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Based on:
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Common Theme
Extending the property testing results in graph theory to the algebraic
setting.
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Property Testing

Given a function (e.g. a graph),

Evaluate it on a small number of points.
Decide whether

I it satisfies a given property (e.g. triangle-freeness),
I or is “far” from satisfying that property.

P

far from P
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The field of property testing has emerged from [Blum, Luby,
Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.

Closely related to the concepts of regularity and uniformity
[Ruzsa-Szemerédi 76], [Rödl-Duke 85].
Formally defined by [Rubinfeld, Sudan 96], [Goldreich,
Goldwasser, Rubinfeld 98].
Closely related to limit theories of combinatorial objects
[Lovász-Szegedy 2010].
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Our setting
Functions of the form f : Fn

p → {0, . . . ,R} where
p is a fixed prime.
R is a fixed integer.

Two important cases:
R = 1: Functions f : Fn

p → {0,1}.
R = p − 1: Functions f : Fn

p → Fp.
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Definition
dist(f ,g) = Pr[f (x) 6= g(x)].

dist(f ,P) = ming∈P dist(f ,g).

Definition
A (Proximity Oblivious) property tester for P must

Make a constant number of queries to f .
Accepts if f ∈ P.
Rejects with probability ≥ δ(ε) > 0 if dist(f ,P) > ε > 0.

P

ε-far from P

accept
Pr[reject] ≥ δ(ε)
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Example
Let

P = {functions f : Fn
p → {0,1} where f ≡ 0}.

Test
Pick x ∈ Fn

p at random.
If f (x) = 0 accept

otherwise reject.

Analysis
If f ≡ 0, then Pr[accept] = 1.
If dist(f ,P) > ε, then Pr[reject] ≥ ε.
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What conditions should we impose on P?

We do not want to treat Fn
p as a generic set of size pn and ignore

the algebraic structure of Fn
p.

Kaufman-Sudan
P is called affine-invariant if

f ∈ P ⇒ f ◦ A ∈ P

for any affine transformation A : Fn
p → Fn

p. (i.e. A : x 7→ Bx + c)

Example

P = {Polynomials f : Fn
p → Fp of degree ≤ d}.
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Question
Which affine-invariant properties P are testable?

Example

P = {Polynomials f : Fn
p → Fp of degree ≤ d}.

Local Characterization of P
f ∈ P ⇐⇒
f |V ∈ P for all affine subspace V ⊆ Fn

p with dim(V ) = d + 1.
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Test for deg ≤ d .
Pick a d + 1-dimensional random affine subspace V ⊆ Fn

p.
Accept if deg(f |V ) ≤ d , and reject otherwise.

We have
if f ∈ P then Pr[accept] = 1.
if dist(f ,P) ≥ ε then Pr[reject] > δ(ε) > 0. [Alon, Kaufman,
Krivelevich, Litsyn, Ron 2005].
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Locally characterizable
P is locally characterizable if there exists k > 0 such that

f ∈ P ⇐⇒
f |V ∈ P for all affine subspace V ⊆ Fn

p with dim(V ) = k .

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)
Every locally characterizable property is (PO)-testable.
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Proof Sketch

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 12 / 40



A classical example

The graph property of triangle-freeness.

The test
Pick three vertices at random.
If they form a triangle reject.
Otherwise accept.

Analysis
If 4-free, we always accept. (trivial)
If ε-far from 4-free, then Pr[reject] > δ(ε) > 0. (non-trivial)
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Suppose G is ε-far from being 4-free.

Regularize: Partition vertices into almost equal parts, so that
almost all cells are uniform.
Clean-up: Empty non-uniform cells, and the almost-empty cells.

G
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The new graph H is close to G⇒ it is far from being 4-free.

⇒ H has a 4⇒ H has many 4’s due to its structure.
⇒ G has many 4’s (we only removed edges from G).
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A different example

The graph property of induced C5-freeness.

The test
Pick five vertices at random.
Reject if they induce a C5.
Otherwise accept.

Analysis
If induced-C5-free, we always accept. (trivial)
If ε-far from induced-C5-free, then Pr[reject] > δ(ε) > 0.
(non-trivial)
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Suppose G is ε-far from being induced-C5-free.
Regularize: Partition vertices into almost equal parts, so that
almost all cells are uniform.
Clean-up: Empty non-uniform cells, and the almost-empty cells.

I Might create many C5’s, and so
I H has many C5’s 6⇒ G has many C5’s.
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This can be handled using a stronger regularity lemma.
[Alon,Fischer,Krivelevich,Szegedy 2000]

There are two partitions A ≺ B.
Every part in A has a chosen sub-part in B.
all pairs of sub-parts are uniform.
For most cells: density ≈ subcell density.

G
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The algebraic setting Fn
p

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 19 / 40



Theorem (Recall)
Every locally characterizable property is (PO)-testable.

The general approach

Consider f that is ε-far from P.
Regularize f .
Clean-up the regularization of f to obtain g close to f .
Then g 6∈ P and thus violates some local condition.
Exploit the nice structure of g to show that the test works for f .
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Regularization

Partition Fn
p such that f is uniform on almost all parts.

Consider polynomials Q1, . . . ,Qc : Fn
p → Fp of degree ≤ d .

Partition Fn
p according to (Q1(x), . . . ,Qc(x))
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Need an analogue of the AFKS-regularity of graphs for Fn
p.

The first partition is defined by (P1, . . . ,Pa).
The finer partition is defined by (P1, . . . ,Pa,Q1, . . . ,Qb)

BFL Subatoms are chosen by setting (Q1(x), . . . ,Qb(x)) = ~c0.
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clean-up
Modify f to remove all irregularities:

I For each big atom c, let tc be the popular value in its subatom.
I Change the value of f on irregular atoms c to tc .
I Change the unpopular values on every atom c to tc .

The new function g is not in P.
There is a W such that g|W 6∈ P.
There are many W ’s for which f |W 6∈ P.
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Equidistribution for Polynomial
factors
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f ≈ Γ(Q1(x), . . . ,Qc(x)).

Need to analyze the distribution of f |V for a random V .
Let L1, . . . ,Lpk be the points of a random V .
We need to understand the distribution of

Q1(L1) . . . Qc(L1)
Q1(L2) . . . Qc(L2)
...
Q1(Lpk ) . . . Qc(Lpk )

 .
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Q1(L2) . . . Qc(L2)
...
Q1(Lpk ) . . . Qc(Lpk )



Green-Tao, Kaufman-Lovett: If Q1, . . . ,Qc are of “high rank”, then

Q1(X ), . . . ,Qc(X ),

are almost independent (entries in each row are almost
independent).
We cannot expect this for all entries

I Note that if deg(Q) = 1, then Q(L1) + Q(L2) = Q(L3) + Q(L4) if
L1 + L2 = L3 + L4.

I If deg(Q) = 2, then
∑

S⊆{1,2,3}(−1)|S|Q(e0 +
∑

i∈S ei ) = 0.
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Theorem
If rank is high, these degree related dependencies are the only
dependencies (up to a small error).

Large values of p: [HH, Lovett 2011].
General p, but affine systems of linear forms: [Bhattacharyya,
Fischer, HH, P. Hatami, and Lovett 2013].
General case: [H, P. Hatami, and Lovett in preparation].
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Examples of locally characterizable
properties
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Example
Testable

P = {Polynomials f : Fn
p → Fp of degree ≤ d}.

Definition (Degree structural properties)
Fix d1, . . . ,dc and Γ : Fc

p → [R].
The property of being expressible as Γ(P1, . . . ,Pc) where
deg(Pi) ≤ di .

Example
Polynomials f : Fn

p → Fp that are products of two quadratics.
Polynomials f : Fn

p → Fp that are squares of a quadratics.
Polynomials f : Fn

p → Fp of the form f = ab + cd where a,b, c,d
are cubics.
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Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)
Every degree structural property is locally characterizable and hence
(PO)-testable.

Our proof uses regularity f ≈ Γ(Q1, . . . ,Qc).
Consequently does not provide any reasonable bound on the
dimension.
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A stronger notion of testing
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Definition (Recall)
A (Proximity Oblivious) property tester for P must

Make a constant number q of queries.
Accepts if f ∈ P.
Rejects with probability ≥ δ(ε) > 0 if dist(f ,P) > ε > 0.

Definition
A property tester for P must

Make q(ε) queries.
Accepts if f ∈ P. (one-sided error).
Rejects with probability ≥ δ(ε) > 0 if dist(f ,P) > ε > 0.

Theorem (Alon-Shapira 2005)
Every hereditary graph property is testable with one-sided error.
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Definition
An affine-invariant property P is affine subspace hereditary if the
restriction of any f ∈ P to any affine subspace of Fn

p also satisfies P.

Conjecture [Bhattacharyya,Grigorescu,Shapira 2010]
Every affine subspace hereditary property is testable with one-sided
error.

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)
Every affine subspace hereditary property of “bounded complexity” is
testable with one-sided error.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 33 / 40



Definition
An affine-invariant property P is affine subspace hereditary if the
restriction of any f ∈ P to any affine subspace of Fn

p also satisfies P.

Conjecture [Bhattacharyya,Grigorescu,Shapira 2010]
Every affine subspace hereditary property is testable with one-sided
error.

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)
Every affine subspace hereditary property of “bounded complexity” is
testable with one-sided error.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 33 / 40



Definition
An affine-invariant property P is affine subspace hereditary if the
restriction of any f ∈ P to any affine subspace of Fn

p also satisfies P.

Conjecture [Bhattacharyya,Grigorescu,Shapira 2010]
Every affine subspace hereditary property is testable with one-sided
error.

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)
Every affine subspace hereditary property of “bounded complexity” is
testable with one-sided error.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 33 / 40



Estimating the distance from a
property
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Definition
For a property P, and α > 0, let Pα be the set of functions with
distance at most α from P.

Theorem (Fischer, Newman 2007)
For every testable graph property P and every α > 0, the property Pα

is testable two-sided error.

Theorem (HH,Lovett 2013)
For every testable affine-invariant property P and every α > 0, the
property Pα is testable with two-sided error.

One can estimate the distance from every testable property.
Was unknown even for simple properties such as cubic
polynomials.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 35 / 40



Definition
For a property P, and α > 0, let Pα be the set of functions with
distance at most α from P.

Theorem (Fischer, Newman 2007)
For every testable graph property P and every α > 0, the property Pα

is testable two-sided error.

Theorem (HH,Lovett 2013)
For every testable affine-invariant property P and every α > 0, the
property Pα is testable with two-sided error.

One can estimate the distance from every testable property.
Was unknown even for simple properties such as cubic
polynomials.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 35 / 40



Definition
For a property P, and α > 0, let Pα be the set of functions with
distance at most α from P.

Theorem (Fischer, Newman 2007)
For every testable graph property P and every α > 0, the property Pα

is testable two-sided error.

Theorem (HH,Lovett 2013)
For every testable affine-invariant property P and every α > 0, the
property Pα is testable with two-sided error.

One can estimate the distance from every testable property.
Was unknown even for simple properties such as cubic
polynomials.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 35 / 40



Definition
For a property P, and α > 0, let Pα be the set of functions with
distance at most α from P.

Theorem (Fischer, Newman 2007)
For every testable graph property P and every α > 0, the property Pα

is testable two-sided error.

Theorem (HH,Lovett 2013)
For every testable affine-invariant property P and every α > 0, the
property Pα is testable with two-sided error.

One can estimate the distance from every testable property.

Was unknown even for simple properties such as cubic
polynomials.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 35 / 40



Definition
For a property P, and α > 0, let Pα be the set of functions with
distance at most α from P.

Theorem (Fischer, Newman 2007)
For every testable graph property P and every α > 0, the property Pα

is testable two-sided error.

Theorem (HH,Lovett 2013)
For every testable affine-invariant property P and every α > 0, the
property Pα is testable with two-sided error.

One can estimate the distance from every testable property.
Was unknown even for simple properties such as cubic
polynomials.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic FunctionsDecember 6, 2013 35 / 40



How does the test work?
Let f : Fn

p → [R] be a given function.

Let W be a random affine subspace of large dimension.
With high probability dist(f |W ,P) ≈ dist(f ,P):

I Completeness: If f is α-close to P then f |W is (α + ε/2)-close to P.
I Soundness: If f is α + ε-far from P then f |W is (α + ε/2)-far from P.
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High-level Proof

Completeness: If f is α-close to P then f |V is (α + ε/2)-close to P.

f is α-close to some g in P.
f |W is (α + ε/4)-close to g|W .
The test cannot distinguish g from g|W .
⇒ g|W is close to P.
f |W is (α + ε/2)-close to P.
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High-level Proof

Soundness: If f is α + ε-far from P then f |W is (α + ε/2)-far from P.

Suppose f |W is (α + ε/2)-close to P.
There is some h ∈ P that is (α + ε/2)-close to f |W .
Since f and f |W have similar structures, we can lift h to some g:

I g is (α + ε/2)-close to P.
I The test cannot distinguish g and h, so g is close to P.

We conclude that f is (α + ε)-close to P
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We conclude that f is (α + ε)-close to P
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Open Problems

Is every affine-invariant affine-subspace hereditary property testable?

Find a direct proof (with reasonable bounds) for the fact that
degree-structural properties are locally characterizable.

For f : Fn
2 → F2, the Gowers U4 norm (16 queries) can be used to

distinguish:
Corr(f ,non-classical cubics) is non-negligible.
Corr(f ,non-classical cubics) is negligible.

Is there such a test (constant number queries) for cubic polynomials?
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Thank you!
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