Testing assignments to constraint satisfaction problems

H. Chen¹ M. Valeriote² Y. Yoshida³

¹University País Vasco

²McMaster University

³NII, Tokyo

{Symmetry, Logic, Computation}, 10 November 2016

The Constraint Satisfaction Problem

Definition

- Let **A** be a finite relational structure $\langle A, R_1, \ldots, R_k \rangle$ where for each *i*, $R_i \subseteq A^{ar(R_i)}$, with $ar(R_i) \in \mathbb{N}$ the arity of R_i . **A** will sometimes be referred to as a template.
- An instance of CSP(A) is a pair I = (V, C) with
 - V a nonempty, finite set of variables,
 - C a finite set of constraints $\{C: C \in C\}$ where each C is a pair (\vec{s}, R) with
 - $R = R_i$ for some $1 \le i \le k$, called the constraint relation of *C*.
 - \vec{s} a tuple of variables of length $ar(R_i)$, called the scope of *C*.
- A solution to *I* is a function (assignment) $f : V \to A$ such that for each $C = (\vec{s}, R) \in C$, $f(\vec{s}) \in R$.

Graph colourability

Example (Graph k-colourability)

- Let \mathbf{K}_k be the structure $\langle \{1, 2, \dots, k\}, \neq_k \rangle$, where \neq_k is the not-equals relation on $\{1, 2, \dots, k\}$.
- An instance of the graph *k*-colourability problem, i.e., a finite graph $\mathbf{G} = (V, E)$, can be viewed as the instance of $\text{CSP}(\mathbf{K}_k)$ with variable set *V* and constraint set

$$\{((v,w),\neq_k)\colon (v,w)\in E\}.$$

- The set of k-colourings of G is exactly the set of solutions of this instance.
- It is well known that the decision problem for graph k-colourability is in P for k = 2 and is NP-complete for k > 2.

The CSP decision problem

The Decision problem

For a template \mathbf{A} , the decision problem for $CSP(\mathbf{A})$ is:

Given an instance I of CSP(A), does I have a solution?

Feder-Vardi Dichotomy Conjecture

For any template A, the decision problem for CSP(A) is either in P or is **NP**-complete.

Testing assignments to CSPs

Deciding an assignment

- Let **A** be a structure and I = (V, C) an instance of CSP(**A**).
- Given a function $f: V \rightarrow A$, we can decide whether or not f is a solution to I in time linear in |I|.

Testing an assignment

- Question: Can we more quickly test if an assignment satisfies an instance of CSP(A) or is far from any satisfying assignment?
- Answer: In general, no, but for certain templates A, testing can be carried out in constant time (independent of |V|, after some pre-processing of the instance).

A distance function for assignments

Definition

Let

- A be a template,
- I = (V, C) an instance of CSP(A) and
- $w: V \to [0,1]$ with $\sum_{v \in V} w(v) = 1$, a weight function.

For assignments $f, g: V \rightarrow A$ of I, the distance between f and g is:

$$\operatorname{dist}(f,g) = \sum \{ w(v) \colon v \in V, f(v) \neq g(v) \}.$$

For $\varepsilon \in (0, 1)$ we say that an assignment *f* is ε -far from satisfying *l* if dist $(f, g) > \varepsilon$ for all satisfying assignments *g* of *l*.

Testing assignments to CSPs

Definition (ɛ-tester)

Let **A** be a template. A tester for CSP(A) is an algorithm with the following input and output:

Input:

- $\epsilon \in (0,1)$,
- a (satisfiable) instance I = (V, C) of CSP(A),
- a weight function $w: V \to [0,1]$ with $\sum_{v \in V} w(v) = 1$, and
- query access to an assignment $f: V \rightarrow A$.
- Output:
 - YES, with probability $\geq 2/3$ if *f* satisfies *I*.
 - NO, with probability $\geq 2/3$ if *f* is ε -far from satisfying *I*.

Remark

A tester is one-sided if it always outputs YES for satisfying assignments.

Query complexity

- We measure the efficiency of a tester by the number of queries it makes of the given assignment.
- The query complexity of a tester is constant/sublinear/linear if, for any ε, the number of queries it makes of the given assignment is constant/sublinear/linear in the number of variables of the assignment.
- The query complexity of CSP(A) is constant/sublinear/linear if it has a tester with that query complexity.

Remark

The query complexity of any $CSP(\mathbf{A})$ is at worst linear, since we can devise a tester that queries all of the values of a given assignment.

Query complexity of CSP(A)

Problem

For a given template \mathbf{A} , determine the query complexity of $CSP(\mathbf{A})$.

Some known results

CSP	Query complexity
2-Colouring	O(1)
2-SAT	$\Omega\left(\frac{\log n}{\log\log n}\right), O(\sqrt{n})$ [Fischer et al.]
3-Colouring, 3-SAT, 3-LIN(p)	$\Omega(n)$ [Ben-Sasson et al.]
Horn 3-SAT	$\Omega(n)$ [Bhattacharyya, Yoshida]

Bhattacharyya and Yoshida have solved this problem over 2 element templates and establish a constant/sublinear/linear trichotomy.

The algebra associated with CSP(A)

Remark

The starting point of our investigation of the query complexity of CSP(A) is an observation of Yoshida:

The query complexity of $CSP(\mathbf{A})$ is determined by the algebra of polymorphisms of \mathbf{A} .

Definition

• An operation $f: A^k \to A$ is a polymorphism of **A** if for each relation (*r*-ary) R of **A** and for all $\vec{s}_1, \ldots, \vec{s}_n \in R$:

$$(f(s_1^1,\ldots,s_n^1),\ldots,f(s_1^r,\ldots,s_n^r))\in R.$$

For A a relational structure, Pol(A) denotes the set of polymorphisms of A and Alg(A) = (A, Pol(A)), the algebra of polymorphisms of A.

Some special polymorphisms

Examples

Let A be a finite set.

• A Maltsev operation on A is a function p(x, y, z) that satisfies the equations

$$p(y,x,x)=p(x,x,y)=y.$$

• A majority operation on A is a function m(x, y, z) that satisfies the equations

$$m(y,x,x) = m(x,y,x) = m(x,x,y) = x.$$

• A near-unanimity operation on A is a function $t(\bar{x})$ that satisfies the equations

$$t(y, x, x, \ldots, x, x) = t(x, y, x, \ldots, x, x) = \cdots = t(x, x, \ldots, x, y) = x$$

Some examples

Examples

- The template ⟨{0,1}, ≠₂⟩ has both Maltsev and majority polymorphisms. CSPs over this template are essentially instances of graph 2-colouring.
- 3-LIN(p), the structure over the p-element field (p a prime) whose relations are all affine subspaces of dimension 2 or 3, has a Maltsev polymorphism, but no majority polymorphism.
- The boolean structure for 2-SAT has a majority polymorphism, but no Maltsev polymorphism.
- The boolean structure for 3-SAT only has trivial polymorphisms.

Constant query testable templates

Theorem (FOCS 2016)

Let **A** be a finite structure. $CSP(\mathbf{A})$ is constant query testable if and only if $Alg(\mathbf{A})$ has a Maltsev operation and a majority operation.

Remarks

- An algebra that has both Maltsev and majority operations is said to generate an arithmetic variety.
- A finite product of finite fields is an example of such an algebra.
- (Pixley) Having both types of operations is equivalent to having an operation t(x, y, z) that satisfies the equations:
 t(y, x, x) = t(x, x, y) = t(y, x, y) = y.

The non constant query testable case

Remarks

- An algebra A that has a Maltsev operation will have a majority operation if and only if it does not (primitive-positive) interpret any module.
- If modules can be pp-interpreted by A, then it can be shown that testing CSP(A) requires a linear number of queries (since this is true for linear structures).
- If A fails to have a Maltsev operation, then it interprets a finite structure that has a single binary reflexive, but not symmetric relation.
- A modification of an argument from Fischer et al. for 2-SAT can be used to establish an $\Omega\left(\frac{\log n}{\log \log n}\right)$ lower bound on the query complexity of CSP(**A**).

The constant query case

Sketch of proof: Pre-processing

- Suppose that A has Maltsev and majority polymorphisms and we are given a testing instance: ε, *I* = (*V*, *C*), *w*: *V* → [0, 1] and query access to an assignment *f*: *V* → *A*.
- Using the majority polymorphism, we can produce an equivalent instance
 l' = (A_v, {((v, w), R_{vw})})_{v,w∈V} whose constraints are all binary and
 which is (2,3)-consistent.
- Using the Maltsev polymorphism, it follows that for variables *v*, *w*, the constraint relation *R_{vw}* ⊆ A_v × A_w is a "thick mapping", i.e., modulo compatible equivalence relations on A_v and A_w, *R_{vw}* is the graph of a homomorphism.

The constant query case

Sketch of proof: Reductions

- (Factoring) If for some v ∈ V, the constraints of l' don't distinguish between two elements a, b ∈ A_v, we can produce an "equivalent", reduced instance by factoring out such pairs of elements. The domain A_v is replaced with a proper quotient of it.
- (Splitting) If some domain \mathbb{A}_v can be represented as a subdirect product of domains $\mathbb{A}_v^1 \times \mathbb{A}_v^2$, then we can replace the variable v with a pair of new variables v^1 , v^2 and replace any constraint relation R_{vw} by new relations R_{v^1w} and R_{v^2w} to produce an "equivalent" instance.

Remark

Applying either of these types of reductions will produce an instance whose domains are smaller in size.

The constant query case

Isomorphism reduction

- After repeatedly applying the factoring and splitting reductions our domains will be subdirectly irreducible.
- It follows that for each variable v, there will be some w such that R_{wv} is the graph of a surjective homomorphism.
- v and w will be called equivalent if R_{vw} is the graph of an isomorphism.
- Our final type of reduction is to identity pairs of equivalent variables of *l*' to produce an "equivalent" instance with fewer variables.
- After applying all three of these types of reductions until they can no longer be applied, we will end up with a trivial instance.

Remark

We show that the query complexity of $CSP(\mathbf{A})$ in this case will be $2^{O(A)}/\epsilon^2$. The ϵ -tester produced is 1-sided.

Related result and question

For a structure **A**, define $\exists CSP(A)$ to be the set of existentially quantified instances of CSP(A).

Theorem (FOCS 2016)

For a finite structure **A**, the query complexity of $\exists CSP(\mathbf{A})$ is:

- **o** constant if **A** has Maltsev and majority polymorphisms, else is
- 2 sublinear if A has a near unanimity polymorphism, else is
- Iinear.

Question

Does the above trichotomy holds for regular old CSP(A)?