The Logic of Counting Query Answers

Hubie Chen
Univ. del Pais Vasco & lkerbasque
San Sebastian, Spain

Joint work with Stefan Mengel,
CRIL-CNRS / Université d’'Artois

Act: Overview

Query evaluation

Query evaluation

Basic problem in logic/database theory:

Evaluate a formula ¢(V) on a finite structure B,
that is, determine ¢(B) = {h: V — B | B,h = ¢}

Query evaluation

Basic problem in logic/database theory:

Evaluate a formula ¢(V) on a finite structure B,
that is, determine ¢(B) = {h: V — B | B,h = ¢}

Here:

¢ first-order formula

Query evaluation
Basic problem in logic/database theory:

Evaluate a formula ¢(V) on a finite structure B,
that is, determine ¢(B) = {h: V — B | B,h = ¢}

Here:

¢ first-order formula

problem of counting query answers — determine |¢(B)|
...intractable, in general...

Query evaluation

Basic problem in logic/database theory:

Evaluate a formula ¢(V) on a finite structure B,
that is, determine ¢(B) = {h: V — B | B,h = ¢}

Here:

¢ first-order formula

problem of counting query answers — determine |¢(B)|
...intractable, in general...

Example: ¢(u, v) = Ix(E(u,x) A E(x,V))

Query evaluation

Basic problem in logic/database theory:

Evaluate a formula ¢(V) on a finite structure B,
that is, determine ¢(B) = {h: V — B | B,h = ¢}

Here:

¢ first-order formula
problem of counting query answers — determine |¢(B)|

...intractable, in general...
Example: ¢(u, v) = Ix(E(u,x) A E(x,V))

Generalizes model checking — determine if B = ¢
where ¢ is a sentence

Here, we have [¢p(B)|=1 <« BE¢

f-logic

1-logic

Suppose we have a first-order formula ¢ in hand,
and are interested in counting |¢(B)| for various structs B

1-logic

Suppose we have a first-order formula ¢ in hand,
and are interested in counting |¢(B)| for various structs B

Motivating question: is there a language/logic in which one can
express algorithms for computing the mapping B — |¢(B)|?

1-logic

Suppose we have a first-order formula ¢ in hand,
and are interested in counting |¢(B)| for various structs B

Motivating question: is there a language/logic in which one can
express algorithms for computing the mapping B — |¢(B)|?

We present such a logic, f-logic
— can serve as a target language into which one can compile
FO-formulas of interest

1-logic

Suppose we have a first-order formula ¢ in hand,
and are interested in counting |¢(B)| for various structs B

Motivating question: is there a language/logic in which one can
express algorithms for computing the mapping B — |¢(B)|?

We present such a logic, f-logic
— can serve as a target language into which one can compile
FO-formulas of interest

f-logic enjoys & balances:

Expressivity: in a precise sense, can express known
efficient algorithms for counting query answers in g-logic
Optimizability: minimizing width can be done computably
(in an expressive fragment of g-logic)

Act: Background

Studying complexity

Studying complexity

Counting query answers: in general

Studying complexity

Counting query answers: in general

Restrict to a single first-order formula: poly-time tractable

Studying complexity

Counting query answers: in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem
by identifying classes of first-order formulas ¢
on which the problem is tractable

Studying complexity

Counting query answers: in general

Restrict to a single first-order formula: poly-time tractable

Here, we seek tractable cases of the general problem
by identifying classes of first-order formulas ¢
on which the problem is tractable

Let ® be a class of first-order formulas
Def: p-count(®) is the problem...

Given ¢(V) € ® and a finite struct B,
output |¢(B)|

Parameterized complexity

Parameterized complexity

Argued: classical complexity notions (eg, poly time)
are satisfactory in the study of query evaluation

Parameterized complexity

Argued: classical complexity notions (eg, poly time)
are satisfactory in the study of query evaluation

Typical scenario: query on structure

Parameterized complexity

Argued: classical complexity notions (eg, poly time)
are satisfactory in the study of query evaluation

Typical scenario: query on structure

= we might tolerate
a non-polynomial, dependence on query,
so long as have good dependence on structure

Parameterized complexity

Argued: classical complexity notions (eg, poly time)
are satisfactory in the study of query evaluation

Typical scenario: query on structure

= we might tolerate
a non-polynomial, dependence on query,
so long as have good dependence on structure

Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Parameterized complexity

Argued: classical complexity notions (eg, poly time)
are satisfactory in the study of query evaluation

Typical scenario: query on structure

= we might tolerate
a non-polynomial, dependence on query,
so long as have good dependence on structure

Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query/formula is the parameter

Tractability

Tractability

Let ® be a class of first-order formulas.

Def: p-count(®) is the problem...

Given ¢(V) € ® and a finite struct B,
output |$(B)]

Tractability

Let ® be a class of first-order formulas.

Def: p-count(®) is the problem...

Given ¢(V) € ® and a finite struct B,
output |¢(B)|

Here: p-count(®) is tractable if

3 an algorithm f and a poly-time algorithm A such that
given (¢, B), the value |¢(B)| is computed by A(f(¢),B)

(“fixed-parameter tractable”)

Classification

Classification Thm (Chen & Mengel, ICDT *15/PODS ’'16):
Let ® be a class of {3, A, v}-formulas (of bounded arity).

Classification

Classification Thm (Chen & Mengel, ICDT *15/PODS ’'16):
Let ® be a class of {3, A, v}-formulas (of bounded arity).

If (X), then p-count(®) is tractable (in FPT).
Else, p-count(®) is not tractable, unless W[1] = FPT.

Width

Def: The width of a FO-formula ¢ is max,; |free(«)|,
where max is over all subformulas) of ¢

Width

Def: The width of a FO-formula ¢ is max,; |free(«)|,
where max is over all subformulas) of ¢

Obs (Immerman '82, Vardi '95): For each k > 1, 3 poly-time alg
for evaluating a FO-sentence of width < k on a finite struct

Width

Def: The width of a FO-formula ¢ is max,; |free(«)|,
where max is over all subformulas) of ¢

Obs (Immerman '82, Vardi '95): For each k > 1, 3 poly-time alg
for evaluating a FO-sentence of width < k on a finite struct

Obs (Chen ’14): The following condition is sufficient for
model checking on ¢ to be in FPT:

Jk > 1 and an alg f that computes, for each ¢ € ¢,
a logically equiv sentence f(¢) of width < k

(By model checking on a class of sentences o,
we refer to p-count(®))

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on ¢ to be in FPT:

Jk > 1 and an alg f that computes, for each ¢ € ¢,
a logically equiv sentence f(¢) of width < k

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on ¢ to be in FPT:

Jk > 1 and an alg f that computes, for each ¢ € ¢,
a logically equiv sentence f(¢) of width < k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)

Let ® be any class of {3, A, v }-sentences (of bounded arity).
If model checking on ¢ in FPT, then condition holds,

ie, above condition is for FPT!

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on ¢ to be in FPT:

Jk > 1 and an alg f that computes, for each ¢ € ¢,
a logically equiv sentence f(¢) of width < k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)

Let ® be any class of {3, A, v }-sentences (of bounded arity).
If model checking on ¢ in FPT, then condition holds,

ie, above condition is for FPT!

Conceptual point: FO logic is a useful model of computation!

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on ¢ to be in FPT:

Jk > 1 and an alg f that computes, for each ¢ € ¢,
a logically equiv sentence f(¢) of width < k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)

Let ® be any class of {3, A, v }-sentences (of bounded arity).
If model checking on ¢ in FPT, then condition holds,

ie, above condition is for FPT!

Conceptual point: FO logic is a useful model of computation!

If we have tractability at all, we have tractability via putting
the sentences in the right “format”

Model checking

Obs (Chen ’14): The following condition is sufficient for
model checking on ¢ to be in FPT:

Jk > 1 and an alg f that computes, for each ¢ € ¢,
a logically equiv sentence f(¢) of width < k

Thm (Chen ’14): (building on Kolaitis, Vardi, ...)

Let ® be any class of {3, A, v }-sentences (of bounded arity).
If model checking on ¢ in FPT, then condition holds,

ie, above condition is for FPT!

Conceptual point: FO logic is a useful model of computation!

If we have tractability at all, we have tractability via putting
the sentences in the right “format”

FO logic contains the computational primitives needed to
express the algorithm witnessing tractability

A logic for counting query answers?

A logic for counting query answers?

Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

A logic for counting query answers?

Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

A logic for counting query answers?

Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?
In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...

A logic for counting query answers?

Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...

In model checking: given sentence ¢, struct B,
want to decide if B = ¢

A logic for counting query answers?

Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...

In model checking: given sentence ¢, struct B,
want to decide if B = ¢

In counting answers: given formula ¢(V), struct B,
want to compute |¢(B)|

A logic for counting query answers?

Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...
In model checking: given sentence ¢, struct B,
want to decide if B = ¢
In counting answers: given formula ¢(V), struct B,
want to compute |¢(B)|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

A logic for counting query answers?

Question: is there some analogously useful “logic”
for counting query answers?

...that is, in which one can express efficient algorithms?

In some sense, we are asking for a counting analog of
bounded-width logic!

Observe...

In model checking: given sentence ¢, struct B,
want to decide if B = ¢

In counting answers: given formula ¢(V), struct B,
want to compute |¢(B)|

We want some notion of sentence that, when evaluated on a
struct B, returns a numerical value (not just true/false)

Will give a logic: #-logic

f-logic

f-logic

Each g-formula «) has a set of free variables, free(v).

f-logic
Each g-formula) has a set of free variables, free(v).

When free(v) = &, we say that v is a §-sentence.

f-logic
Each g-formula 1) has a set of free variables, free(v).

When free(v) = &, we say that v is a §-sentence.

Obs: For each k > 1, evaluating a f-sentence of width < k
on a finite struct is polytime computable

f-logic
Each g-formula 1) has a set of free variables, free(v).

When free(v) = &, we say that v is a §-sentence.

Obs: For each k > 1, evaluating a f-sentence of width < k
on a finite struct is polytime computable

Def: A g-sentence v represents a FO formula ¢(V) if,
for each struct B, evaluating ¢ on B gives the value |¢(B)|

1-logic
Each g-formula 1) has a set of free variables, free(v).

When free(v) = &, we say that v is a §-sentence.

Obs: For each k > 1, evaluating a f-sentence of width < k
on a finite struct is polytime computable

Def: A g-sentence v represents a FO formula ¢(V) if,
for each struct B, evaluating ¢ on B gives the value |¢(B)|

Obs: The following condition is sufficient for
counting answers on ¢ (p-count(®)) to be in FPT:

Jk = 1 and an alg f that computes, for each ¢ € o,
a g-sentence representation f(¢) of width < k

1-logic
Each g-formula 1) has a set of free variables, free(v).

When free(v) = &, we say that v is a §-sentence.

Obs: For each k > 1, evaluating a f-sentence of width < k
on a finite struct is polytime computable

Def: A g-sentence v represents a FO formula ¢(V) if,
for each struct B, evaluating ¢ on B gives the value |¢(B)|

Obs: The following condition is sufficient for
counting answers on ¢ (p-count(®)) to be in FPT:

Jk = 1 and an alg f that computes, for each ¢ € o,
a g-sentence representation f(¢) of width < k

A Main Thm: On classes ¢ of {3, A, v }-formulas,
this condition is for FPT!

Example

Example
Consider the formula (v, y,z) = E(v,y) n F(v, 2)

Set g = C(E(v,y)),vr = C(F(v,2)) (“casting”)
Relative to a struct B...

Example
Consider the formula (v, y,z) = E(v,y) n F(v, 2)

Set Ve = C(E(v.y)), vr = C(F(v.2)) (‘casting’)
Relative to a struct B...

» [B.vel(h:{v.,y} — B)is1or0,
depending on whether B, h = E(v, y)

Example
Consider the formula (v, y,z) = E(v,y) n F(v, 2)

Set Ve = C(E(v.y)), vr = C(F(v.2)) (‘casting’)
Relative to a struct B...

[B.ve|(h:{v,y} — B)is1or0,
depending on whether B, h = E(v, y)

[B, Pyye](g: {v} — B) gives
the num of exts {v, y} — B of g satisfying E(v, y)

Example
Consider the formula (v, y,z) = E(v,y) n F(v, 2)

Set Ve = C(E(v.y)), vr = C(F(v.2)) (‘casting’)
Relative to a struct B...

[B.ve|(h:{v,y} — B)is1or0,
depending on whether B, h = E(v, y)

\B. Pyvel(g: {v} — B) gives
the num of exts {v, y} — B of g satisfying E(v, y)

[B, Pzyr|(g : {v} — B) gives
the num of exts {v,z} — B of g satisfying F(v, 2)

Example
Consider the formula (v, y,z) = E(v,y) n F(v, 2)

Set Ve = C(E(v.y)), vr = C(F(v.2)) (‘casting’)
Relative to a struct B...

» [B.vel(h:{v.,y} — B)is1or0,
depending on whether B, h = E(v, y)

B, Pyvel(g : {vi — B) gives
the num of exts {v, y} — B of g satisfying E(v, y)

» [B, Pzyfr](g : {v} — B) gives
the num of exts {v,z} — B of g satisfying F(v, 2)

» [B, Pywe x Pzipe](g : {v} — B) gives

Example
Consider the formula (v, y,z) = E(v,y) n F(v, 2)

Set v:e = C(E(v,y)), v = C(F(v,2)) (‘casting”)
Relative to a struct B...

[B,ve|(h:{v.y} - B)is1or0,

depending on whether B, h = E(v, y)

\B. Pyvel(g: {v} — B) gives
the num of exts {v, y} — B of g satisfying E(v, y)

[B, Pzyr|(g : {v} — B) gives
the num of exts {v,z} — B of g satisfying F(v, 2)

[B, Pyive x Pziyg|(g - {v} — B) gives
...the product of the previous two quantities...

Example
Consider the formula (v, y,z) = E(v,y) n F(v, 2)

Set g = C(E(v,y)), vr = C(F(v, z)) (“casting”)
Relative to a struct B...

[B.ve|(h:{v,y} — B)is1or0,
depending on whether B, h = E(v, y)

\B. Pyvel(g: {v} — B) gives
the num of exts {v, y} — B of g satisfying E(v, y)

B, Pzir|(g : {v} — B) gives
the num of exts {v,z} — B of g satisfying F(v, 2)

[B, Py x Pziyg|(g - {v} — B) gives
...the product of the previous two quantities...
...which is the num of exts {v, y, z} — B of g satisfying ¢

Example
Consider the formula (v, y,z) = E(v,y) n F(v, 2)
Set g = C(E(v,y)), vr = C(F(v, z)) (“casting”)
Relative to a struct B...

B, ve|(h:{v,y} — B)is1or0,
depending on whether B, h = E(v, y)

[B, Pyye](g: {v} — B) gives
the num of exts {v, y} — B of g satisfying E(v, y)

B, Pzir|(g : {v} — B) gives
the num of exts {v,z} — B of g satisfying F(v, 2)

[B, Py x Pziyg|(g - {v} — B) gives
...the product of the previous two quantities...
...which is the num of exts {v, y, z} — B of g satisfying ¢

So if we take the previous #-formula and project v, get
representation Pv(Pyye x Pziyg) of ¢

f-logic: a summary

f-logic: a summary

» Casting
C(¢) is a g-formula if ¢ is a FO-formula

f-logic: a summary
Casting
C(¢) is a t-formula if ¢ is a FO-formula
Projection
Pv¢ is a g-formula if ¢ is a g§-formula and...
free(Pvo) = free(¢)\{v}, closed(Pv¢) = {v} U closed(¢)

f-logic: a summary
Casting
C(¢) is a t-formula if ¢ is a FO-formula
Projection
Pv¢ is a g-formula if ¢ is a g§-formula and...
free(Pvo) = free(¢)\{v}, closed(Pv¢) = {v} U closed(¢)
Expansion

Ev¢ is a g-formula if ¢ is a g-formula, v ¢ free(¢) u closed(¢)
free(Evg) = {v} u free(¢), closed(Eve) = closed(¢)

f-logic: a summary

Casting
C(¢) is a t-formula if ¢ is a FO-formula

Projection

Pv¢ is a f-formula if ¢ is a f-formula and...

free(Pvo) = free(¢)\{v}, closed(Pv¢) = {v} U closed(¢)
Expansion

Ev¢ is a g-formula if ¢ is a g-formula, v ¢ free(¢) u closed(¢)
free(Evg) = {v} u free(¢), closed(Eve) = closed(¢)
Multiplication and addition

o x ¢, ¢+ ¢ are f-formulas if ¢, ¢’ are f-formulas with...

f-logic: a summary

Casting

C(¢) is a t-formula if ¢ is a FO-formula

Projection

Pv¢ is a g-formula if ¢ is a g§-formula and...

free(Pvo) = free(¢)\{v}, closed(Pv¢) = {v} U closed(¢)
Expansion

Ev¢ is a g-formula if ¢ is a g-formula, v ¢ free(¢) u closed(¢)
free(Evg) = {v} u free(¢), closed(Eve) = closed(¢)
Multiplication and addition

o x ¢, ¢+ ¢ are f-formulas if ¢, ¢’ are f-formulas with...
Constants

Each ne Z is a f-formula

free(n) = closed(n) = &

Width minimization

Width minimization

Observation: consider a formula ¢(a, b, ¢).

Width minimization

Observation: consider a formula ¢(a, b, ¢).
Define ¢/(a, b, c) = ¢(b, c, a).

Width minimization

Observation: consider a formula ¢(a, b, ¢).
Define ¢/(a, b, c) = ¢(b, c, a).

In general, ¢ and ¢’ logically equivalent...

Width minimization

Observation: consider a formula ¢(a, b, ¢).
Define ¢/(a, b, c) = ¢(b, c, a).
In general, ¢ and ¢’ logically equivalent...

...but they are counting equivalent...

Width minimization

Observation: consider a formula ¢(a, b, ¢).
Define ¢/(a, b, c) = ¢(b, c, a).
In general, ¢ and ¢’ logically equivalent...

...but they are counting equivalent...

Def: Two {3, An}-formulas ¢(V), ¢'(V) are counting equivalent
if, for each finite struct B, it holds that |¢(B)| = |¢/(B)|

Width minimization

Observation: consider a formula ¢(a, b, ¢).
Define ¢'(a, b, c) = ¢(b, c, a).
In general, ¢ and ¢’ logically equivalent...

...but they are counting equivalent...

Def: Two {3, An}-formulas ¢(V), ¢'(V) are counting equivalent
if, for each finite struct B, it holds that |¢(B)| = |¢/(B)|

Thm: Two {3, An}-formulas ¢(V), ¢'(V) are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Width minimization

Observation: consider a formula ¢(a, b, ¢).
Define ¢'(a, b, c) = ¢(b, c, a).
In general, ¢ and ¢’ logically equivalent...

...but they are counting equivalent...

Def: Two {3, An}-formulas ¢(V), ¢'(V) are counting equivalent
if, for each finite struct B, it holds that |¢(B)| = |¢/(B)|

Thm: Two {3, An}-formulas ¢(V), ¢'(V) are counting equivalent
iff their variables can be renamed such that they become
logically equivalent

Note: follows that there is an algorithm that decides counting
equivalence

Width minimization

Thm (width minimization): There exists an alg f that,
given a f-formula where only {3, A, v }-queries are casted,
outputs a “logically equivalent” §-formula of minimum width

Width minimization

Thm (width minimization): There exists an alg f that,
given a f-formula where only {3, A, v }-queries are casted,
outputs a “logically equivalent” §-formula of minimum width

Idea of alg:

Width minimization

Thm (width minimization): There exists an alg f that,
given a f-formula where only {3, A, v }-queries are casted,
outputs a “logically equivalent” §-formula of minimum width

Idea of alg:

Show that each g-formula ¢ can be normalized to the form
>.; (integer) C(v;) without increasing width
where each 1; is a {3, A}-query

Width minimization

Thm (width minimization): There exists an alg f that,
given a f-formula where only {3, A, v }-queries are casted,
outputs a “logically equivalent” §-formula of minimum width

Idea of alg:

Show that each g-formula ¢ can be normalized to the form
>.; (integer) C(v;) without increasing width

where each 1; is a {3, A}-query

May then enforce that the v; are counting inequivalent

Width minimization

Thm (width minimization): There exists an alg f that,
given a f-formula where only {3, A, v }-queries are casted,
outputs a “logically equivalent” §-formula of minimum width

Idea of alg:
Show that each g-formula ¢ can be normalized to the form
>.; (integer) C(v;) without increasing width
where each 1; is a {3, A}-query
May then enforce that the v; are counting inequivalent
Then, find a min width representation of each C(v;)

Width minimization

Thm (width minimization): There exists an alg f that,
given a f-formula where only {3, A, v }-queries are casted,
outputs a “logically equivalent” §-formula of minimum width

Idea of alg:

Show that each g-formula ¢ can be normalized to the form
>.; (integer) C(v;) without increasing width

where each 1; is a {3, A}-query

May then enforce that the v; are counting inequivalent
Then, find a min width representation of each C(v;)

But to justify this...

Independence

Thm (independence): For any “linear combination” ; aj|v;|
where each a; # 0 and the v; are counting inequivalent, {3, A},
there exists a structure D such that }; a;|¢;(D)| # 0

Independence

Thm (independence): For any “linear combination” ; aj|v;|
where each a; # 0 and the v; are counting inequivalent, {3, A},
there exists a structure D such that }; a;|¢;(D)| # 0

Proof idea:

Independence

Thm (independence): For any “linear combination” ; aj|v;|
where each a; # 0 and the v; are counting inequivalent, {3, A},
there exists a structure D such that }; a;|¢;(D)| # 0

Proof idea:

We restrict to a certain subsum

Independence

Thm (independence): For any “linear combination” ; aj|v;|
where each a; # 0 and the ¢; are counting inequivalent, {3, A},
there exists a structure D such that }; a;|¢;(D)| # 0

Proof idea:

We restrict to a certain subsum

We view each ; as equal to the product of its components,
and introduce a variable X; for each component ¢

Independence

Thm (independence): For any “linear combination” ; aj|v;|
where each a; # 0 and the ¢; are counting inequivalent, {3, A},
there exists a structure D such that }; a;|¢;(D)| # 0

Proof idea:

We restrict to a certain subsum

We view each ; as equal to the product of its components,
and introduce a variable X; for each component ¢

We view >, aj|vil as 3 @i [[ey, Xo
a non-zero multivariate polynomial

Independence

Thm (independence): For any “linear combination” ; aj|v;|
where each a; # 0 and the ¢; are counting inequivalent, {3, A},
there exists a structure D such that }; a;|¢;(D)| # 0

Proof idea:

We restrict to a certain subsum

We view each ; as equal to the product of its components,
and introduce a variable X; for each component ¢

We view >, aj|vil as 3 @i [[ey, Xo

a non-zero multivariate polynomial

Invoke fact: if non-zero n-var polynomial evaluated on
tuplesin Ty x --- x T, where each T; sufficiently big,
returns non-zero value on at least one tuple

Independence

Thm (independence): For any “linear combination” ; aj|v;|
where each a; # 0 and the ¢; are counting inequivalent, {3, A},
there exists a structure D such that }; a;|¢;(D)| # 0

Proof idea:

We restrict to a certain subsum

We view each ; as equal to the product of its components,
and introduce a variable X; for each component ¢

We view >, aj|vil as 3 @i [[ey, Xo

a non-zero multivariate polynomial

Invoke fact: if non-zero n-var polynomial evaluated on
tuplesin Ty x --- x T, where each T; sufficiently big,
returns non-zero value on at least one tuple

Would like to control the values of components
independently

Controlling the components

Say the components 6y, ..., 60, ({3, A}-queries) are in play

Controlling the components

Say the components 6y, ..., 60, ({3, A}-queries) are in play

Previously shown: 3 struct C such that
values |01(C)|, ..., |0,(C)| all different

Controlling the components

Say the components 6y, ..., 60, ({3, A}-queries) are in play

Previously shown: 3 struct C such that
values |01(C)|, ..., |0,(C)| all different

But would like: for any values (t, ..., t;) € N7,
exists struct D such that Vi: |0;(D)| = {;

Controlling the components

Say the components 6y, ..., 60, ({3, A}-queries) are in play

Previously shown: 3 struct C such that
values |01(C)|, ..., |0,(C)| all different

But would like: for any values (t, ..., t;) € N7,
exists struct D such that Vi: |0;(D)| = {;

Use notion of univar polynomial p acting on a struct B

Controlling the components

Say the components 6y, ..., 60, ({3, A}-queries) are in play

Previously shown: 3 struct C such that
values |01(C)|, ..., |0,(C)| all different

But would like: for any values (t, ..., t;) € N7,
exists struct D such that Vi: |0;(D)| = {;

Use notion of univar polynomial p acting on a struct B

Key property: for any component 6, any struct B,
and any univar polynomial p (over N),

0(p(B))| = p(|0(B)])

Controlling the components

Say the components 6y, ..., 60, ({3, A}-queries) are in play

Previously shown: 3 struct C such that
values |01(C)|, ..., |0,(C)| all different

But would like: for any values (t, ..., t;) € N7,
exists struct D such that Vi: |0;(D)| = {;

Use notion of univar polynomial p acting on a struct B

Key property: for any component 6, any struct B,
and any univar polynomial p (over N),

0(p(B))| = p(|6(B)])
To get the struct D as described,
take a poly p such that |6,(C)| — #;,
and set D = p(C)

Visiting Lovasz

Let’s discuss structs over a signature ;
let str[7] denote the class of finite structs over =

Visiting Lovasz

Let’s discuss structs over a signature ;
let str[7] denote the class of finite structs over =

Def: Let R(A) be the vector in Q"] that

maps a struct B € str[7] to the num of homoms A — B

Visiting Lovasz

Let’s discuss structs over a signature ;
let str[7] denote the class of finite structs over =

Def: Let R(A) be the vector in Q"] that
maps a struct B € str[7] to the num of homoms A — B

Our independence theorem gives (via Chandra-Merlin):

Thm: If Aq, ..., Ak pairwise non-isomorphic structs,
R(Ay),..., R(Ax) are linearly independent

Visiting Lovasz
Let’s discuss structs over a signature ;

let str[7] denote the class of finite structs over =
Def: Let R(A) be the vector in Q"] that

maps a struct B € str[7] to the num of homoms A — B

Our independence theorem gives (via Chandra-Merlin):

Thm: If Aq, ..., Ak pairwise non-isomorphic structs,
R(Ay),..., R(Ay) are linearly independent

Cor: R(A) = R(A) iff A, A’ are isomorphic

Visiting Lovasz

Let’s discuss structs over a signature ;
let str[7] denote the class of finite structs over =

Def: Let R(A) be the vector in Q"] that
maps a struct B € str[7] to the num of homoms A — B

Our independence theorem gives (via Chandra-Merlin):

Thm: If Aq, ..., Ak pairwise non-isomorphic structs,
R(Ay),..., R(Ax) are linearly independent

Cor: R(A) = R(A) iff A, A’ are isomorphic

Def (from Lovasz '67): Let L(B) be the vector in Q"] that

maps a struct A € str[r] to the num of homoms A — B

Visiting Lovasz

Let’s discuss structs over a signature ;
let str[7] denote the class of finite structs over =

Def: Let R(A) be the vector in Q"] that
maps a struct B € str[7] to the num of homoms A — B

Our independence theorem gives (via Chandra-Merlin):

Thm: If Aq, ..., Ak pairwise non-isomorphic structs,
R(Ay),..., R(Ay) are linearly independent

Cor: R(A) = R(A) iff A, A’ are isomorphic
Def (from Lovasz '67): Let L(B) be the vector in Q"] that
maps a struct A € str[r] to the num of homoms A — B

Thm (Lovasz '67): L(B) = L(B’) iff B, B’ are isomorphic

Act: Reflection

Discussion

Discussion

Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

Discussion

Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

Example — counting logic of [Immerman and Lander '90]

Discussion
Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...
Example — counting logic of [Immerman and Lander '90]

Typical motivation — extend FO logic (or some logic)
to capture properties not originally expressible

Discussion
Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...
Example — counting logic of [Immerman and Lander '90]

Typical motivation — extend FO logic (or some logic)
to capture properties not originally expressible

Motivation here somewhat different; we wanted “simple” logics
that allow for the direct expression of efficient algorithms

Discussion
Logics with counting mechanisms: previously considered in
finite model theory, descriptive complexity, database theory...

Example — counting logic of [Immerman and Lander '90]

Typical motivation — extend FO logic (or some logic)
to capture properties not originally expressible

Motivation here somewhat different; we wanted “simple” logics
that allow for the direct expression of efficient algorithms

Our t-logic balances...

Expressivity

Computability: there is an algorithm for width minimization,
so width is well-characterized (in some sense)

(Width minimization not computable in positive FO

[Bova & Chen '14])

Open issues

Open issues

Open: Are there Ehrenfeucht-Fraissé style games for
understanding expressibility in #-logic?

Open issues

Open: Are there Ehrenfeucht-Fraissé style games for
understanding expressibility in #-logic?

Open: We focused on {3, A, v }-formulas;
what can one say about FO logic in general?

What can one say about other logics?

