

e Goal: find the cut-edges in this graph that separate two labels.




Active learning on graphs

Input: a neighborhood graph G whose nodes are the data points x.
e Each node has an unknown label.

e Goal: find the cut-edges in this graph that separate two labels.

What should label complexity depend upon?
e # cut edges
e log(diameter of graph)

e 1/(proportion of each class)



The S? algorithm (Dasarthy-Nowak-zhu)
(For binary labels)

Keep going until budget runs out:
o If 3 labeled nodes of opposite polarity that are connected in G:
e Find the shortest path connecting nodes of opposite label.
e Query its midpoint.
Else:

e Pick a random point and query it.

e Remove any newly-revealed cut edges from the graph G.
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The S? algorithm (Dasarthy-Nowak-zhu)
(For binary labels)

Keep going until budget runs out:
o If 3 labeled nodes of opposite polarity that are connected in G:

e Find the shortest path connecting nodes of opposite label.
e Query its midpoint.
Else:

e Pick a random point and query it.

e Remove any newly-revealed cut edges from the graph G.
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The S? algorithm (Dasarthy-Nowak-zhu)
(For binary labels)
Keep going until budget runs out:

o If 3 labeled nodes of opposite polarity that are connected in G:
e Find the shortest path connecting nodes of opposite label.
e Query its midpoint.
Else:

e Pick a random point and query it.

e Remove any newly-revealed cut edges from the graph G.

Graph-specific label complexity + nonparametric generalization bounds.
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A cluster-based approach (p-Hsu)

Unlabeled data

Find a clustering
o
@) @)
oO 5 050 ©
o o 0O
0 60° 00 O
©o © o
© o,
o 0.0
° o
°000

(random sampling within clusters) Queried points are also randomly distributed
Now what?

within the new clusters.



Hierarchical sampling

Rules:

o Always work with some pruning of the hierarchy: a clustering
induced by the tree.

e Pick a cluster, query a random point in it.

e For each tree node (cluster) maintain majority label and confidence
intervals on label frequencies.



Hierarchical sampling

Rules:

o Always work with some pruning of the hierarchy: a clustering
induced by the tree.

e Pick a cluster, query a random point in it.

e For each tree node (cluster) maintain majority label and confidence
intervals on label frequencies.

Ben David-Kpotufe-Urner '14: Label complexity under smoothness.



Three types of active learning results

@ Mellow active learning.
® Margin-based active learning.

©® Active annotation.



