
The Logic of Counting Query Answers

Hubie Chen
Univ. del País Vasco & Ikerbasque

San Sebastián, Spain

Simons Institute, Berkeley – November 2016

Joint work with Stefan Mengel,
CRIL-CNRS / Université d’Artois

Act: Overview

Query evaluation

Basic problem in logic/database theory:

Evaluate a formula φpV q on a finite structure B,
that is, determine φpBq “ th : V Ñ B | B,h |ù φu

Here:

§ φ first-order formula
§ problem of counting query answers — determine |φpBq|

...intractable, in general...

Example: φpu, vq “ DxpEpu, xq ^ Epx , vqq

Generalizes model checking — determine if B |ù φ

where φ is a sentence

§ Here, we have |φpBq| “ 1 ô B |ù φ

Query evaluation
Basic problem in logic/database theory:

Evaluate a formula φpV q on a finite structure B,
that is, determine φpBq “ th : V Ñ B | B,h |ù φu

Here:

§ φ first-order formula
§ problem of counting query answers — determine |φpBq|

...intractable, in general...

Example: φpu, vq “ DxpEpu, xq ^ Epx , vqq

Generalizes model checking — determine if B |ù φ

where φ is a sentence

§ Here, we have |φpBq| “ 1 ô B |ù φ

Query evaluation
Basic problem in logic/database theory:

Evaluate a formula φpV q on a finite structure B,
that is, determine φpBq “ th : V Ñ B | B,h |ù φu

Here:

§ φ first-order formula

§ problem of counting query answers — determine |φpBq|
...intractable, in general...

Example: φpu, vq “ DxpEpu, xq ^ Epx , vqq

Generalizes model checking — determine if B |ù φ

where φ is a sentence

§ Here, we have |φpBq| “ 1 ô B |ù φ

Query evaluation
Basic problem in logic/database theory:

Evaluate a formula φpV q on a finite structure B,
that is, determine φpBq “ th : V Ñ B | B,h |ù φu

Here:

§ φ first-order formula
§ problem of counting query answers — determine |φpBq|

...intractable, in general...

Example: φpu, vq “ DxpEpu, xq ^ Epx , vqq

Generalizes model checking — determine if B |ù φ

where φ is a sentence

§ Here, we have |φpBq| “ 1 ô B |ù φ

Query evaluation
Basic problem in logic/database theory:

Evaluate a formula φpV q on a finite structure B,
that is, determine φpBq “ th : V Ñ B | B,h |ù φu

Here:

§ φ first-order formula
§ problem of counting query answers — determine |φpBq|

...intractable, in general...

Example: φpu, vq “ DxpEpu, xq ^ Epx , vqq

Generalizes model checking — determine if B |ù φ

where φ is a sentence

§ Here, we have |φpBq| “ 1 ô B |ù φ

Query evaluation
Basic problem in logic/database theory:

Evaluate a formula φpV q on a finite structure B,
that is, determine φpBq “ th : V Ñ B | B,h |ù φu

Here:

§ φ first-order formula
§ problem of counting query answers — determine |φpBq|

...intractable, in general...

Example: φpu, vq “ DxpEpu, xq ^ Epx , vqq

Generalizes model checking — determine if B |ù φ

where φ is a sentence

§ Here, we have |φpBq| “ 1 ô B |ù φ

7-logic

Suppose we have a first-order formula φ in hand,
and are interested in counting |φpBq| for various structs B

Motivating question: is there a language/logic in which one can
express algorithms for computing the mapping B Ñ |φpBq|?

We present such a logic, 7-logic
— can serve as a target language into which one can compile
FO-formulas of interest

7-logic enjoys & balances:

§ Expressivity: in a precise sense, can express known
efficient algorithms for counting query answers in 7-logic

§ Optimizability: minimizing width can be done computably
(in an expressive fragment of 7-logic)

7-logic

Suppose we have a first-order formula φ in hand,
and are interested in counting |φpBq| for various structs B

Motivating question: is there a language/logic in which one can
express algorithms for computing the mapping B Ñ |φpBq|?

We present such a logic, 7-logic
— can serve as a target language into which one can compile
FO-formulas of interest

7-logic enjoys & balances:

§ Expressivity: in a precise sense, can express known
efficient algorithms for counting query answers in 7-logic

§ Optimizability: minimizing width can be done computably
(in an expressive fragment of 7-logic)

7-logic

Suppose we have a first-order formula φ in hand,
and are interested in counting |φpBq| for various structs B

Motivating question: is there a language/logic in which one can
express algorithms for computing the mapping B Ñ |φpBq|?

We present such a logic, 7-logic
— can serve as a target language into which one can compile
FO-formulas of interest

7-logic enjoys & balances:

§ Expressivity: in a precise sense, can express known
efficient algorithms for counting query answers in 7-logic

§ Optimizability: minimizing width can be done computably
(in an expressive fragment of 7-logic)

7-logic

Suppose we have a first-order formula φ in hand,
and are interested in counting |φpBq| for various structs B

Motivating question: is there a language/logic in which one can
express algorithms for computing the mapping B Ñ |φpBq|?

We present such a logic, 7-logic
— can serve as a target language into which one can compile
FO-formulas of interest

7-logic enjoys & balances:

§ Expressivity: in a precise sense, can express known
efficient algorithms for counting query answers in 7-logic

§ Optimizability: minimizing width can be done computably
(in an expressive fragment of 7-logic)

7-logic

Suppose we have a first-order formula φ in hand,
and are interested in counting |φpBq| for various structs B

Motivating question: is there a language/logic in which one can
express algorithms for computing the mapping B Ñ |φpBq|?

We present such a logic, 7-logic
— can serve as a target language into which one can compile
FO-formulas of interest

7-logic enjoys & balances:

§ Expressivity: in a precise sense, can express known
efficient algorithms for counting query answers in 7-logic

§ Optimizability: minimizing width can be done computably
(in an expressive fragment of 7-logic)

Act: Background

Studying complexity

Counting query answers: intractable in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem
by identifying classes of first-order formulas Φ

on which the problem is tractable

Let Φ be a class of first-order formulas

Def: p-countpΦq is the problem...

Given φpV q P Φ and a finite struct B,
output |φpBq|

Studying complexity

Counting query answers: intractable in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem
by identifying classes of first-order formulas Φ

on which the problem is tractable

Let Φ be a class of first-order formulas

Def: p-countpΦq is the problem...

Given φpV q P Φ and a finite struct B,
output |φpBq|

Studying complexity

Counting query answers: intractable in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem
by identifying classes of first-order formulas Φ

on which the problem is tractable

Let Φ be a class of first-order formulas

Def: p-countpΦq is the problem...

Given φpV q P Φ and a finite struct B,
output |φpBq|

Studying complexity

Counting query answers: intractable in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem
by identifying classes of first-order formulas Φ

on which the problem is tractable

Let Φ be a class of first-order formulas

Def: p-countpΦq is the problem...

Given φpV q P Φ and a finite struct B,
output |φpBq|

Studying complexity

Counting query answers: intractable in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem
by identifying classes of first-order formulas Φ

on which the problem is tractable

Let Φ be a class of first-order formulas

Def: p-countpΦq is the problem...

Given φpV q P Φ and a finite struct B,
output |φpBq|

Parameterized complexity

§ Argued: classical complexity notions (eg, poly time)
are not satisfactory in the study of query evaluation

§ Typical scenario: short query on BIG structure

ñ we might tolerate
a non-polynomial, bad dependence on query,
so long as have good dependence on structure

§ Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query/formula is the parameter

Parameterized complexity

§ Argued: classical complexity notions (eg, poly time)
are not satisfactory in the study of query evaluation

§ Typical scenario: short query on BIG structure

ñ we might tolerate
a non-polynomial, bad dependence on query,
so long as have good dependence on structure

§ Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query/formula is the parameter

Parameterized complexity

§ Argued: classical complexity notions (eg, poly time)
are not satisfactory in the study of query evaluation

§ Typical scenario: short query on BIG structure

ñ we might tolerate
a non-polynomial, bad dependence on query,
so long as have good dependence on structure

§ Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query/formula is the parameter

Parameterized complexity

§ Argued: classical complexity notions (eg, poly time)
are not satisfactory in the study of query evaluation

§ Typical scenario: short query on BIG structure

ñ we might tolerate
a non-polynomial, bad dependence on query,
so long as have good dependence on structure

§ Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query/formula is the parameter

Parameterized complexity

§ Argued: classical complexity notions (eg, poly time)
are not satisfactory in the study of query evaluation

§ Typical scenario: short query on BIG structure

ñ we might tolerate
a non-polynomial, bad dependence on query,
so long as have good dependence on structure

§ Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query/formula is the parameter

Parameterized complexity

§ Argued: classical complexity notions (eg, poly time)
are not satisfactory in the study of query evaluation

§ Typical scenario: short query on BIG structure

ñ we might tolerate
a non-polynomial, bad dependence on query,
so long as have good dependence on structure

§ Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query/formula is the parameter

Tractability

Let Φ be a class of first-order formulas.

Def: p-countpΦq is the problem...

Given φpV q P Φ and a finite struct B,
output |φpBq|

Here: p-countpΦq is tractable if

D an algorithm f and a poly-time algorithm A such that

given pφ,Bq, the value |φpBq| is computed by Apf pφq,Bq

(“fixed-parameter tractable”)

Tractability

Let Φ be a class of first-order formulas.

Def: p-countpΦq is the problem...

Given φpV q P Φ and a finite struct B,
output |φpBq|

Here: p-countpΦq is tractable if

D an algorithm f and a poly-time algorithm A such that

given pφ,Bq, the value |φpBq| is computed by Apf pφq,Bq

(“fixed-parameter tractable”)

Tractability

Let Φ be a class of first-order formulas.

Def: p-countpΦq is the problem...

Given φpV q P Φ and a finite struct B,
output |φpBq|

Here: p-countpΦq is tractable if

D an algorithm f and a poly-time algorithm A such that

given pφ,Bq, the value |φpBq| is computed by Apf pφq,Bq

(“fixed-parameter tractable”)

Classification

Classification Thm (Chen & Mengel, ICDT ’15/PODS ’16):

Let Φ be a class of tD,^,_u-formulas (of bounded arity).

§ If (X), then p-countpΦq is tractable (in FPT).

§ Else, p-countpΦq is not tractable, unless W[1] = FPT.

Classification

Classification Thm (Chen & Mengel, ICDT ’15/PODS ’16):

Let Φ be a class of tD,^,_u-formulas (of bounded arity).

§ If (X), then p-countpΦq is tractable (in FPT).

§ Else, p-countpΦq is not tractable, unless W[1] = FPT.

Width

Def: The width of a FO-formula φ is maxψ |freepψq|,
where max is over all subformulas ψ of φ

Obs (Immerman ’82, Vardi ’95): For each k ě 1, D poly-time alg
for evaluating a FO-sentence of width ď k on a finite struct

Obs (Chen ’14): The following condition is sufficient for
model checking on Φ to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a logically equiv sentence f pφq of width ď k

(By model checking on a class of sentences Φ,
we refer to p-countpΦq)

Width

Def: The width of a FO-formula φ is maxψ |freepψq|,
where max is over all subformulas ψ of φ

Obs (Immerman ’82, Vardi ’95): For each k ě 1, D poly-time alg
for evaluating a FO-sentence of width ď k on a finite struct

Obs (Chen ’14): The following condition is sufficient for
model checking on Φ to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a logically equiv sentence f pφq of width ď k

(By model checking on a class of sentences Φ,
we refer to p-countpΦq)

Width

Def: The width of a FO-formula φ is maxψ |freepψq|,
where max is over all subformulas ψ of φ

Obs (Immerman ’82, Vardi ’95): For each k ě 1, D poly-time alg
for evaluating a FO-sentence of width ď k on a finite struct

Obs (Chen ’14): The following condition is sufficient for
model checking on Φ to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a logically equiv sentence f pφq of width ď k

(By model checking on a class of sentences Φ,
we refer to p-countpΦq)

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on Φ to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a logically equiv sentence f pφq of width ď k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)
Let Φ be any class of tD,^,_u-sentences (of bounded arity).
If model checking on Φ in FPT, then condition holds,
ie, above condition is exclusive explanation for FPT!

Conceptual point: FO logic is a useful model of computation!
§ If we have tractability at all, we have tractability via putting

the sentences in the right “format”
§ FO logic contains the computational primitives needed to

express the algorithm witnessing tractability

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on Φ to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a logically equiv sentence f pφq of width ď k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)
Let Φ be any class of tD,^,_u-sentences (of bounded arity).
If model checking on Φ in FPT, then condition holds,
ie, above condition is exclusive explanation for FPT!

Conceptual point: FO logic is a useful model of computation!
§ If we have tractability at all, we have tractability via putting

the sentences in the right “format”
§ FO logic contains the computational primitives needed to

express the algorithm witnessing tractability

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on Φ to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a logically equiv sentence f pφq of width ď k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)
Let Φ be any class of tD,^,_u-sentences (of bounded arity).
If model checking on Φ in FPT, then condition holds,
ie, above condition is exclusive explanation for FPT!

Conceptual point: FO logic is a useful model of computation!

§ If we have tractability at all, we have tractability via putting
the sentences in the right “format”

§ FO logic contains the computational primitives needed to
express the algorithm witnessing tractability

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on Φ to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a logically equiv sentence f pφq of width ď k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)
Let Φ be any class of tD,^,_u-sentences (of bounded arity).
If model checking on Φ in FPT, then condition holds,
ie, above condition is exclusive explanation for FPT!

Conceptual point: FO logic is a useful model of computation!
§ If we have tractability at all, we have tractability via putting

the sentences in the right “format”

§ FO logic contains the computational primitives needed to
express the algorithm witnessing tractability

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on Φ to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a logically equiv sentence f pφq of width ď k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)
Let Φ be any class of tD,^,_u-sentences (of bounded arity).
If model checking on Φ in FPT, then condition holds,
ie, above condition is exclusive explanation for FPT!

Conceptual point: FO logic is a useful model of computation!
§ If we have tractability at all, we have tractability via putting

the sentences in the right “format”
§ FO logic contains the computational primitives needed to

express the algorithm witnessing tractability

A logic for counting query answers?

Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...
§ In model checking: given sentence φ, struct B,

want to decide if B |ù φ

§ In counting answers: given formula φpV q, struct B,
want to compute |φpBq|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: 7-logic

A logic for counting query answers?
Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...
§ In model checking: given sentence φ, struct B,

want to decide if B |ù φ

§ In counting answers: given formula φpV q, struct B,
want to compute |φpBq|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: 7-logic

A logic for counting query answers?
Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...
§ In model checking: given sentence φ, struct B,

want to decide if B |ù φ

§ In counting answers: given formula φpV q, struct B,
want to compute |φpBq|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: 7-logic

A logic for counting query answers?
Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...

§ In model checking: given sentence φ, struct B,
want to decide if B |ù φ

§ In counting answers: given formula φpV q, struct B,
want to compute |φpBq|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: 7-logic

A logic for counting query answers?
Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...
§ In model checking: given sentence φ, struct B,

want to decide if B |ù φ

§ In counting answers: given formula φpV q, struct B,
want to compute |φpBq|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: 7-logic

A logic for counting query answers?
Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...
§ In model checking: given sentence φ, struct B,

want to decide if B |ù φ

§ In counting answers: given formula φpV q, struct B,
want to compute |φpBq|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: 7-logic

A logic for counting query answers?
Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...
§ In model checking: given sentence φ, struct B,

want to decide if B |ù φ

§ In counting answers: given formula φpV q, struct B,
want to compute |φpBq|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: 7-logic

A logic for counting query answers?
Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...
§ In model checking: given sentence φ, struct B,

want to decide if B |ù φ

§ In counting answers: given formula φpV q, struct B,
want to compute |φpBq|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: 7-logic

Act: 7-logic

7-logic

Each 7-formula ψ has a set of free variables, freepψq.

When freepψq “ H, we say that ψ is a 7-sentence.

Obs: For each k ě 1, evaluating a 7-sentence of width ď k
on a finite struct is polytime computable

Def: A 7-sentence ψ represents a FO formula φpV q if,
for each struct B, evaluating ψ on B gives the value |φpBq|

Obs: The following condition is sufficient for
counting answers on Φ (p-countpΦq) to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a 7-sentence representation f pφq of width ď k

A Main Thm: On classes Φ of tD,^,_u-formulas,
this condition is exclusive explanation for FPT!

7-logic

Each 7-formula ψ has a set of free variables, freepψq.

When freepψq “ H, we say that ψ is a 7-sentence.

Obs: For each k ě 1, evaluating a 7-sentence of width ď k
on a finite struct is polytime computable

Def: A 7-sentence ψ represents a FO formula φpV q if,
for each struct B, evaluating ψ on B gives the value |φpBq|

Obs: The following condition is sufficient for
counting answers on Φ (p-countpΦq) to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a 7-sentence representation f pφq of width ď k

A Main Thm: On classes Φ of tD,^,_u-formulas,
this condition is exclusive explanation for FPT!

7-logic

Each 7-formula ψ has a set of free variables, freepψq.

When freepψq “ H, we say that ψ is a 7-sentence.

Obs: For each k ě 1, evaluating a 7-sentence of width ď k
on a finite struct is polytime computable

Def: A 7-sentence ψ represents a FO formula φpV q if,
for each struct B, evaluating ψ on B gives the value |φpBq|

Obs: The following condition is sufficient for
counting answers on Φ (p-countpΦq) to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a 7-sentence representation f pφq of width ď k

A Main Thm: On classes Φ of tD,^,_u-formulas,
this condition is exclusive explanation for FPT!

7-logic

Each 7-formula ψ has a set of free variables, freepψq.

When freepψq “ H, we say that ψ is a 7-sentence.

Obs: For each k ě 1, evaluating a 7-sentence of width ď k
on a finite struct is polytime computable

Def: A 7-sentence ψ represents a FO formula φpV q if,
for each struct B, evaluating ψ on B gives the value |φpBq|

Obs: The following condition is sufficient for
counting answers on Φ (p-countpΦq) to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a 7-sentence representation f pφq of width ď k

A Main Thm: On classes Φ of tD,^,_u-formulas,
this condition is exclusive explanation for FPT!

7-logic

Each 7-formula ψ has a set of free variables, freepψq.

When freepψq “ H, we say that ψ is a 7-sentence.

Obs: For each k ě 1, evaluating a 7-sentence of width ď k
on a finite struct is polytime computable

Def: A 7-sentence ψ represents a FO formula φpV q if,
for each struct B, evaluating ψ on B gives the value |φpBq|

Obs: The following condition is sufficient for
counting answers on Φ (p-countpΦq) to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a 7-sentence representation f pφq of width ď k

A Main Thm: On classes Φ of tD,^,_u-formulas,
this condition is exclusive explanation for FPT!

7-logic

Each 7-formula ψ has a set of free variables, freepψq.

When freepψq “ H, we say that ψ is a 7-sentence.

Obs: For each k ě 1, evaluating a 7-sentence of width ď k
on a finite struct is polytime computable

Def: A 7-sentence ψ represents a FO formula φpV q if,
for each struct B, evaluating ψ on B gives the value |φpBq|

Obs: The following condition is sufficient for
counting answers on Φ (p-countpΦq) to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a 7-sentence representation f pφq of width ď k

A Main Thm: On classes Φ of tD,^,_u-formulas,
this condition is exclusive explanation for FPT!

7-logic

Each 7-formula ψ has a set of free variables, freepψq.

When freepψq “ H, we say that ψ is a 7-sentence.

Obs: For each k ě 1, evaluating a 7-sentence of width ď k
on a finite struct is polytime computable

Def: A 7-sentence ψ represents a FO formula φpV q if,
for each struct B, evaluating ψ on B gives the value |φpBq|

Obs: The following condition is sufficient for
counting answers on Φ (p-countpΦq) to be in FPT:

Dk ě 1 and an alg f that computes, for each φ P Φ,
a 7-sentence representation f pφq of width ď k

A Main Thm: On classes Φ of tD,^,_u-formulas,
this condition is exclusive explanation for FPT!

Example

Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives
...the product of the previous two quantities...
...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

Example
Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives
...the product of the previous two quantities...
...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

Example
Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives
...the product of the previous two quantities...
...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

Example
Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives
...the product of the previous two quantities...
...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

Example
Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives
...the product of the previous two quantities...
...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

Example
Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives

...the product of the previous two quantities...

...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

Example
Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives
...the product of the previous two quantities...

...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

Example
Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives
...the product of the previous two quantities...
...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

Example
Consider the formula φpv , y , zq “ Epv , yq ^ F pv , zq

Set ψE “ CpEpv , yqq, ψF “ CpF pv , zqq (“casting”)

Relative to a struct B...

§ rB, ψE sph : tv , yu Ñ Bq is 1 or 0,
depending on whether B,h |ù Epv , yq

§ rB,PyψE spg : tvu Ñ Bq gives
the num of exts tv , yu Ñ B of g satisfying Epv , yq

§ rB,PzψF spg : tvu Ñ Bq gives
the num of exts tv , zu Ñ B of g satisfying F pv , zq

§ rB,PyψE ˆ PzψF spg : tvu Ñ Bq gives
...the product of the previous two quantities...
...which is the num of exts tv , y , zu Ñ B of g satisfying φ

§ So if we take the previous 7-formula and project v , get
representation PvpPyψE ˆ PzψF q of φ

7-logic: a summary

§ Casting
Cpφq is a 7-formula if φ is a FO-formula

§ Projection
Pvφ is a 7-formula if φ is a 7-formula and...
freepPvφq “ freepφqztvu, closedpPvφq “ tvu Y closedpφq

§ Expansion
Evφ is a 7-formula if φ is a 7-formula, v R freepφq Y closedpφq
freepEvφq “ tvu Y freepφq, closedpEvφq “ closedpφq

§ Multiplication and addition
φˆ φ1, φ` φ1 are 7-formulas if φ, φ1 are 7-formulas with...

§ Constants
Each n P Z is a 7-formula
freepnq “ closedpnq “ H

7-logic: a summary
§ Casting

Cpφq is a 7-formula if φ is a FO-formula

§ Projection
Pvφ is a 7-formula if φ is a 7-formula and...
freepPvφq “ freepφqztvu, closedpPvφq “ tvu Y closedpφq

§ Expansion
Evφ is a 7-formula if φ is a 7-formula, v R freepφq Y closedpφq
freepEvφq “ tvu Y freepφq, closedpEvφq “ closedpφq

§ Multiplication and addition
φˆ φ1, φ` φ1 are 7-formulas if φ, φ1 are 7-formulas with...

§ Constants
Each n P Z is a 7-formula
freepnq “ closedpnq “ H

7-logic: a summary
§ Casting

Cpφq is a 7-formula if φ is a FO-formula

§ Projection
Pvφ is a 7-formula if φ is a 7-formula and...
freepPvφq “ freepφqztvu, closedpPvφq “ tvu Y closedpφq

§ Expansion
Evφ is a 7-formula if φ is a 7-formula, v R freepφq Y closedpφq
freepEvφq “ tvu Y freepφq, closedpEvφq “ closedpφq

§ Multiplication and addition
φˆ φ1, φ` φ1 are 7-formulas if φ, φ1 are 7-formulas with...

§ Constants
Each n P Z is a 7-formula
freepnq “ closedpnq “ H

7-logic: a summary
§ Casting

Cpφq is a 7-formula if φ is a FO-formula

§ Projection
Pvφ is a 7-formula if φ is a 7-formula and...
freepPvφq “ freepφqztvu, closedpPvφq “ tvu Y closedpφq

§ Expansion
Evφ is a 7-formula if φ is a 7-formula, v R freepφq Y closedpφq
freepEvφq “ tvu Y freepφq, closedpEvφq “ closedpφq

§ Multiplication and addition
φˆ φ1, φ` φ1 are 7-formulas if φ, φ1 are 7-formulas with...

§ Constants
Each n P Z is a 7-formula
freepnq “ closedpnq “ H

7-logic: a summary
§ Casting

Cpφq is a 7-formula if φ is a FO-formula

§ Projection
Pvφ is a 7-formula if φ is a 7-formula and...
freepPvφq “ freepφqztvu, closedpPvφq “ tvu Y closedpφq

§ Expansion
Evφ is a 7-formula if φ is a 7-formula, v R freepφq Y closedpφq
freepEvφq “ tvu Y freepφq, closedpEvφq “ closedpφq

§ Multiplication and addition
φˆ φ1, φ` φ1 are 7-formulas if φ, φ1 are 7-formulas with...

§ Constants
Each n P Z is a 7-formula
freepnq “ closedpnq “ H

7-logic: a summary
§ Casting

Cpφq is a 7-formula if φ is a FO-formula

§ Projection
Pvφ is a 7-formula if φ is a 7-formula and...
freepPvφq “ freepφqztvu, closedpPvφq “ tvu Y closedpφq

§ Expansion
Evφ is a 7-formula if φ is a 7-formula, v R freepφq Y closedpφq
freepEvφq “ tvu Y freepφq, closedpEvφq “ closedpφq

§ Multiplication and addition
φˆ φ1, φ` φ1 are 7-formulas if φ, φ1 are 7-formulas with...

§ Constants
Each n P Z is a 7-formula
freepnq “ closedpnq “ H

Width minimization

Observation: consider a formula φpa,b, cq.

Define φ1pa,b, cq “ φpb, c,aq.

In general, φ and φ1 are not logically equivalent...

...but they are counting equivalent...

Def: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
if, for each finite struct B, it holds that |φpBq| “ |φ1pBq|

Thm: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Observation: consider a formula φpa,b, cq.

Define φ1pa,b, cq “ φpb, c,aq.

In general, φ and φ1 are not logically equivalent...

...but they are counting equivalent...

Def: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
if, for each finite struct B, it holds that |φpBq| “ |φ1pBq|

Thm: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Observation: consider a formula φpa,b, cq.

Define φ1pa,b, cq “ φpb, c,aq.

In general, φ and φ1 are not logically equivalent...

...but they are counting equivalent...

Def: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
if, for each finite struct B, it holds that |φpBq| “ |φ1pBq|

Thm: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Observation: consider a formula φpa,b, cq.

Define φ1pa,b, cq “ φpb, c,aq.

In general, φ and φ1 are not logically equivalent...

...but they are counting equivalent...

Def: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
if, for each finite struct B, it holds that |φpBq| “ |φ1pBq|

Thm: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Observation: consider a formula φpa,b, cq.

Define φ1pa,b, cq “ φpb, c,aq.

In general, φ and φ1 are not logically equivalent...

...but they are counting equivalent...

Def: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
if, for each finite struct B, it holds that |φpBq| “ |φ1pBq|

Thm: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Observation: consider a formula φpa,b, cq.

Define φ1pa,b, cq “ φpb, c,aq.

In general, φ and φ1 are not logically equivalent...

...but they are counting equivalent...

Def: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
if, for each finite struct B, it holds that |φpBq| “ |φ1pBq|

Thm: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Observation: consider a formula φpa,b, cq.

Define φ1pa,b, cq “ φpb, c,aq.

In general, φ and φ1 are not logically equivalent...

...but they are counting equivalent...

Def: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
if, for each finite struct B, it holds that |φpBq| “ |φ1pBq|

Thm: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Observation: consider a formula φpa,b, cq.

Define φ1pa,b, cq “ φpb, c,aq.

In general, φ and φ1 are not logically equivalent...

...but they are counting equivalent...

Def: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
if, for each finite struct B, it holds that |φpBq| “ |φ1pBq|

Thm: Two tD,^u-formulas φpV q, φ1pV q are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Thm (width minimization): There exists an alg f that,
given a 7-formula where only tD,^,_u-queries are casted,
outputs a “logically equivalent” 7-formula of minimum width

Idea of alg:

§ Show that each 7-formula φ can be normalized to the form
ř

i (integer)Cpψiq without increasing width
where each ψi is a tD,^u-query

§ May then enforce that the ψi are counting inequivalent
§ Then, find a min width representation of each Cpψiq

§ But to justify this...

Width minimization

Thm (width minimization): There exists an alg f that,
given a 7-formula where only tD,^,_u-queries are casted,
outputs a “logically equivalent” 7-formula of minimum width

Idea of alg:

§ Show that each 7-formula φ can be normalized to the form
ř

i (integer)Cpψiq without increasing width
where each ψi is a tD,^u-query

§ May then enforce that the ψi are counting inequivalent
§ Then, find a min width representation of each Cpψiq

§ But to justify this...

Width minimization

Thm (width minimization): There exists an alg f that,
given a 7-formula where only tD,^,_u-queries are casted,
outputs a “logically equivalent” 7-formula of minimum width

Idea of alg:

§ Show that each 7-formula φ can be normalized to the form
ř

i (integer)Cpψiq without increasing width
where each ψi is a tD,^u-query

§ May then enforce that the ψi are counting inequivalent
§ Then, find a min width representation of each Cpψiq

§ But to justify this...

Width minimization

Thm (width minimization): There exists an alg f that,
given a 7-formula where only tD,^,_u-queries are casted,
outputs a “logically equivalent” 7-formula of minimum width

Idea of alg:

§ Show that each 7-formula φ can be normalized to the form
ř

i (integer)Cpψiq without increasing width
where each ψi is a tD,^u-query

§ May then enforce that the ψi are counting inequivalent

§ Then, find a min width representation of each Cpψiq

§ But to justify this...

Width minimization

Thm (width minimization): There exists an alg f that,
given a 7-formula where only tD,^,_u-queries are casted,
outputs a “logically equivalent” 7-formula of minimum width

Idea of alg:

§ Show that each 7-formula φ can be normalized to the form
ř

i (integer)Cpψiq without increasing width
where each ψi is a tD,^u-query

§ May then enforce that the ψi are counting inequivalent
§ Then, find a min width representation of each Cpψiq

§ But to justify this...

Width minimization

Thm (width minimization): There exists an alg f that,
given a 7-formula where only tD,^,_u-queries are casted,
outputs a “logically equivalent” 7-formula of minimum width

Idea of alg:

§ Show that each 7-formula φ can be normalized to the form
ř

i (integer)Cpψiq without increasing width
where each ψi is a tD,^u-query

§ May then enforce that the ψi are counting inequivalent
§ Then, find a min width representation of each Cpψiq

§ But to justify this...

Independence
Thm (independence): For any “linear combination”

ř

i ai |ψi |

where each ai ‰ 0 and the ψi are counting inequivalent, tD,^u,
there exists a structure D such that

ř

i ai |ψipDq| ‰ 0

Proof idea:

§ We restrict to a certain subsum
§ We view each ψi as equal to the product of its components,

and introduce a variable Xc for each component c
§ We view

ř

i ai |ψi | as
ř

i ai
ś

cPψi
Xc,

a non-zero multivariate polynomial
§ Invoke fact: if non-zero n-var polynomial evaluated on

tuples in T1 ˆ ¨ ¨ ¨ ˆ Tn where each Ti sufficiently big,
returns non-zero value on at least one tuple

§ Would like to control the values of components
independently

Independence
Thm (independence): For any “linear combination”

ř

i ai |ψi |

where each ai ‰ 0 and the ψi are counting inequivalent, tD,^u,
there exists a structure D such that

ř

i ai |ψipDq| ‰ 0

Proof idea:

§ We restrict to a certain subsum
§ We view each ψi as equal to the product of its components,

and introduce a variable Xc for each component c
§ We view

ř

i ai |ψi | as
ř

i ai
ś

cPψi
Xc,

a non-zero multivariate polynomial
§ Invoke fact: if non-zero n-var polynomial evaluated on

tuples in T1 ˆ ¨ ¨ ¨ ˆ Tn where each Ti sufficiently big,
returns non-zero value on at least one tuple

§ Would like to control the values of components
independently

Independence
Thm (independence): For any “linear combination”

ř

i ai |ψi |

where each ai ‰ 0 and the ψi are counting inequivalent, tD,^u,
there exists a structure D such that

ř

i ai |ψipDq| ‰ 0

Proof idea:

§ We restrict to a certain subsum

§ We view each ψi as equal to the product of its components,
and introduce a variable Xc for each component c

§ We view
ř

i ai |ψi | as
ř

i ai
ś

cPψi
Xc,

a non-zero multivariate polynomial
§ Invoke fact: if non-zero n-var polynomial evaluated on

tuples in T1 ˆ ¨ ¨ ¨ ˆ Tn where each Ti sufficiently big,
returns non-zero value on at least one tuple

§ Would like to control the values of components
independently

Independence
Thm (independence): For any “linear combination”

ř

i ai |ψi |

where each ai ‰ 0 and the ψi are counting inequivalent, tD,^u,
there exists a structure D such that

ř

i ai |ψipDq| ‰ 0

Proof idea:

§ We restrict to a certain subsum
§ We view each ψi as equal to the product of its components,

and introduce a variable Xc for each component c

§ We view
ř

i ai |ψi | as
ř

i ai
ś

cPψi
Xc,

a non-zero multivariate polynomial
§ Invoke fact: if non-zero n-var polynomial evaluated on

tuples in T1 ˆ ¨ ¨ ¨ ˆ Tn where each Ti sufficiently big,
returns non-zero value on at least one tuple

§ Would like to control the values of components
independently

Independence
Thm (independence): For any “linear combination”

ř

i ai |ψi |

where each ai ‰ 0 and the ψi are counting inequivalent, tD,^u,
there exists a structure D such that

ř

i ai |ψipDq| ‰ 0

Proof idea:

§ We restrict to a certain subsum
§ We view each ψi as equal to the product of its components,

and introduce a variable Xc for each component c
§ We view

ř

i ai |ψi | as
ř

i ai
ś

cPψi
Xc,

a non-zero multivariate polynomial

§ Invoke fact: if non-zero n-var polynomial evaluated on
tuples in T1 ˆ ¨ ¨ ¨ ˆ Tn where each Ti sufficiently big,
returns non-zero value on at least one tuple

§ Would like to control the values of components
independently

Independence
Thm (independence): For any “linear combination”

ř

i ai |ψi |

where each ai ‰ 0 and the ψi are counting inequivalent, tD,^u,
there exists a structure D such that

ř

i ai |ψipDq| ‰ 0

Proof idea:

§ We restrict to a certain subsum
§ We view each ψi as equal to the product of its components,

and introduce a variable Xc for each component c
§ We view

ř

i ai |ψi | as
ř

i ai
ś

cPψi
Xc,

a non-zero multivariate polynomial
§ Invoke fact: if non-zero n-var polynomial evaluated on

tuples in T1 ˆ ¨ ¨ ¨ ˆ Tn where each Ti sufficiently big,
returns non-zero value on at least one tuple

§ Would like to control the values of components
independently

Independence
Thm (independence): For any “linear combination”

ř

i ai |ψi |

where each ai ‰ 0 and the ψi are counting inequivalent, tD,^u,
there exists a structure D such that

ř

i ai |ψipDq| ‰ 0

Proof idea:

§ We restrict to a certain subsum
§ We view each ψi as equal to the product of its components,

and introduce a variable Xc for each component c
§ We view

ř

i ai |ψi | as
ř

i ai
ś

cPψi
Xc,

a non-zero multivariate polynomial
§ Invoke fact: if non-zero n-var polynomial evaluated on

tuples in T1 ˆ ¨ ¨ ¨ ˆ Tn where each Ti sufficiently big,
returns non-zero value on at least one tuple

§ Would like to control the values of components
independently

Controlling the components

Say the components θ1, . . . , θn (tD,^u-queries) are in play

§ Previously shown: D struct C such that
values |θ1pCq|, . . ., |θnpCq| all different

§ But would like: for any values pt1, . . . , tnq P Nn,
exists struct D such that @i : |θipDq| “ ti

§ Use notion of univar polynomial p acting on a struct B

Key property: for any component θ, any struct B,
and any univar polynomial p (over N),

|θpppBqq| “ pp|θpBq|q
§ To get the struct D as described,

take a poly p such that |θipCq| ÞÑ ti ,
and set D “ ppCq

Controlling the components

Say the components θ1, . . . , θn (tD,^u-queries) are in play

§ Previously shown: D struct C such that
values |θ1pCq|, . . ., |θnpCq| all different

§ But would like: for any values pt1, . . . , tnq P Nn,
exists struct D such that @i : |θipDq| “ ti

§ Use notion of univar polynomial p acting on a struct B

Key property: for any component θ, any struct B,
and any univar polynomial p (over N),

|θpppBqq| “ pp|θpBq|q
§ To get the struct D as described,

take a poly p such that |θipCq| ÞÑ ti ,
and set D “ ppCq

Controlling the components

Say the components θ1, . . . , θn (tD,^u-queries) are in play

§ Previously shown: D struct C such that
values |θ1pCq|, . . ., |θnpCq| all different

§ But would like: for any values pt1, . . . , tnq P Nn,
exists struct D such that @i : |θipDq| “ ti

§ Use notion of univar polynomial p acting on a struct B

Key property: for any component θ, any struct B,
and any univar polynomial p (over N),

|θpppBqq| “ pp|θpBq|q
§ To get the struct D as described,

take a poly p such that |θipCq| ÞÑ ti ,
and set D “ ppCq

Controlling the components

Say the components θ1, . . . , θn (tD,^u-queries) are in play

§ Previously shown: D struct C such that
values |θ1pCq|, . . ., |θnpCq| all different

§ But would like: for any values pt1, . . . , tnq P Nn,
exists struct D such that @i : |θipDq| “ ti

§ Use notion of univar polynomial p acting on a struct B

Key property: for any component θ, any struct B,
and any univar polynomial p (over N),

|θpppBqq| “ pp|θpBq|q
§ To get the struct D as described,

take a poly p such that |θipCq| ÞÑ ti ,
and set D “ ppCq

Controlling the components

Say the components θ1, . . . , θn (tD,^u-queries) are in play

§ Previously shown: D struct C such that
values |θ1pCq|, . . ., |θnpCq| all different

§ But would like: for any values pt1, . . . , tnq P Nn,
exists struct D such that @i : |θipDq| “ ti

§ Use notion of univar polynomial p acting on a struct B

Key property: for any component θ, any struct B,
and any univar polynomial p (over N),

|θpppBqq| “ pp|θpBq|q

§ To get the struct D as described,
take a poly p such that |θipCq| ÞÑ ti ,
and set D “ ppCq

Controlling the components

Say the components θ1, . . . , θn (tD,^u-queries) are in play

§ Previously shown: D struct C such that
values |θ1pCq|, . . ., |θnpCq| all different

§ But would like: for any values pt1, . . . , tnq P Nn,
exists struct D such that @i : |θipDq| “ ti

§ Use notion of univar polynomial p acting on a struct B

Key property: for any component θ, any struct B,
and any univar polynomial p (over N),

|θpppBqq| “ pp|θpBq|q
§ To get the struct D as described,

take a poly p such that |θipCq| ÞÑ ti ,
and set D “ ppCq

Visiting Lovász

Let’s discuss structs over a signature τ ;
let strrτ s denote the class of finite structs over τ

Def: Let RpAq be the vector in Qstrrτ s that

maps a struct B P strrτ s to the num of homoms A Ñ B

Our independence theorem gives (via Chandra-Merlin):

Thm: If A1, . . . ,Ak pairwise non-isomorphic structs,
RpA1q, . . . ,RpAkq are linearly independent

Cor: RpAq “ RpA1q iff A,A1 are isomorphic

Def (from Lovász ’67): Let LpBq be the vector in Qstrrτ s that

maps a struct A P strrτ s to the num of homoms A Ñ B

Thm (Lovász ’67): LpBq “ LpB1q iff B,B1 are isomorphic

Visiting Lovász

Let’s discuss structs over a signature τ ;
let strrτ s denote the class of finite structs over τ

Def: Let RpAq be the vector in Qstrrτ s that

maps a struct B P strrτ s to the num of homoms A Ñ B

Our independence theorem gives (via Chandra-Merlin):

Thm: If A1, . . . ,Ak pairwise non-isomorphic structs,
RpA1q, . . . ,RpAkq are linearly independent

Cor: RpAq “ RpA1q iff A,A1 are isomorphic

Def (from Lovász ’67): Let LpBq be the vector in Qstrrτ s that

maps a struct A P strrτ s to the num of homoms A Ñ B

Thm (Lovász ’67): LpBq “ LpB1q iff B,B1 are isomorphic

Visiting Lovász

Let’s discuss structs over a signature τ ;
let strrτ s denote the class of finite structs over τ

Def: Let RpAq be the vector in Qstrrτ s that

maps a struct B P strrτ s to the num of homoms A Ñ B

Our independence theorem gives (via Chandra-Merlin):

Thm: If A1, . . . ,Ak pairwise non-isomorphic structs,
RpA1q, . . . ,RpAkq are linearly independent

Cor: RpAq “ RpA1q iff A,A1 are isomorphic

Def (from Lovász ’67): Let LpBq be the vector in Qstrrτ s that

maps a struct A P strrτ s to the num of homoms A Ñ B

Thm (Lovász ’67): LpBq “ LpB1q iff B,B1 are isomorphic

Visiting Lovász

Let’s discuss structs over a signature τ ;
let strrτ s denote the class of finite structs over τ

Def: Let RpAq be the vector in Qstrrτ s that

maps a struct B P strrτ s to the num of homoms A Ñ B

Our independence theorem gives (via Chandra-Merlin):

Thm: If A1, . . . ,Ak pairwise non-isomorphic structs,
RpA1q, . . . ,RpAkq are linearly independent

Cor: RpAq “ RpA1q iff A,A1 are isomorphic

Def (from Lovász ’67): Let LpBq be the vector in Qstrrτ s that

maps a struct A P strrτ s to the num of homoms A Ñ B

Thm (Lovász ’67): LpBq “ LpB1q iff B,B1 are isomorphic

Visiting Lovász

Let’s discuss structs over a signature τ ;
let strrτ s denote the class of finite structs over τ

Def: Let RpAq be the vector in Qstrrτ s that

maps a struct B P strrτ s to the num of homoms A Ñ B

Our independence theorem gives (via Chandra-Merlin):

Thm: If A1, . . . ,Ak pairwise non-isomorphic structs,
RpA1q, . . . ,RpAkq are linearly independent

Cor: RpAq “ RpA1q iff A,A1 are isomorphic

Def (from Lovász ’67): Let LpBq be the vector in Qstrrτ s that

maps a struct A P strrτ s to the num of homoms A Ñ B

Thm (Lovász ’67): LpBq “ LpB1q iff B,B1 are isomorphic

Visiting Lovász

Let’s discuss structs over a signature τ ;
let strrτ s denote the class of finite structs over τ

Def: Let RpAq be the vector in Qstrrτ s that

maps a struct B P strrτ s to the num of homoms A Ñ B

Our independence theorem gives (via Chandra-Merlin):

Thm: If A1, . . . ,Ak pairwise non-isomorphic structs,
RpA1q, . . . ,RpAkq are linearly independent

Cor: RpAq “ RpA1q iff A,A1 are isomorphic

Def (from Lovász ’67): Let LpBq be the vector in Qstrrτ s that

maps a struct A P strrτ s to the num of homoms A Ñ B

Thm (Lovász ’67): LpBq “ LpB1q iff B,B1 are isomorphic

Act: Reflection

Discussion

Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

§ Example — counting logic of [Immerman and Lander ’90]
§ Typical motivation — extend FO logic (or some logic)

to capture properties not originally expressible

Motivation here somewhat different; we wanted “simple” logics
that allow for the direct expression of efficient algorithms

Our 7-logic balances...

§ Expressivity
§ Computability: there is an algorithm for width minimization,

so width is well-characterized (in some sense)
(Width minimization not computable in positive FO
[Bova & Chen ’14])

Discussion
Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

§ Example — counting logic of [Immerman and Lander ’90]
§ Typical motivation — extend FO logic (or some logic)

to capture properties not originally expressible

Motivation here somewhat different; we wanted “simple” logics
that allow for the direct expression of efficient algorithms

Our 7-logic balances...

§ Expressivity
§ Computability: there is an algorithm for width minimization,

so width is well-characterized (in some sense)
(Width minimization not computable in positive FO
[Bova & Chen ’14])

Discussion
Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

§ Example — counting logic of [Immerman and Lander ’90]

§ Typical motivation — extend FO logic (or some logic)
to capture properties not originally expressible

Motivation here somewhat different; we wanted “simple” logics
that allow for the direct expression of efficient algorithms

Our 7-logic balances...

§ Expressivity
§ Computability: there is an algorithm for width minimization,

so width is well-characterized (in some sense)
(Width minimization not computable in positive FO
[Bova & Chen ’14])

Discussion
Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

§ Example — counting logic of [Immerman and Lander ’90]
§ Typical motivation — extend FO logic (or some logic)

to capture properties not originally expressible

Motivation here somewhat different; we wanted “simple” logics
that allow for the direct expression of efficient algorithms

Our 7-logic balances...

§ Expressivity
§ Computability: there is an algorithm for width minimization,

so width is well-characterized (in some sense)
(Width minimization not computable in positive FO
[Bova & Chen ’14])

Discussion
Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

§ Example — counting logic of [Immerman and Lander ’90]
§ Typical motivation — extend FO logic (or some logic)

to capture properties not originally expressible

Motivation here somewhat different; we wanted “simple” logics
that allow for the direct expression of efficient algorithms

Our 7-logic balances...

§ Expressivity
§ Computability: there is an algorithm for width minimization,

so width is well-characterized (in some sense)
(Width minimization not computable in positive FO
[Bova & Chen ’14])

Discussion
Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

§ Example — counting logic of [Immerman and Lander ’90]
§ Typical motivation — extend FO logic (or some logic)

to capture properties not originally expressible

Motivation here somewhat different; we wanted “simple” logics
that allow for the direct expression of efficient algorithms

Our 7-logic balances...

§ Expressivity
§ Computability: there is an algorithm for width minimization,

so width is well-characterized (in some sense)
(Width minimization not computable in positive FO
[Bova & Chen ’14])

Open issues

Open: Are there Ehrenfeucht-Fraïssé style games for
understanding expressibility in 7-logic?

Open: We focused on tD,^,_u-formulas;
what can one say about FO logic in general?

What can one say about other logics?

Open issues

Open: Are there Ehrenfeucht-Fraïssé style games for
understanding expressibility in 7-logic?

Open: We focused on tD,^,_u-formulas;
what can one say about FO logic in general?

What can one say about other logics?

Open issues

Open: Are there Ehrenfeucht-Fraïssé style games for
understanding expressibility in 7-logic?

Open: We focused on tD,^,_u-formulas;
what can one say about FO logic in general?

What can one say about other logics?

