
Interactive learning of classifiers and other
structures

Part I: Sanjoy Dasgupta
Part II: Rob Nowak

Simons Institute program in Foundations of ML

What is interactive learning?
The generic process of supervised learning:

• A data set is obtained.

• A human labels this data set.

• The human goes away.

• A machine looks at the labeled data and chooses a classifier.

Interactive learning: the learning machine engages adaptively with an
information source (e.g. human) during learning

What is interactive learning?
The generic process of supervised learning:

• A data set is obtained.

• A human labels this data set.

• The human goes away.

• A machine looks at the labeled data and chooses a classifier.

Interactive learning: the learning machine engages adaptively with an
information source (e.g. human) during learning

Example: learning a classifier via label queries

Unlabeled data is often plentiful and cheap: documents off the web,
speech samples, images, video. But labeling can be expensive.

“Active learning”: Machine queries just a few labels, choosing wisely and
adaptively.

• Good querying schemes?

• Tradeoff between # labels and error rate of final classifier?

Example: learning a classifier via label queries

Unlabeled data is often plentiful and cheap: documents off the web,
speech samples, images, video. But labeling can be expensive.

“Active learning”: Machine queries just a few labels, choosing wisely and
adaptively.

• Good querying schemes?

• Tradeoff between # labels and error rate of final classifier?

Example: explanation-based learning

In addition to labels, the human might provide an explanation, for
instance in the form of relevant features.

• Benefit of explanations over labels alone?

• How to deal with ambiguity of feedback?

Example: explanation-based learning

In addition to labels, the human might provide an explanation, for
instance in the form of relevant features.

• Benefit of explanations over labels alone?

• How to deal with ambiguity of feedback?

Example: explanation-based learning

In addition to labels, the human might provide an explanation, for
instance in the form of relevant features.

• Benefit of explanations over labels alone?

• How to deal with ambiguity of feedback?

Example: explanation-based learning

In addition to labels, the human might provide an explanation, for
instance in the form of relevant features.

• Benefit of explanations over labels alone?

• How to deal with ambiguity of feedback?

Example: explanation-based learning

In addition to labels, the human might provide an explanation, for
instance in the form of relevant features.

• Benefit of explanations over labels alone?

• How to deal with ambiguity of feedback?

Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.

• Show human the restriction of C to O(1) points from X .

Flat clustering

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Hierarchical clustering

mouse

dolphin

whale

zebra

rabbitelephant

E.g. triplet constraint
({dolphin, whale}, zebra)

How to choose substructure? How much feedback is needed?

Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.

• Show human the restriction of C to O(1) points from X .

Flat clustering

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Hierarchical clustering

mouse

dolphin

whale

zebra

rabbitelephant

E.g. triplet constraint
({dolphin, whale}, zebra)

How to choose substructure? How much feedback is needed?

Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.

• Show human the restriction of C to O(1) points from X .

Flat clustering

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Hierarchical clustering

mouse

dolphin

whale

zebra

rabbitelephant

E.g. triplet constraint
({dolphin, whale}, zebra)

How to choose substructure? How much feedback is needed?

Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.

• Show human the restriction of C to O(1) points from X .

Flat clustering

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Hierarchical clustering

mouse

dolphin

whale

zebra

rabbitelephant

E.g. triplet constraint
({dolphin, whale}, zebra)

How to choose substructure? How much feedback is needed?

Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.

• Show human the restriction of C to O(1) points from X .

Flat clustering

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Hierarchical clustering

mouse

dolphin

whale

zebra

rabbitelephant

E.g. triplet constraint
({dolphin, whale}, zebra)

How to choose substructure? How much feedback is needed?

Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.

• Show human the restriction of C to O(1) points from X .

Flat clustering

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Hierarchical clustering

mouse

dolphin

whale

zebra

rabbitelephant

E.g. triplet constraint
({dolphin, whale}, zebra)

How to choose substructure? How much feedback is needed?

Example: interaction for unsupervised learning

E.g. Machine has a clustering C of data X and wants feedback.

• Show human the restriction of C to O(1) points from X .

Flat clustering

mouse

dolphin
whale

zebra rabbit

elephant

E.g. must-link dolphin-whale

Hierarchical clustering

mouse

dolphin

whale

zebra

rabbitelephant

E.g. triplet constraint
({dolphin, whale}, zebra)

How to choose substructure? How much feedback is needed?

Some questions of interest

1 Efficient interaction algorithms.
How much interaction is needed to learn?

2 Interaction versus computational complexity.
Situations where interaction circumvents computational hardness.

3 Modes of interaction.

• What kinds of interaction are easy and pleasant for the human, and
produce reliable feedback?

• Does it help to have a “don’t know” option?

4 The communication gap between human and machine.

Some questions of interest

1 Efficient interaction algorithms.
How much interaction is needed to learn?

2 Interaction versus computational complexity.
Situations where interaction circumvents computational hardness.

3 Modes of interaction.

• What kinds of interaction are easy and pleasant for the human, and
produce reliable feedback?

• Does it help to have a “don’t know” option?

4 The communication gap between human and machine.

Some questions of interest

1 Efficient interaction algorithms.
How much interaction is needed to learn?

2 Interaction versus computational complexity.
Situations where interaction circumvents computational hardness.

3 Modes of interaction.

• What kinds of interaction are easy and pleasant for the human, and
produce reliable feedback?

• Does it help to have a “don’t know” option?

4 The communication gap between human and machine.

Some questions of interest

1 Efficient interaction algorithms.
How much interaction is needed to learn?

2 Interaction versus computational complexity.
Situations where interaction circumvents computational hardness.

3 Modes of interaction.

• What kinds of interaction are easy and pleasant for the human, and
produce reliable feedback?

• Does it help to have a “don’t know” option?

4 The communication gap between human and machine.

Outline

1 What is interactive learning?

2 Query learning of classifiers

3 Query learning of other structures

4 Interaction in practice

Typical heuristics for “active learning”

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

How to analyze such
schemes?

Typical heuristics for “active learning”

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

How to analyze such
schemes?

The statistical learning theory framework

Unknown, underlying distribution P on the (data, label) space.
Hypothesis class H of candidate classifiers.
Target: the h∗ ∈ H that has fewest errors on P.

Get n samples from P, choose hn ∈ H that does well on these.

We’d like: hn → h∗, as rapidly as possible.

Typical heuristics for “active learning”

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

Biased sampling: the labeled
points are not representative
of the underlying distribution.

Typical heuristics for “active learning”

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

Biased sampling: the labeled
points are not representative
of the underlying distribution.

Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

Example: data in R, H = {thresholds}.

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5% error
instead of the best achievable, 2.5%. Not consistent.

Question: Is there a generic fix to uncertainty-based heuristics that
makes them consistent?

Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

Example: data in R, H = {thresholds}.

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5% error
instead of the best achievable, 2.5%. Not consistent.

Question: Is there a generic fix to uncertainty-based heuristics that
makes them consistent?

Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall uncertainty,...)

Example: data in R, H = {thresholds}.

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5% error
instead of the best achievable, 2.5%. Not consistent.

Question: Is there a generic fix to uncertainty-based heuristics that
makes them consistent?

How much can active learning help?

Threshold functions on the real line (X = R,Y = {+1,−1}):

H = {hw : w ∈ R}
hw (x) = 1(x ≥ w)

w

− +

Supervised: for misclassification error ≤ ε, need ≈ 1/ε labeled points.

Active learning: instead, start with 1/ε unlabeled points.

Binary search: need just log 1/ε labels, from which the rest can be
inferred. Exponential improvement in label complexity.

What about other hypothesis classes?

How much can active learning help?

Threshold functions on the real line (X = R,Y = {+1,−1}):

H = {hw : w ∈ R}
hw (x) = 1(x ≥ w)

w

− +

Supervised: for misclassification error ≤ ε, need ≈ 1/ε labeled points.

Active learning: instead, start with 1/ε unlabeled points.

Binary search: need just log 1/ε labels, from which the rest can be
inferred. Exponential improvement in label complexity.

What about other hypothesis classes?

How much can active learning help?

Threshold functions on the real line (X = R,Y = {+1,−1}):

H = {hw : w ∈ R}
hw (x) = 1(x ≥ w)

w

− +

Supervised: for misclassification error ≤ ε, need ≈ 1/ε labeled points.

Active learning: instead, start with 1/ε unlabeled points.

Binary search: need just log 1/ε labels, from which the rest can be
inferred. Exponential improvement in label complexity.

What about other hypothesis classes?

Generalized binary search?

For supervised learning of a hypothesis class H of VC dimension d , we
need about d/ε labeled points.

• Start with d/ε unlabeled points.

• At most (d/ε)d different ways to classify these using H.

• Ask queries that cut this space in half each time.

• Then just d log(d/ε) queries are needed.

Problems:

• Halving queries might not exist.

• Computational complexity of maintaining the version space.

• What if there is no classifier with zero error?

Several methods: variants of greedy (Bilmes-Guillory, D, Golovin-Krause,
Nowak), query-by-committee (Freund-Shamir-Sompolinsky-Tishby), ...

Generalized binary search?

For supervised learning of a hypothesis class H of VC dimension d , we
need about d/ε labeled points.

• Start with d/ε unlabeled points.

• At most (d/ε)d different ways to classify these using H.

• Ask queries that cut this space in half each time.

• Then just d log(d/ε) queries are needed.

Problems:

• Halving queries might not exist.

• Computational complexity of maintaining the version space.

• What if there is no classifier with zero error?

Several methods: variants of greedy (Bilmes-Guillory, D, Golovin-Krause,
Nowak), query-by-committee (Freund-Shamir-Sompolinsky-Tishby), ...

Generalized binary search?

For supervised learning of a hypothesis class H of VC dimension d , we
need about d/ε labeled points.

• Start with d/ε unlabeled points.

• At most (d/ε)d different ways to classify these using H.

• Ask queries that cut this space in half each time.

• Then just d log(d/ε) queries are needed.

Problems:

• Halving queries might not exist.

• Computational complexity of maintaining the version space.

• What if there is no classifier with zero error?

Several methods: variants of greedy (Bilmes-Guillory, D, Golovin-Krause,
Nowak), query-by-committee (Freund-Shamir-Sompolinsky-Tishby), ...

Generalized binary search?

For supervised learning of a hypothesis class H of VC dimension d , we
need about d/ε labeled points.

• Start with d/ε unlabeled points.

• At most (d/ε)d different ways to classify these using H.

• Ask queries that cut this space in half each time.

• Then just d log(d/ε) queries are needed.

Problems:

• Halving queries might not exist.

• Computational complexity of maintaining the version space.

• What if there is no classifier with zero error?

Several methods: variants of greedy (Bilmes-Guillory, D, Golovin-Krause,
Nowak), query-by-committee (Freund-Shamir-Sompolinsky-Tishby), ...

Generalized binary search?

For supervised learning of a hypothesis class H of VC dimension d , we
need about d/ε labeled points.

• Start with d/ε unlabeled points.

• At most (d/ε)d different ways to classify these using H.

• Ask queries that cut this space in half each time.

• Then just d log(d/ε) queries are needed.

Problems:

• Halving queries might not exist.

• Computational complexity of maintaining the version space.

• What if there is no classifier with zero error?

Several methods: variants of greedy (Bilmes-Guillory, D, Golovin-Krause,
Nowak), query-by-committee (Freund-Shamir-Sompolinsky-Tishby), ...

Three types of active learning results

1 Mellow active learning.

2 Margin-based active learning.

3 Active annotation.

A mellow active learner (Cohn-Atlas-Ladner)

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt ∈ X
If there is any disagreement within Ht about xt ’s label:

query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}
else
Ht+1 = Ht

Is a label needed?

Ht = current candidate
hypotheses

Region of disagreement

No need to explicitly maintain Ht .

A mellow active learner (Cohn-Atlas-Ladner)

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt ∈ X
If there is any disagreement within Ht about xt ’s label:

query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}
else
Ht+1 = Ht

Is a label needed? Ht = current candidate
hypotheses

Region of disagreement

No need to explicitly maintain Ht .

A mellow active learner (Cohn-Atlas-Ladner)

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt ∈ X
If there is any disagreement within Ht about xt ’s label:

query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}
else
Ht+1 = Ht

Is a label needed? Ht = current candidate
hypotheses

Region of disagreement

No need to explicitly maintain Ht .

A mellow active learner (Cohn-Atlas-Ladner)

For separable data that is streaming in.

H1 = hypothesis class

Repeat for t = 1, 2, . . .

Receive unlabeled point xt ∈ X
If there is any disagreement within Ht about xt ’s label:

query label yt and set Ht+1 = {h ∈ Ht : h(xt) = yt}
else
Ht+1 = Ht

Is a label needed? Ht = current candidate
hypotheses

Region of disagreement

No need to explicitly maintain Ht .

Label complexity bounds (Hanneke)

Label complexity can be upper-bounded in terms of:

• the VC dimension d of H
• the disagreement coefficient θ, which depends on H and also on

the distribution P on X

To achieve misclassification rate ε w.p. 0.9, suffices to have

labels ≈ θd log
d

ε
.

Usual supervised requirement: d/ε.

A variety of generalizations to non-separable situations (by various
subsets of Balcan, Beygelzimer, Chaudhuri, D, Hanneke, Hsu, Langford,
Monteleoni, Zhang, ...).

Label complexity bounds (Hanneke)

Label complexity can be upper-bounded in terms of:

• the VC dimension d of H
• the disagreement coefficient θ, which depends on H and also on

the distribution P on X

To achieve misclassification rate ε w.p. 0.9, suffices to have

labels ≈ θd log
d

ε
.

Usual supervised requirement: d/ε.

A variety of generalizations to non-separable situations (by various
subsets of Balcan, Beygelzimer, Chaudhuri, D, Hanneke, Hsu, Langford,
Monteleoni, Zhang, ...).

Label complexity: intuition

P = underlying distribution on input space X .

• After t points are seen, version space Ht consists of classifiers with
error at most about ∆t = d/t.

• Let DIS(Ht) ⊆ X be the part of the input space on which there is
disagreement within Ht .
Any point outside DIS(Ht) is not queried.

• The disagreement coefficient θ tells us P(DIS(Ht)) ≤ θ∆t .

• The expected number of queries, upto time T , is thus:

T∑
t=1

P(DIS(Ht)) ≤ θ

T∑
t=1

∆t = θ

T∑
t=1

d

t
≈ θd logT .

• To get error ≤ ε, take T ≈ d/ε.

The disagreement coefficient bounds the probability mass of the region of
disagreement in X ... how is it defined?

Label complexity: intuition

P = underlying distribution on input space X .

• After t points are seen, version space Ht consists of classifiers with
error at most about ∆t = d/t.

• Let DIS(Ht) ⊆ X be the part of the input space on which there is
disagreement within Ht .
Any point outside DIS(Ht) is not queried.

• The disagreement coefficient θ tells us P(DIS(Ht)) ≤ θ∆t .

• The expected number of queries, upto time T , is thus:

T∑
t=1

P(DIS(Ht)) ≤ θ

T∑
t=1

∆t = θ

T∑
t=1

d

t
≈ θd logT .

• To get error ≤ ε, take T ≈ d/ε.

The disagreement coefficient bounds the probability mass of the region of
disagreement in X ... how is it defined?

Label complexity: intuition

P = underlying distribution on input space X .

• After t points are seen, version space Ht consists of classifiers with
error at most about ∆t = d/t.

• Let DIS(Ht) ⊆ X be the part of the input space on which there is
disagreement within Ht .
Any point outside DIS(Ht) is not queried.

• The disagreement coefficient θ tells us P(DIS(Ht)) ≤ θ∆t .

• The expected number of queries, upto time T , is thus:

T∑
t=1

P(DIS(Ht)) ≤ θ

T∑
t=1

∆t = θ

T∑
t=1

d

t
≈ θd logT .

• To get error ≤ ε, take T ≈ d/ε.

The disagreement coefficient bounds the probability mass of the region of
disagreement in X ... how is it defined?

Geometry of hypothesis class

P = probability distribution on input space X .
Induced pseudo-metric on hypotheses: d(h, h′) = P[h(X) 6= h′(X)].
Corresponding notion of ball B(h, r) = {h′ ∈ H : d(h, h′) < r}.

Example: X = R, H = {thresholds}.
Example: H = {thresholds in R}

Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

d(h∗, h) = P[h∗(X) 6= h(X)] = probability mass of red region

B(h∗, r) consists of thresholds within probability mass r of h∗:

Example: H = {thresholds in R}
Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

Geometry of hypothesis class

P = probability distribution on input space X .
Induced pseudo-metric on hypotheses: d(h, h′) = P[h(X) 6= h′(X)].
Corresponding notion of ball B(h, r) = {h′ ∈ H : d(h, h′) < r}.

Example: X = R, H = {thresholds}.
Example: H = {thresholds in R}

Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

d(h∗, h) = P[h∗(X) 6= h(X)] = probability mass of red region

B(h∗, r) consists of thresholds within probability mass r of h∗:

Example: H = {thresholds in R}
Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

Geometry of hypothesis class

P = probability distribution on input space X .
Induced pseudo-metric on hypotheses: d(h, h′) = P[h(X) 6= h′(X)].
Corresponding notion of ball B(h, r) = {h′ ∈ H : d(h, h′) < r}.

Example: X = R, H = {thresholds}.
Example: H = {thresholds in R}

Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

d(h∗, h) = P[h∗(X) 6= h(X)] = probability mass of red region

B(h∗, r) consists of thresholds within probability mass r of h∗:

Example: H = {thresholds in R}
Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

Disagreement coefficient

Disagreement region of any set of candidate hypotheses V ⊆ H:

DIS(V) = {x ∈ X : ∃h, h′ ∈ V such that h(x) 6= h′(x)}.

Need only consider V = B(h∗, r), where h∗ = target hypothesis.

Disagreement coefficient:

θ = sup
r

P[DIS(B(h∗, r))]

r
.

Example: X = R, H = {thresholds}.
B(h∗, r) consists of thresholds within r probability mass of h∗:

Example: H = {thresholds in R}
Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

Therefore θ = 2, implying label complexity O(log 1/ε).

Disagreement coefficient

Disagreement region of any set of candidate hypotheses V ⊆ H:

DIS(V) = {x ∈ X : ∃h, h′ ∈ V such that h(x) 6= h′(x)}.

Need only consider V = B(h∗, r), where h∗ = target hypothesis.

Disagreement coefficient:

θ = sup
r

P[DIS(B(h∗, r))]

r
.

Example: X = R, H = {thresholds}.
B(h∗, r) consists of thresholds within r probability mass of h∗:

Example: H = {thresholds in R}
Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

Therefore θ = 2, implying label complexity O(log 1/ε).

Disagreement coefficient

Disagreement region of any set of candidate hypotheses V ⊆ H:

DIS(V) = {x ∈ X : ∃h, h′ ∈ V such that h(x) 6= h′(x)}.

Need only consider V = B(h∗, r), where h∗ = target hypothesis.

Disagreement coefficient:

θ = sup
r

P[DIS(B(h∗, r))]

r
.

Example: X = R, H = {thresholds}.
B(h∗, r) consists of thresholds within r probability mass of h∗:

Example: H = {thresholds in R}
Consider any two thresholds h∗, h:

h∗ h

d(h∗, h) = P[h∗(X) ̸= h(X)]

= probability mass of (data in) the red region

B(h∗, r) consists of thresholds within r probability mass of h∗:

h∗

r r

Therefore the disagreement coefficient is

θ = sup
r

P[DIS(B(h∗, r))]
r

= 2.

Therefore θ = 2, implying label complexity O(log 1/ε).

Disagreement coefficient: linear separators

H: through-the-origin linear separators in Rd

X : unit sphere, P: uniform distribution

Then θ ≤
√
d , implying label complexity O(d3/2 log d/ε).

h h0

d(h, h′) = P(h(X) 6= h′(X)) =
angle between h, h′

π
.

Disagreement coefficient: linear separators

H: through-the-origin linear separators in Rd

X : unit sphere, P: uniform distribution

Then θ ≤
√
d , implying label complexity O(d3/2 log d/ε).

h h0

d(h, h′) = P(h(X) 6= h′(X)) =
angle between h, h′

π
.

Disagreement coefficient: linear separators

H = through-the-origin linear separators in Rd = unit sphere
X : unit sphere, P: uniform distribution

h⇤

• Uniform distribution on unit sphere ≈ N(0, (1/d)Id)

• Marginal in h∗-direction ≈ N(0, 1/d)

• Therefore P(DIS(h∗, r)) ≈ r
√
d ⇒ θ ≈

√
d .

Disagreement coefficient: linear separators

H = through-the-origin linear separators in Rd = unit sphere
X : unit sphere, P: uniform distribution

h⇤
B(h⇤, r)

• Uniform distribution on unit sphere ≈ N(0, (1/d)Id)

• Marginal in h∗-direction ≈ N(0, 1/d)

• Therefore P(DIS(h∗, r)) ≈ r
√
d ⇒ θ ≈

√
d .

Disagreement coefficient: linear separators

H = through-the-origin linear separators in Rd = unit sphere
X : unit sphere, P: uniform distribution

h⇤
B(h⇤, r)

rDIS(B(h⇤, r))

• Uniform distribution on unit sphere ≈ N(0, (1/d)Id)

• Marginal in h∗-direction ≈ N(0, 1/d)

• Therefore P(DIS(h∗, r)) ≈ r
√
d ⇒ θ ≈

√
d .

Disagreement coefficient: linear separators

H = through-the-origin linear separators in Rd = unit sphere
X : unit sphere, P: uniform distribution

h⇤
B(h⇤, r)

rDIS(B(h⇤, r))

• Uniform distribution on unit sphere ≈ N(0, (1/d)Id)

• Marginal in h∗-direction ≈ N(0, 1/d)

• Therefore P(DIS(h∗, r)) ≈ r
√
d ⇒ θ ≈

√
d .

Disagreement coefficient: linear separators

H = through-the-origin linear separators in Rd = unit sphere
X : unit sphere, P: uniform distribution

h⇤
B(h⇤, r)

rDIS(B(h⇤, r))

• Uniform distribution on unit sphere ≈ N(0, (1/d)Id)

• Marginal in h∗-direction ≈ N(0, 1/d)

• Therefore P(DIS(h∗, r)) ≈ r
√
d ⇒ θ ≈

√
d .

Disagreement coefficient: linear separators

H = through-the-origin linear separators in Rd = unit sphere
X : unit sphere, P: uniform distribution

h⇤
B(h⇤, r)

rDIS(B(h⇤, r))

• Uniform distribution on unit sphere ≈ N(0, (1/d)Id)

• Marginal in h∗-direction ≈ N(0, 1/d)

• Therefore P(DIS(h∗, r)) ≈ r
√
d ⇒ θ ≈

√
d .

Three types of active learning results

1 Mellow active learning.

2 Margin-based active learning.

3 Active annotation.

Margin-based active learning (Balcan-Long)

An active learning blueprint for linear separators (D-Kalai-Monteleoni,
Balcan-Broder-Zhang, CesaBianchi-Gentile-Orabona, Balcan-Long):

• Let’s say all x have ‖x‖ = 1.

• For t = 1, 2, 3, . . .:
• wt = classifier based on data so far
• Randomly choose points amongst those with |x · wt | ≤ mt

• Query their labels

Here (mt) is a schedule of margins that decreases to zero.

Results:

• Yields a classifier of error ≤ ε using O(d log(1/ε)) labels if the
marginal distribution of x is logconcave and isotropic.

• Can handle a variant of “Tsybakov noise”.

Question: Make this practical while retaining statistical guarantees.

Margin-based active learning (Balcan-Long)

An active learning blueprint for linear separators (D-Kalai-Monteleoni,
Balcan-Broder-Zhang, CesaBianchi-Gentile-Orabona, Balcan-Long):

• Let’s say all x have ‖x‖ = 1.

• For t = 1, 2, 3, . . .:
• wt = classifier based on data so far
• Randomly choose points amongst those with |x · wt | ≤ mt

• Query their labels

Here (mt) is a schedule of margins that decreases to zero.

Results:

• Yields a classifier of error ≤ ε using O(d log(1/ε)) labels if the
marginal distribution of x is logconcave and isotropic.

• Can handle a variant of “Tsybakov noise”.

Question: Make this practical while retaining statistical guarantees.

Margin-based active learning (Balcan-Long)

An active learning blueprint for linear separators (D-Kalai-Monteleoni,
Balcan-Broder-Zhang, CesaBianchi-Gentile-Orabona, Balcan-Long):

• Let’s say all x have ‖x‖ = 1.

• For t = 1, 2, 3, . . .:
• wt = classifier based on data so far
• Randomly choose points amongst those with |x · wt | ≤ mt

• Query their labels

Here (mt) is a schedule of margins that decreases to zero.

Results:

• Yields a classifier of error ≤ ε using O(d log(1/ε)) labels if the
marginal distribution of x is logconcave and isotropic.

• Can handle a variant of “Tsybakov noise”.

Question: Make this practical while retaining statistical guarantees.

Three types of active learning results

1 Mellow active learning.

2 Margin-based active learning.

3 Active annotation.

Active annotation

Input:

• Finite set of data points {x1, . . . , xn}, each of which has an
associated label yi that is initially missing.

• Parameters 0 < δ, ε < 1.

• Access to an oracle that can supply any label yi .

Output:
A set of labels ŷ1, . . . , ŷn such that with probability at least 1− δ, at
most an ε fraction of these labels are incorrect, that is,∑

i

1(yi 6= ŷi) ≤ εn.

Goal: Minimize calls to the oracle.

Active learning on graphs

Input: a neighborhood graph G whose nodes are the data points x .

• Each node has an unknown label.

• Goal: find the cut-edges in this graph that separate two labels.
Active learning on graphs (Dasarthy-Nowak-Zhu)

What should label complexity depend upon?

• # cut edges

• log(diameter of graph)

• 1/(proportion of each class)

Active learning on graphs

Input: a neighborhood graph G whose nodes are the data points x .

• Each node has an unknown label.

• Goal: find the cut-edges in this graph that separate two labels.
Active learning on graphs (Dasarthy-Nowak-Zhu)

What should label complexity depend upon?

• # cut edges

• log(diameter of graph)

• 1/(proportion of each class)

The S2 algorithm (Dasarthy-Nowak-Zhu)

(For binary labels)

Keep going until budget runs out:

• If ∃ labeled nodes of opposite polarity that are connected in G :
• Find the shortest path connecting nodes of opposite label.
• Query its midpoint.

Else:
• Pick a random point and query it.

• Remove any newly-revealed cut edges from the graph G .
Active learning on graphs (Dasarthy-Nowak-Zhu)

Graph-specific label complexity + nonparametric generalization bounds.

The S2 algorithm (Dasarthy-Nowak-Zhu)

(For binary labels)

Keep going until budget runs out:

• If ∃ labeled nodes of opposite polarity that are connected in G :
• Find the shortest path connecting nodes of opposite label.
• Query its midpoint.

Else:
• Pick a random point and query it.

• Remove any newly-revealed cut edges from the graph G .

Found oppositely labeled vertices

•Randomly query vertices till you find a
pair with opposite labels.

•Among all shortest paths connecting
oppositely labeled vertices, pick the
shortest one and query the vertex at its
mid-point.

• If you find a “cut” edge, remove it
and proceed.

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

“querying a vertex”
Repeating the query at the center of each
cell times and picking the majority
response.

Active learning on graphs (Dasarthy-Nowak-Zhu)

Graph-specific label complexity + nonparametric generalization bounds.

The S2 algorithm (Dasarthy-Nowak-Zhu)

(For binary labels)

Keep going until budget runs out:

• If ∃ labeled nodes of opposite polarity that are connected in G :
• Find the shortest path connecting nodes of opposite label.
• Query its midpoint.

Else:
• Pick a random point and query it.

• Remove any newly-revealed cut edges from the graph G .

Found oppositely labeled vertices

•Randomly query vertices till you find a
pair with opposite labels.

•Among all shortest paths connecting
oppositely labeled vertices, pick the
shortest one and query the vertex at its
mid-point.

• If you find a “cut” edge, remove it
and proceed.

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

“querying a vertex”
Repeating the query at the center of each
cell times and picking the majority
response.

There are two shortest pathsPick the shortest oneQuery at the mid - point

Active learning on graphs (Dasarthy-Nowak-Zhu)

Graph-specific label complexity + nonparametric generalization bounds.

The S2 algorithm (Dasarthy-Nowak-Zhu)

(For binary labels)

Keep going until budget runs out:

• If ∃ labeled nodes of opposite polarity that are connected in G :
• Find the shortest path connecting nodes of opposite label.
• Query its midpoint.

Else:
• Pick a random point and query it.

• Remove any newly-revealed cut edges from the graph G .

Found oppositely labeled vertices

•Randomly query vertices till you find a
pair with opposite labels.

•Among all shortest paths connecting
oppositely labeled vertices, pick the
shortest one and query the vertex at its
mid-point.

• If you find a “cut” edge, remove it
and proceed.

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

“querying a vertex”
Repeating the query at the center of each
cell times and picking the majority
response.

There are two shortest pathsPick the shortest oneQuery at the mid - pointThe new shortest shortest pathBisect again

Active learning on graphs (Dasarthy-Nowak-Zhu)

Graph-specific label complexity + nonparametric generalization bounds.

The S2 algorithm (Dasarthy-Nowak-Zhu)

(For binary labels)

Keep going until budget runs out:

• If ∃ labeled nodes of opposite polarity that are connected in G :
• Find the shortest path connecting nodes of opposite label.
• Query its midpoint.

Else:
• Pick a random point and query it.

• Remove any newly-revealed cut edges from the graph G .

Found oppositely labeled vertices

•Randomly query vertices till you find a
pair with opposite labels.

•Among all shortest paths connecting
oppositely labeled vertices, pick the
shortest one and query the vertex at its
mid-point.

• If you find a “cut” edge, remove it
and proceed.

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

“querying a vertex”
Repeating the query at the center of each
cell times and picking the majority
response.

There are two shortest pathsPick the shortest oneQuery at the mid - pointThe new shortest shortest pathBisect againDisconnect this cut-edge

Active learning on graphs (Dasarthy-Nowak-Zhu)

Graph-specific label complexity + nonparametric generalization bounds.

The S2 algorithm (Dasarthy-Nowak-Zhu)

(For binary labels)

Keep going until budget runs out:

• If ∃ labeled nodes of opposite polarity that are connected in G :
• Find the shortest path connecting nodes of opposite label.
• Query its midpoint.

Else:
• Pick a random point and query it.

• Remove any newly-revealed cut edges from the graph G .

Found oppositely labeled vertices

•Randomly query vertices till you find a
pair with opposite labels.

•Among all shortest paths connecting
oppositely labeled vertices, pick the
shortest one and query the vertex at its
mid-point.

• If you find a “cut” edge, remove it
and proceed.

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

“querying a vertex”
Repeating the query at the center of each
cell times and picking the majority
response.

There are two shortest pathsPick the shortest oneQuery at the mid - pointThe new shortest shortest pathBisect againDisconnect this cut-edgeRepeat this procedure

Active learning on graphs (Dasarthy-Nowak-Zhu)

Graph-specific label complexity + nonparametric generalization bounds.

The S2 algorithm (Dasarthy-Nowak-Zhu)

(For binary labels)

Keep going until budget runs out:

• If ∃ labeled nodes of opposite polarity that are connected in G :
• Find the shortest path connecting nodes of opposite label.
• Query its midpoint.

Else:
• Pick a random point and query it.

• Remove any newly-revealed cut edges from the graph G .

Found oppositely labeled vertices

•Randomly query vertices till you find a
pair with opposite labels.

•Among all shortest paths connecting
oppositely labeled vertices, pick the
shortest one and query the vertex at its
mid-point.

• If you find a “cut” edge, remove it
and proceed.

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

“querying a vertex”
Repeating the query at the center of each
cell times and picking the majority
response.

There are two shortest pathsPick the shortest oneQuery at the mid - pointThe new shortest shortest pathBisect againDisconnect this cut-edgeRepeat this procedure

Active learning on graphs (Dasarthy-Nowak-Zhu)

Graph-specific label complexity + nonparametric generalization bounds.

The S2 algorithm (Dasarthy-Nowak-Zhu)

(For binary labels)

Keep going until budget runs out:

• If ∃ labeled nodes of opposite polarity that are connected in G :
• Find the shortest path connecting nodes of opposite label.
• Query its midpoint.

Else:
• Pick a random point and query it.

• Remove any newly-revealed cut edges from the graph G .

Found oppositely labeled vertices

•Randomly query vertices till you find a
pair with opposite labels.

•Among all shortest paths connecting
oppositely labeled vertices, pick the
shortest one and query the vertex at its
mid-point.

• If you find a “cut” edge, remove it
and proceed.

• If there are no more oppositely labeled
vertices, go back to step 1 (random
sampling).

“querying a vertex”
Repeating the query at the center of each
cell times and picking the majority
response.

There are two shortest pathsPick the shortest oneQuery at the mid - pointThe new shortest shortest pathBisect againDisconnect this cut-edgeRepeat this procedure

Active learning on graphs (Dasarthy-Nowak-Zhu)

Graph-specific label complexity + nonparametric generalization bounds.

A cluster-based approach (D-Hsu)

Unlabeled data

Find a clustering

Ask for some labels

(random sampling within clusters)

Now what?

Refine the clustering

Queried points are also randomly distributed

within the new clusters.

A cluster-based approach (D-Hsu)

Unlabeled data Find a clustering

Ask for some labels

(random sampling within clusters)

Now what?

Refine the clustering

Queried points are also randomly distributed

within the new clusters.

A cluster-based approach (D-Hsu)

Unlabeled data Find a clustering

Ask for some labels

(random sampling within clusters)

Now what?

Refine the clustering

Queried points are also randomly distributed

within the new clusters.

A cluster-based approach (D-Hsu)

Unlabeled data Find a clustering

Ask for some labels

(random sampling within clusters)

Now what?

Refine the clustering

Queried points are also randomly distributed

within the new clusters.

A cluster-based approach (D-Hsu)

Unlabeled data Find a clustering

Ask for some labels

(random sampling within clusters)

Now what?

Refine the clustering

Queried points are also randomly distributed

within the new clusters.

Hierarchical sampling

Rules:

• Always work with some pruning of the hierarchy: a clustering
induced by the tree.

• Pick a cluster, query a random point in it.

• For each tree node (cluster) maintain majority label and confidence
intervals on label frequencies.

Ben David-Kpotufe-Urner ’14: Label complexity under smoothness.

Hierarchical sampling

Rules:

• Always work with some pruning of the hierarchy: a clustering
induced by the tree.

• Pick a cluster, query a random point in it.

• For each tree node (cluster) maintain majority label and confidence
intervals on label frequencies.

Ben David-Kpotufe-Urner ’14: Label complexity under smoothness.

Three types of active learning results

1 Mellow active learning.

2 Margin-based active learning.

3 Active annotation.

