Testing for Affine Invariant Properties of Algebraic Functions

Hamed Hatami

School of Computer Science
McGill University

December 6, 2013
Based on:

- Bhattacharyya, Fischer, HH, P. Hatami, and Lovett, Every locally characterized affine-invariant property is testable, STOC 2013.
- HH and Lovett, Estimating the distance from testable affine-invariant properties, FOCS 2013.
- HH, P. Hatami, and Lovett, in preparation.
Based on:

- Bhattacharyya, Fischer, HH, P. Hatami, and Lovett, Every locally characterized affine-invariant property is testable, STOC 2013.
- HH and Lovett, Estimating the distance from testable affine-invariant properties, FOCS 2013.
- HH, P. Hatami, and Lovett, in preparation.

Common Theme

Extending the property testing results in graph theory to the algebraic setting.
Property Testing

- Given a function (e.g. a graph),
Given a function (e.g. a graph),
Evaluate it on a small number of points.
Property Testing

- Given a function (e.g. a graph),
- Evaluate it on a small number of points.
- Decide whether
 - it satisfies a given property (e.g. triangle-freeness),
 - or is “far” from satisfying that property.
The field of property testing has emerged from [Blum, Luby, Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.
The field of property testing has emerged from [Blum, Luby, Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.

Closely related to the concepts of regularity and uniformity [Ruzsa-Szemerédi 76], [Rödl-Duke 85].
The field of property testing has emerged from [Blum, Luby, Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.

Closely related to the concepts of regularity and uniformity [Ruzsa-Szemerédi 76], [Rödl-Duke 85].

Formally defined by [Rubinfeld, Sudan 96], [Goldreich, Goldwasser, Rubinfeld 98].
The field of property testing has emerged from [Blum, Luby, Rubinfeld 93], [Babai, Fortnow, Lund 91], etc.

Closely related to the concepts of regularity and uniformity [Ruzsa-Szemerédi 76], [Rödl-Duke 85].

Formally defined by [Rubinfeld, Sudan 96], [Goldreich, Goldwasser, Rubinfeld 98].

Closely related to limit theories of combinatorial objects [Lovász-Szegedy 2010].
Our setting

Functions of the form $f : \mathbb{F}_p^n \rightarrow \{0, \ldots, R\}$ where

- p is a fixed prime.
- R is a fixed integer.
Our setting

Functions of the form $f : \mathbb{F}_p^n \rightarrow \{0, \ldots, R\}$ where

- p is a fixed prime.
- R is a fixed integer.

Two important cases:

- $R = 1$: Functions $f : \mathbb{F}_p^n \rightarrow \{0, 1\}$.
- $R = p - 1$: Functions $f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p$.

Definition

- \(\text{dist}(f, g) = \Pr[f(x) \neq g(x)] \).
Definition

- \(\text{dist}(f, g) = \Pr[f(x) \neq g(x)] \).
- \(\text{dist}(f, P) = \min_{g \in P} \text{dist}(f, g) \).
Definition

- $\text{dist}(f, g) = \Pr[f(x) \neq g(x)]$.
- $\text{dist}(f, P) = \min_{g \in P} \text{dist}(f, g)$.

Definition

A (Proximity Oblivious) property tester for P must
- Make a **constant** number of queries to f.

Notes

- P-far from P accept
 $$\Pr[\text{reject}] \geq \delta(\epsilon)$$

Hamed Hatami (McGill Universities)
Testing for Affine Invariant Properties of Algebraic Functions
December 6, 2013
6 / 40
Definition

- \(\text{dist}(f, g) = \Pr[f(x) \neq g(x)] \).
- \(\text{dist}(f, P) = \min_{g \in P} \text{dist}(f, g) \).

Definition

A (Proximity Oblivious) property tester for \(P \) must

- Make a constant number of queries to \(f \).
- Accepts if \(f \in P \).
Definition
- \(\text{dist}(f, g) = \Pr[f(x) \neq g(x)]. \)
- \(\text{dist}(f, P) = \min_{g \in P} \text{dist}(f, g). \)

Definition
A (Proximity Oblivious) property tester for \(P \) must
- Make a constant number of queries to \(f \).
- Accepts if \(f \in P \).
- Rejects with probability \(\geq \delta(\epsilon) > 0 \) if \(\text{dist}(f, P) > \epsilon > 0 \).
Example

Let

\[P = \{ \text{functions } f : \mathbb{F}_p^n \to \{0, 1\} \text{ where } f \equiv 0 \}. \]
Example

Let

\[P = \{ \text{functions } f : \mathbb{F}_p^n \rightarrow \{0, 1\} \text{ where } f \equiv 0 \} . \]

Test

- Pick \(x \in \mathbb{F}_p^n \) at random.
- If \(f(x) = 0 \) accept
 - otherwise reject.
Example

Let

\[P = \{ \text{functions } f : \mathbb{F}_p^n \rightarrow \{0, 1\} \text{ where } f \equiv 0 \}. \]

Test

- Pick \(x \in \mathbb{F}_p^n \) at random.
- If \(f(x) = 0 \) accept, otherwise reject.

Analysis

- If \(f \equiv 0 \), then \(\Pr[\text{accept}] = 1 \).
- If \(\text{dist}(f, P) > \epsilon \), then \(\Pr[\text{reject}] \geq \epsilon \).
What conditions should we impose on P?
What conditions should we impose on P?

We do not want to treat \mathbb{F}_p^n as a generic set of size p^n and ignore the algebraic structure of \mathbb{F}_p^n.

$\textbf{Example}$: $P = \{\text{Polynomials } f : \mathbb{F}_p^n \to \mathbb{F}_p \text{ of degree } \leq d\}$.

Kaufman-Sudan P is called affine-invariant if $f \in P \Rightarrow f \circ A \in P$ for any affine transformation $A : \mathbb{F}_p^n \to \mathbb{F}_p^n$. (i.e. $A : x \mapsto Bx + c$).
What conditions should we impose on P?
We do not want to treat \mathbb{F}_p^n as a generic set of size p^n and ignore the algebraic structure of \mathbb{F}_p^n.

Kaufman-Sudan

P is called affine-invariant if

$$f \in P \Rightarrow f \circ A \in P$$

for any affine transformation $A : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^n$. (i.e. $A : x \mapsto Bx + c$)
What conditions should we impose on P?

We do not want to treat \mathbb{F}_p^n as a generic set of size p^n and ignore the algebraic structure of \mathbb{F}_p^n.

Kaufman-Sudan

P is called affine-invariant if

$$f \in P \Rightarrow f \circ A \in P$$

for any affine transformation $A : \mathbb{F}_p^n \rightarrow \mathbb{F}_p^n$. (i.e. $A : x \mapsto Bx + c$)

Example

$$P = \{ \text{Polynomials } f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p \text{ of degree } \leq d \}.$$
Question

Which affine-invariant properties P are testable?

Example

$P = \{ \text{Polynomials } f : F^n \rightarrow F^p \text{ of degree } \leq d \}$.
Question

Which affine-invariant properties P are testable?

Example

$$P = \{\text{Polynomials } f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p \text{ of degree } \leq d\}.$$
Question
Which affine-invariant properties P are testable?

Example

$$P = \{ \text{Polynomials } f : \mathbb{F}_p^n \to \mathbb{F}_p \text{ of degree } \leq d \}.$$

Local Characterization of P

- $f \in P \iff f|_V \in P$ for all affine subspace $V \subseteq \mathbb{F}_p^n$ with $\dim(V) = d + 1$.
Test for deg ≤ d.

- Pick a $d + 1$-dimensional random affine subspace $V \subseteq \mathbb{F}_p^n$.
- Accept if deg$(f|_V) \leq d$, and reject otherwise.
Test for $\deg \leq d$.

- Pick a $d + 1$-dimensional random affine subspace $V \subseteq \mathbb{F}_p^n$.
- Accept if $\deg(f|_V) \leq d$, and reject otherwise.

We have

- if $f \in P$ then $\Pr[\text{accept}] = 1$.
- if $\text{dist}(f, P) \geq \epsilon$ then $\Pr[\text{reject}] > \delta(\epsilon) > 0$. [Alon, Kaufman, Krivelevich, Litsyn, Ron 2005].
Locally characterizable

P is locally characterizable if there exists $k > 0$ such that

- $f \in P$ ⇐⇒
- $f|_V \in P$ for all affine subspace $V \subseteq \mathbb{F}_p^n$ with $\dim(V) = k$.

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)
Every locally characterizable property is (PO)-testable.
Locally characterizable

P is locally characterizable if there exists $k > 0$ such that

- $f \in P \iff f |_V \in P$ for all affine subspace $V \subseteq \mathbb{F}_p^n$ with $\dim(V) = k$.

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every locally characterizable property is (PO)-testable.
Proof Sketch
A classical example

The graph property of triangle-freeness.

The test

Pick three vertices at random.

If they form a triangle reject.

Otherwise accept.

Analysis

If \(\Delta \)-free, we always accept. (trivial)

If \(\epsilon \)-far from \(\Delta \)-free, then \(\Pr[\text{reject}] > \delta(\epsilon) > 0 \). (non-trivial)
A classical example

The graph property of triangle-freeness.

The test

- Pick three vertices at random.
- If they form a triangle reject.
- Otherwise accept.
A classical example

The graph property of triangle-freeness.

The test
- Pick three vertices at random.
- If they form a triangle reject.
- Otherwise accept.

Analysis
- If Δ-free, we always accept. (trivial)
- If ϵ-far from Δ-free, then $\Pr[\text{reject}] > \delta(\epsilon) > 0$. (non-trivial)
Suppose G is ϵ-far from being \triangle-free.
- Suppose G is ϵ-far from being Δ-free.
- **Regularize**: Partition vertices into almost equal parts, so that almost all cells are uniform.
Suppose G is ϵ-far from being \triangle-free.

Regularize: Partition vertices into almost equal parts, so that almost all cells are uniform.

Clean-up: Empty non-uniform cells, and the almost-empty cells.
The new graph H is close to $G \Rightarrow$ it is far from being \triangle-free.
The new graph H is close to $G \Rightarrow$ it is far from being \triangle-free.

$\Rightarrow H$ has a $\triangle \Rightarrow H$ has many \triangle’s due to its structure.
The new graph H is close to $G \Rightarrow$ it is far from being \triangle-free.
$\Rightarrow H$ has a \triangle $\Rightarrow H$ has many \triangle’s due to its structure.
$\Rightarrow G$ has many \triangle’s (we only removed edges from G).
A different example

The graph property of **induced** C_5-freeness.
A different example

The graph property of induced C_5-freeness.

The test

- Pick five vertices at random.
- Reject if they induce a C_5.
- Otherwise accept.
A different example

The graph property of induced C_5-freeness.

The test

- Pick five vertices at random.
- Reject if they induce a C_5.
- Otherwise accept.

Analysis

- If induced-C_5-free, we always accept. (trivial)
- If ϵ-far from induced-C_5-free, then $\Pr[\text{reject}] > \delta(\epsilon) > 0$. (non-trivial)
- Suppose G is ϵ-far from being induced-C_5-free.
- Regularize: Partition vertices into almost equal parts, so that almost all cells are uniform.
- Clean-up: Empty non-uniform cells, and the almost-empty cells.
Suppose G is ϵ-far from being induced-C_5-free.

Regularize: Partition vertices into almost equal parts, so that almost all cells are uniform.

Clean-up: Empty non-uniform cells, and the almost-empty cells.

- Might create many C_5's, and so
- H has many C_5's \nRightarrow G has many C_5's.
This can be handled using a stronger regularity lemma.
[Alon,Fischer,Krivelevich,Szegedy 2000]
This can be handled using a stronger regularity lemma. [Alon, Fischer, Krivelevich, Szegedy 2000]

There are two partitions $\mathcal{A} \prec \mathcal{B}$.
This can be handled using a stronger regularity lemma. [Alon,Fischer,Krivelevich,Szegedy 2000]

There are two partitions $\mathcal{A} \prec \mathcal{B}$.

Every part in \mathcal{A} has a chosen sub-part in \mathcal{B}.
This can be handled using a stronger regularity lemma. [Alon, Fischer, Krivelevich, Szegedy 2000]

There are two partitions $A \prec B$.

Every part in A has a chosen sub-part in B.

All pairs of sub-parts are uniform.
This can be handled using a stronger regularity lemma. [Alon,Fischer,Krivelevich,Szegedy 2000]

There are two partitions $\mathcal{A} \prec \mathcal{B}$.

Every part in \mathcal{A} has a chosen sub-part in \mathcal{B}.

All pairs of sub-parts are uniform.

For most cells: density \approx subcell density.
The algebraic setting \mathbb{F}_p^n
Theorem (Recall)

Every locally characterizable property is (PO)-testable.
Theorem (Recall)

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ-far from P.
Theorem (Recall)

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ-far from P.
- Regularize f.
Theorem (Recall)

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ-far from P.
- Regularize f.
- Clean-up the regularization of f to obtain g close to f.
Theorem (Recall)

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ-far from P.
- Regularize f.
- Clean-up the regularization of f to obtain g close to f.
- Then $g \notin P$ and thus violates some local condition.
Theorem (Recall)

Every locally characterizable property is (PO)-testable.

The general approach

- Consider f that is ϵ-far from P.
- Regularize f.
- Clean-up the regularization of f to obtain g close to f.
- Then $g \notin P$ and thus violates some local condition.
- Exploit the nice structure of g to show that the test works for f.
Partition \mathbb{F}_p^n such that f is uniform on almost all parts.
Regularization

Partition \mathbb{F}_p^n such that f is uniform on almost all parts.

- Consider polynomials $Q_1, \ldots, Q_c : \mathbb{F}_p^n \to \mathbb{F}_p$ of degree $\leq d$.
Partition \mathbb{F}_p^n such that f is uniform on almost all parts.

- Consider polynomials $Q_1, \ldots, Q_c : \mathbb{F}_p^n \rightarrow \mathbb{F}_p$ of degree $\leq d$.
- Partition \mathbb{F}_p^n according to $(Q_1(x), \ldots, Q_c(x))$.
Need an analogue of the AFKS-regularity of graphs for \mathbb{F}_p^n.

BFL Subatoms are chosen by setting $(Q_1(x), \ldots, Q_b(x)) = \vec{c}_0$.

Hamed Hatami (McGill Universities)
Need an analogue of the AFKS-regularity of graphs for \mathbb{F}_p^n.

The first partition is defined by (P_1, \ldots, P_a).
- Need an analogue of the AFKS-regularity of graphs for \mathbb{F}_p^n.
- The first partition is defined by (P_1, \ldots, P_a).
- The finer partition is defined by $(P_1, \ldots, P_a, Q_1, \ldots, Q_b)$.
- Need an analogue of the AFKS-regularity of graphs for \mathbb{F}_p^n.
- The first partition is defined by (P_1, \ldots, P_a).
- The finer partition is defined by $(P_1, \ldots, P_a, Q_1, \ldots, Q_b)$.

BFL Subatoms are chosen by setting $(Q_1(x), \ldots, Q_b(x)) = \vec{c}_0$.

![Diagram](image-url)
clean-up

- Modify f to remove all irregularities:

 - For each big atom c, let t_c be the popular value in its subatom.
 - Change the value of f on irregular atoms c to t_c.
 - Change the unpopular values on every atom c to t_c.

The new function g is not in P.

There is a W such that $g|_W \not\in P$.

There are many W's for which $f|_W \not\in P$.
Modify f to remove all irregularities:

- For each big atom c, let t_c be the popular value in its subatom.

The new function g is not in P. There is a W such that $g|_W \not\in P$.

There are many W's for which $f|_W \not\in P$.

Hamed Hatami (McGill Universities)

Testing for Affine Invariant Properties of Algebraic Functions
Modify f to remove all irregularities:

- For each big atom c, let t_c be the popular value in its subatom.
- Change the value of f on irregular atoms c to t_c.
- Change the unpopular values on every atom c to t_c.
Modify f to remove all irregularities:

- For each big atom c, let t_c be the popular value in its subatom.
- Change the value of f on irregular atoms c to t_c.
- Change the unpopular values on every atom c to t_c.

The new function g is not in P.
Modify f to remove all irregularities:
- For each big atom c, let t_c be the popular value in its subatom.
- Change the value of f on irregular atoms c to t_c.
- Change the unpopular values on every atom c to t_c.

The new function g is not in P.

There is a W such that $g|_W \not\in P$.
Modify f to remove all irregularities:
- For each big atom c, let t_c be the popular value in its subatom.
- Change the value of f on irregular atoms c to t_c.
- Change the unpopular values on every atom c to t_c.

The new function g is not in P.
There is a W such that $g|_W \not\in P$.
There are many W’s for which $f|_W \not\in P$.

Hamed Hatami (McGill Universities)
Equidistribution for Polynomial factors
\[f \approx \Gamma(Q_1(x), \ldots, Q_c(x)). \]
\(f \approx \Gamma(Q_1(x), \ldots, Q_c(x)). \)

Need to analyze the distribution of \(f|_V \) for a random \(V \).
\[f \approx \Gamma(Q_1(x), \ldots, Q_c(x)). \]

Need to analyze the distribution of \(f|_V \) for a random \(V \).

Let \(L_1, \ldots, L_{\rho^k} \) be the points of a random \(V \).
\[f \simeq \Gamma(Q_1(x), \ldots, Q_c(x)). \]

Need to analyze the distribution of \(f|_V \) for a random \(V \).

Let \(L_1, \ldots, L_{p^k} \) be the points of a random \(V \).

We need to understand the distribution of

\[
\begin{pmatrix}
Q_1(L_1) & \ldots & Q_c(L_1) \\
Q_1(L_2) & \ldots & Q_c(L_2) \\
\vdots & & \ddots \\
Q_1(L_{p^k}) & \ldots & Q_c(L_{p^k})
\end{pmatrix}.
\]
If Q_1, \ldots, Q_c are of "high rank", then $Q_1(X), \ldots, Q_c(X)$ are almost independent (entries in each row are almost independent).

Note that if $\deg(Q_i) = 1$, then

$$Q_1(L_1) + Q_1(L_2) = Q_1(L_3) + Q_1(L_4)$$

if $L_1 + L_2 = L_3 + L_4$.

If $\deg(Q_i) = 2$, then

$$\sum_{S \subseteq \{1, 2, 3\}} (-1)^{|S|} Q_i(e_0 + \sum_{i \in S} e_i) = 0.$$
Green-Tao, Kaufman-Lovett: If Q_1, \ldots, Q_c are of “high rank”, then

$$
\begin{pmatrix}
Q_1(L_1) & \ldots & Q_c(L_1) \\
Q_1(L_2) & \ldots & Q_c(L_2) \\
\vdots & & \vdots \\
Q_1(L_{p^k}) & \ldots & Q_c(L_{p^k})
\end{pmatrix}
$$

are almost independent (entries in each row are almost independent).
Green-Tao, Kaufman-Lovett: If Q_1, \ldots, Q_c are of "high rank", then

$$
\begin{pmatrix}
Q_1(L_1) & \ldots & Q_c(L_1) \\
Q_1(L_2) & \ldots & Q_c(L_2) \\
\vdots \\
Q_1(L_{p^k}) & \ldots & Q_c(L_{p^k})
\end{pmatrix}
$$

are almost independent (entries in each row are almost independent).

We cannot expect this for all entries

- Note that if $\deg(Q) = 1$, then $Q(L_1) + Q(L_2) = Q(L_3) + Q(L_4)$ if $L_1 + L_2 = L_3 + L_4$.
Green-Tao, Kaufman-Lovett: If Q_1, \ldots, Q_c are of “high rank”, then

$$Q_1(X), \ldots, Q_c(X),$$

are almost independent (entries in each row are almost independent).

We cannot expect this for all entries

- Note that if $\deg(Q) = 1$, then $Q(L_1) + Q(L_2) = Q(L_3) + Q(L_4)$ if $L_1 + L_2 = L_3 + L_4$.
- If $\deg(Q) = 2$, then $\sum_{S \subseteq \{1,2,3\}} (-1)^{|S|} Q(e_0 + \sum_{i \in S} e_i) = 0$.
Theorem

If rank is high, these degree related dependencies are the only dependencies (up to a small error).
Theorem

If rank is high, these degree related dependencies are the only dependencies (up to a small error).

- Large values of p: [HH, Lovett 2011].
Theorem

If rank is high, these degree related dependencies are the only dependencies (up to a small error).

- Large values of p: [HH, Lovett 2011].
- General p, but affine systems of linear forms: [Bhattacharyya, Fischer, HH, P. Hatami, and Lovett 2013].
Theorem

If rank is high, these degree related dependencies are the only dependencies (up to a small error).

- Large values of \(p \): [HH, Lovett 2011].
- General \(p \), but affine systems of linear forms: [Bhattacharyya, Fischer, HH, P. Hatami, and Lovett 2013].
- General case: [H, P. Hatami, and Lovett in preparation].
Examples of locally characterizable properties
Example
Testable

\[P = \{ \text{Polynomials } f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p \text{ of degree } \leq d \}. \]
Example
Testable

\[P = \{ \text{Polynomials } f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p \text{ of degree } \leq d \}. \]

Definition (Degree structural properties)

- Fix \(d_1, \ldots, d_c \) and \(\Gamma : \mathbb{F}_p^c \rightarrow [R] \).
- The property of being expressible as \(\Gamma(P_1, \ldots, P_c) \) where \(\deg(P_i) \leq d_i \).
Example

Testable

\[P = \{ \text{Polynomials } f : \mathbb{F}_p^n \to \mathbb{F}_p \text{ of degree } \leq d \}. \]

Definition (Degree structural properties)

- Fix \(d_1, \ldots, d_c \) and \(\Gamma : \mathbb{F}_p^c \to [R] \).
- The property of being expressible as \(\Gamma(P_1, \ldots, P_c) \) where \(\deg(P_i) \leq d_i \).

Example

- Polynomials \(f : \mathbb{F}_p^n \to \mathbb{F}_p \) that are products of two quadratics.
- Polynomials \(f : \mathbb{F}_p^n \to \mathbb{F}_p \) that are squares of a quadratics.
- Polynomials \(f : \mathbb{F}_p^n \to \mathbb{F}_p \) of the form \(f = ab + cd \) where \(a, b, c, d \) are cubics.
Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every degree structural property is locally characterizable and hence (PO)-testable.
Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every degree structural property is locally characterizable and hence (PO)-testable.

- Our proof uses regularity $f \approx \Gamma(Q_1, \ldots, Q_c)$.
Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every degree structural property is locally characterizable and hence (PO)-testable.

- Our proof uses regularity $f \approx \Gamma(Q_1, \ldots, Q_c)$.
- Consequently does not provide any reasonable bound on the dimension.
A stronger notion of testing
Definition (Recall)

A (Proximity Oblivious) property tester for \(P \) must

- Make a constant number \(q \) of queries.
- Accepts if \(f \in P \).
- Rejects with probability \(\geq \delta(\epsilon) > 0 \) if \(\text{dist}(f, P) > \epsilon > 0 \).
Definition (Recall)

A (Proximity Oblivious) property tester for P must

- Make a constant number q of queries.
- Accepts if $f \in P$.
- Rejects with probability $\geq \delta(\epsilon) > 0$ if $\text{dist}(f, P) > \epsilon > 0$.

Definition

A property tester for P must

- Make $q(\epsilon)$ queries.
- Accepts if $f \in P$. (one-sided error).
- Rejects with probability $\geq \delta(\epsilon) > 0$ if $\text{dist}(f, P) > \epsilon > 0$.

Theorem (Alon-Shapira 2005)

Every hereditary graph property is testable with one-sided error.
Definition (Recall)

A (Proximity Oblivious) property tester for P must

- Make a constant number q of queries.
- Accepts if $f \in P$.
- Rejects with probability $\geq \delta(\epsilon) > 0$ if $\text{dist}(f, P) > \epsilon > 0$.

Definition

A property tester for P must

- Make $q(\epsilon)$ queries.
- Accepts if $f \in P$. (one-sided error).
- Rejects with probability $\geq \delta(\epsilon) > 0$ if $\text{dist}(f, P) > \epsilon > 0$.

Theorem (Alon-Shapira 2005)

Every hereditary graph property is testable with one-sided error.
Definition

An affine-invariant property P is affine subspace hereditary if the restriction of any $f \in P$ to any affine subspace of \mathbb{F}_p^n also satisfies P.
Definition

An affine-invariant property P is affine subspace hereditary if the restriction of any $f \in P$ to any affine subspace of \mathbb{F}_p^n also satisfies P.

Conjecture [Bhattacharyya, Grigorescu, Shapira 2010]

Every affine subspace hereditary property is testable with one-sided error.
Definition

An affine-invariant property P is affine subspace hereditary if the restriction of any $f \in P$ to any affine subspace of \mathbb{F}_p^n also satisfies P.

Conjecture [Bhattacharyya, Grigorescu, Shapira 2010]

Every affine subspace hereditary property is testable with one-sided error.

Theorem (Bhattacharyya, Fischer, HH, P. Hatami, and Lovett)

Every affine subspace hereditary property of “bounded complexity” is testable with one-sided error.
Estimating the distance from a property
Definition

For a property P, and $\alpha > 0$, let P_α be the set of functions with distance at most α from P.

Theorem (Fischer, Newman 2007)
For every testable graph property P and every $\alpha > 0$, the property P_α is testable two-sided error.

Theorem (HH, Lovett 2013)
For every testable affine-invariant property P and every $\alpha > 0$, the property P_α is testable with two-sided error.

One can estimate the distance from every testable property. Was unknown even for simple properties such as cubic polynomials.
Definition

For a property P, and $\alpha > 0$, let P_α be the set of functions with distance at most α from P.

Theorem (Fischer, Newman 2007)

For every testable graph property P and every $\alpha > 0$, the property P_α is testable two-sided error.
Definition

For a property P, and $\alpha > 0$, let P_α be the set of functions with distance at most α from P.

Theorem (Fischer, Newman 2007)

For every testable graph property P and every $\alpha > 0$, the property P_α is testable two-sided error.

Theorem (HH, Lovett 2013)

For every testable affine-invariant property P and every $\alpha > 0$, the property P_α is testable with two-sided error.
Definition
For a property P, and $\alpha > 0$, let P_α be the set of functions with distance at most α from P.

Theorem (Fischer, Newman 2007)
For every testable graph property P and every $\alpha > 0$, the property P_α is testable two-sided error.

Theorem (HH, Lovett 2013)
For every testable affine-invariant property P and every $\alpha > 0$, the property P_α is testable with two-sided error.

- One can estimate the distance from every testable property.
Definition
For a property P, and $\alpha > 0$, let P_α be the set of functions with distance at most α from P.

Theorem (Fischer, Newman 2007)
For every testable graph property P and every $\alpha > 0$, the property P_α is testable two-sided error.

Theorem (HH, Lovett 2013)
For every testable affine-invariant property P and every $\alpha > 0$, the property P_α is testable with two-sided error.

- One can estimate the distance from every testable property.
- Was unknown even for simple properties such as cubic polynomials.
How does the test work?

- Let $f : \mathbb{F}_p^n \to [R]$ be a given function.
How does the test work?

- Let $f : \mathbb{F}_p^n \rightarrow [R]$ be a given function.
- Let W be a random affine subspace of large dimension.
How does the test work?

- Let $f : \mathbb{F}_p^n \to [R]$ be a given function.
- Let W be a random affine subspace of large dimension.
- With high probability $\text{dist}(f|_W, P) \approx \text{dist}(f, P)$:
How does the test work?

- Let $f : \mathbb{F}_p^n \rightarrow \{0,1,\ldots,\ell\}$ be a given function.
- Let W be a random affine subspace of large dimension.
- With high probability $\operatorname{dist}(f|_W, P) \approx \operatorname{dist}(f, P)$:
 - Completeness: If f is α-close to P then $f|_W$ is $(\alpha + \epsilon/2)$-close to P.
 - Soundness: If f is $\alpha + \epsilon$-far from P then $f|_W$ is $(\alpha + \epsilon/2)$-far from P.
Completeness: If f is α-close to P then $f|_V$ is $(\alpha + \epsilon/2)$-close to P.
Completeness: If f is α-close to P then $f|_V$ is $(\alpha + \epsilon/2)$-close to P.

- f is α-close to some g in P.
Completeness: If f is α-close to P then $f|_V$ is $(\alpha + \epsilon/2)$-close to P.

- f is α-close to some g in P.
- $f|_W$ is $(\alpha + \epsilon/4)$-close to $g|_W$.
High-level Proof

Completeness: If \(f \) is \(\alpha \)-close to \(P \) then \(f|_V \) is \((\alpha + \epsilon/2) \)-close to \(P \).

- \(f \) is \(\alpha \)-close to some \(g \) in \(P \).
- \(f|_W \) is \((\alpha + \epsilon/4) \)-close to \(g|_W \).
- The test cannot distinguish \(g \) from \(g|_W \).
High-level Proof

Completeness: If f is α-close to P then $f|_V$ is $(\alpha + \epsilon/2)$-close to P.

- f is α-close to some g in P.
- $f|_W$ is $(\alpha + \epsilon/4)$-close to $g|_W$.
- The test cannot distinguish g from $g|_W$.
- $\Rightarrow g|_W$ is close to P.
High-level Proof

Completeness: If f is α-close to P then $f|_V$ is $(\alpha + \epsilon/2)$-close to P.

- f is α-close to some g in P.
- $f|_W$ is $(\alpha + \epsilon/4)$-close to $g|_W$.
- The test cannot distinguish g from $g|_W$.
- $\Rightarrow g|_W$ is close to P.
- $f|_W$ is $(\alpha + \epsilon/2)$-close to P.
High-level Proof

Soundness: If f is $\alpha + \epsilon$-far from P then $f|_W$ is $(\alpha + \epsilon/2)$-far from P.

- If $f|_W$ is $(\alpha + \epsilon/2)$-close to P, there is some $h \in P$ that is $(\alpha + \epsilon/2)$-close to $f|_W$.
- Since f and $f|_W$ have similar structures, we can lift h to some g:
 - g is $(\alpha + \epsilon/2)$-close to P.
 - The test cannot distinguish g and h, so g is close to P.
- We conclude that f is $(\alpha + \epsilon)$-close to P.

Hamed Hatami (McGill Universities)
Testing for Affine Invariant Properties of Algebraic Functions
December 6, 2013
38 / 40
High-level Proof

Soundness: If f is $\alpha + \epsilon$-far from P then $f|_W$ is $(\alpha + \epsilon/2)$-far from P.

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$-close to P.

Hamed Hatami (McGill Universities) Testing for Affine Invariant Properties of Algebraic Functions December 6, 2013 38 / 40
High-level Proof

Soundness: If f is $\alpha + \epsilon$-far from P then $f|_W$ is $(\alpha + \epsilon/2)$-far from P.

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$-close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$-close to $f|_W$.
High-level Proof

Soundness: If \(f \) is \(\alpha + \epsilon \)-far from \(P \) then \(f|_W \) is \((\alpha + \epsilon/2) \)-far from \(P \).

- Suppose \(f|_W \) is \((\alpha + \epsilon/2) \)-close to \(P \).
- There is some \(h \in P \) that is \((\alpha + \epsilon/2) \)-close to \(f|_W \).
- Since \(f \) and \(f|_W \) have similar structures, we can lift \(h \) to some \(g \):
High-level Proof

Soundness: If f is $\alpha + \epsilon$-far from P then $f|_W$ is $(\alpha + \epsilon/2)$-far from P.

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$-close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$-close to $f|_W$.
- Since f and $f|_W$ have similar structures, we can lift h to some g:
 - g is $(\alpha + \epsilon/2)$-close to P.

Hamed Hatami (McGill Universities)
Soundness: If f is $\alpha + \epsilon$-far from P then $f|_W$ is $(\alpha + \epsilon/2)$-far from P.

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$-close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$-close to $f|_W$.
- Since f and $f|_W$ have similar structures, we can lift h to some g:
 - g is $(\alpha + \epsilon/2)$-close to P.
 - The test cannot distinguish g and h, so g is close to P.
High-level Proof

Soundness: If f is $\alpha + \epsilon$-far from P then $f|_W$ is $(\alpha + \epsilon/2)$-far from P.

- Suppose $f|_W$ is $(\alpha + \epsilon/2)$-close to P.
- There is some $h \in P$ that is $(\alpha + \epsilon/2)$-close to $f|_W$.
- Since f and $f|_W$ have similar structures, we can lift h to some g:
 - g is $(\alpha + \epsilon/2)$-close to P.
 - The test cannot distinguish g and h, so g is close to P.
- We conclude that f is $(\alpha + \epsilon)$-close to P.
Is every affine-invariant affine-subspace hereditary property testable?

Find a direct proof (with reasonable bounds) for the fact that degree-structural properties are locally characterizable.

For $f: \mathbb{F}_n^2 \rightarrow \mathbb{F}_2$, the Gowers U^4 norm (16 queries) can be used to distinguish:

$\text{Corr}(f, \text{non-classical cubics})$ is non-negligible.

$\text{Corr}(f, \text{non-classical cubics})$ is negligible.

Is there such a test (constant number queries) for cubic polynomials?
Open Problems

Is every affine-invariant affine-subspace hereditary property testable?

Find a direct proof (with reasonable bounds) for the fact that degree-structural properties are locally characterizable.
Open Problems

Is every affine-invariant affine-subspace hereditary property testable?

Find a direct proof (with reasonable bounds) for the fact that degree-structural properties are locally characterizable.

For $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$, the Gowers U^4 norm (16 queries) can be used to distinguish:

- $\text{Corr}(f, \text{non-classical cubics})$ is non-negligible.
- $\text{Corr}(f, \text{non-classical cubics})$ is negligible.

Is there such a test (constant number queries) for cubic polynomials?
Thank you!