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To Yuri Gurevich at his 75th birthday.

We met 39 years ago
at the beginning of our reorientation towards

Computer Science,
and stayed friends even in fertile disagreements.



Unfortunately there are unproven claims
in the birthday paper

which are still unproven.

*******************

We shall indicate in this talk what
the problems with these claims are.

*******************

Thanks to Moritz Müller from the Logic Group
of Vienna University

for pointing out misprints and other sources of confusions.
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Reference for the birthday paper

Nadia Labai , Johann A. Makowsky
Logics of Finite Hankel Rank
Fields of Logic and Computation II
Volume 9300 of the series
Lecture Notes in Computer Science pp 237-252
September 2015
——-
Also in: arXiv preprint arXiv:1512.02507, 2015
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Outline

The Feferman-Vaught theorem for finite structures
FV-theorems in an abstract setting
New directions in characterizing logics with FV-theorems

Generalized Hankel matrices of finite rank
Open problems (and some ideas)
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Generalized sums, products and connections

The product of two τ-structures is the (model theoretic)
cartesian product.
The sum of two τ-structures is the (model theoretic)
disjoint union.

————
Generalized products are (first order) transductions of
products.
Generalized sums are scalar (first order) transductions of
sums.
————-
We also look at k-connections: These are disjoint unions
of graphs with k distinctly labeled vertices, where vertices
with corresponding labels are identified.
Generalized k-connections are scalar (first order)
transductions of k-connections.
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The Feferman-Vaught theorem
for finite structures

What are the logics on finite structures
which satisfy some version of the FV Theorem?



The Feferman-Vaught theorem for first order logic:
Let ⊗ be a generalized product on τ-structures.
There is t ∈ N and a function p : FOL→ (FOL)? with

p(φ) = (ψ1
1, . . . , ψ

1
k(φ), ψ

2
1 ·ψk(φ)i2) where k(φ) ∈ N

and a Boolean function Bφ such that for all φ ∈ FOL(τ)q and
all structures A = B1⊗B2,

A |= φ iff Bφ(ψB1
1 , . . . , ψ

B1
k(φ), ψ

B2
1 , . . . , ψ

B2
k(φ)) = 1

where for 1 6 j 6 k we have ψB1
j , ψ

B2
j ∈ FOL(τ)q+t , and

ψBi
j = 1 ⇐⇒ Bi |= ψ

i
j , i = 1, 2

ψ1
1, . . . , ψ

1
k(φ), ψ

2
1, . . . , ψ

2
k(φ) are called reduction formulas.
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The FV-theorem is also true for infinite structures, and
can be stated also for infinite products.
Here we are only interested in the finite.

The FV-theorem is also true for MSOL and generalized
sums ⊕.
This was certainly known already in the 1950ties by A.
Ehrenfeucht and others.
The version for MSOL first appears explicitly in
Läuchli’s 1966 and in Shelah’s 1976 papers.
The case for infinite generalized sums and MSOL
was worked out in detail by Y. Gurevich in 1979.
Actually, for sums and products one can even get t = 0!
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The Feferman-Vaught theorem for MSOL:
Let ⊕ be a generalized sum on τ-structures.
There is t ∈ N and a function p :MSOL→ (MSOL)? with

p(φ) = (ψ1
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1
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and all structures A = B1⊕B2,
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Algorithmic uses of the finite FV-theorem

MSOL-definable graph properties can be checked in linear
time over graph classes of bounded tree-width (Courcelle).

The MSOL theory of graphs of bounded tree-width is
decidable (Seese).
MSOL-definable graph polynomials are computable in
polynomial time over graph classes of bounded tree-width
(M.).
If a class of τ-structures has a decidable MSOL theory, so
does its closure under disjoint union.

t = 0 is essential for these applications!
Generalized sums (products) where t = 0 will be
called sum-like (product-like).
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FV-theorems in an abstract setting



A general notion of logic

A Lindström logic L is a tuple 〈L(τ),Str(τ), |=L, ρ〉 where
- L(τ) is the set of τ-sentences of L
- Str(τ) are the finite τ-structures
- |=L is the satisfaction relation
- ρ is a (quantifier) rank function attaching some weight
(cost) to each formula.

If L(τ) and |=L are uniformly computable, it is a Gurevich
logic.
ρ is nice if it holds that for finite τ, there are, up to logical
equivalence, only finitely many L(τ)-formulas of fixed
quantifier rank with a fixed set of free variables.
A logic with nice quantifier rank is called a nice logic.
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Examples of nice logics

FOL and MSOL with their natural quantifier ranks are nice.

———–
FOL and MSOL augmented with modular counting quantifiers
Dk,m are denoted CFOL and CMSOL, respectively.
Dk,mx ϕ(x) means there are exactly k mod m elements
satisfying ϕ.
———–
As the quantifier rank we can take
ρ1(Dk,mx ϕ(x)) = ρ(ϕ(x)) + 1
or ρ2(Dk,mx ϕ(x)) = ρ(ϕ(x)) + m.
ρ1 is not nice,
since there are infinitely many sentences with the same
quantifier rank,
whereas ρ2 is nice.
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Quantifier rank

For an abstract framework, ρ can be any function attaching
some cost to formulas given as syntactic objects.
In the concrete examples this is usually some variation on
quantifier rank.

———-
Some properties, nevertheless, may be desirable.

ρ is weakly monotone with respect to subformulas:
If ψ is a subformula of φ then ρ(ψ) 6 ρ(φ).
Boolean combinations of formulas do not increase ρ.

———-
Every abstract Lindström Logic can be given a canonical
syntax by adding generalized quantifiers for each definable
class of structures.
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Translation schemes

Let τ, σ be two relational vocabularies with τ = 〈R1, . . . ,Rm〉,
and denote by r(i) the arity of Ri .
A (σ− τ) translation scheme T is a sequence of
L(σ)-formulas (φ;φ1, . . . , φm) where

- φ has k free variables, and
- each φi has k · r(i) free variables.

The transduction T ? induced by T operates on σ-structures A
and maps them to τ-structures T ?(A) where the vocabulary is
interpreted by the formulas given in the translation scheme.
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- scalar if k = 1, otherwise it is k-vectorized.
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Binary operations on τ-structures
The disjoint union AtB of A and B is the structure
obtained by taking the disjoint union of the universes and of
the corresponding relation interpretations in A and B.
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Binary operations on τ-structures
The disjoint union AtB of A and B is the structure
obtained by taking the disjoint union of the universes and of
the corresponding relation interpretations in A and B.
A connection operation on τ-structures with constant
symbols is similar to the disjoint union, where equally named
elements are identified.
A binary operation � : Str(σ)× Str(σ)→ Str(τ) is

- sum-like (product-like) if it is obtained from the
disjoint union of σ-structures by applying a quantifier-free
scalar (vectorized) (σ− τ)-transduction.

- connection-like if it is obtained from a connection
operation on σ-structures by applying a quantifier-free
scalar (σ− τ)-transduction.

If σ = τ, we say � is an operation on τ-structures.
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The FV-property
Let � be a binary operation on τ-structures.
L has the FV-property for with respect to ρ if for every
φ ∈ L(τ)q there are

- k = k(φ) ∈ N
- ψ1, . . . , ψk ∈ L(τ)q

- and a Boolean function Bφ
such that for all τ-structures A = B1�B2 we have that

A |= φ iff B(ψB1
1 , . . . , ψ

B1
k(φ), ψ

B2
1 , . . . , ψ

B2
k(φ)) = 1

where for 1 6 j 6 k we have

ψB1
j = 1 ⇐⇒ B1 |= ψj and ψB2

j = 1 ⇐⇒ B2 |= ψj

Note that φ and the reduction formulas are required to
have the same quantifier rank q.
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Examples of logics that have the FV-property

FOL and CFOL have the FV-property for all product-like
operations ⊗.

FOL, MSOL, CFOL and CMSOL have the FV-property for
all sum-like operations ⊕.
FOL, MSOL, CFOL, and CMSOL have the FV-property for
all connection-like operations �.

Can one characterize the logics which
have the FV-property for some ?
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L-smooth operation
Let L be a nice logic and be a binary operation on
τ-structures.

is L-smooth if whenever A1, A2 and B1, B2 satisfy pairwise
the same Lq-sentences then A1 B1 and A2 B2 also satisfy
the same Lq-sentences.

————–
Observation: If L has the FV-property for then is
L-smooth.
————–
Proposition:(M.-Shelah, 1982) For compact logics L with a
quantifier rank ρ the converse is true:
L has the FV-property for iff is L-smooth.
————–
Problem: Find a natural example of a nice logic L and an
operation , such that is L-smooth, but L does not have
the FV-property for .
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The topic today:
New directions in attacking this problem

Hankel matrices



Hankel matrices for τ-properties

A τ-property Φ is a class of finite τ-structures closed under
τ-isomorphisms.
The Boolean Hankel matrix H(Φ,�) for a τ-property Φ
and a binary operation � : Str(σ)× Str(σ)→ Str(τ) is the
infinite (0, 1)-matrix where the rows and columns are labeled
by all the finite σ-structures A0,A1, . . ., and

H(Φ,�)Ai ,Aj = 1 iff Ai�Aj ∈ Φ

Φ has finite -rank if the rank of H(Φ,�) over Z2 is finite.
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Equivalence relations for τ-properties

The rows of H(Φ,�) naturally define an equivalence relation:
Two σ-structures are (Φ,�)-equivalent A ≡Φ,� B, if they
have identical rows in H(Φ,�).
In other words, A ≡Φ,� B if for all σ-structures C we have

A�C ∈ Φ iff B�C ∈ Φ

Φ has finite -index iff there are only finitely many
(Φ,�)-equivalence classes.
It is easy to see that Φ has finite �-index iff it has finite
�-rank.
A τ-property Φ has finite S-rank (P-rank, C-rank) if it
has finite rank for all sum-like (product-like, connection-like)
operations.
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Lovász’ Theorem

Theorem:(Lovász, 2007) Let Φ be a graph property such that
H(Φ,tk) has finite rank. Then Φ can be checked in
polynomial time on structures of tree-width at most k .
Here tk is the k-connection operation.

———–
N. Labai and M. proved a similar theorem for clique-width k
and a modified sum-like operation.
———–
There are uncountably many graph properties Φ with
H(Φ,tk) of finite rank.
———–
This is a vast improvement of Courcelle’s meta-theorem for
CMSOL.
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Notion of rank finiteness for logics

If every definable property in the logic L has finite S-rank
(P-rank, C-rank), we say L is of finite S-rank (P-rank,
C-rank).

Theorem (Godlin, Kotek, M., 2008).
Let L be a nice fragment of SOL and let � be L-smooth.
Then any L-definable property Φ has finite � rank.

As a consequence, we have that:

MSOL and CMSOL are of finite S-rank and C-rank, and
FOL and CFOL are additionaly of finite P-rank.
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The FV-property implies finite rank

The Finite Rank Theorem was stated for fragments of SOL.
By analyzing the proof, we can give a general version:

Theorem.
Let L be a nice Lindström logic, and let � be L-smooth.
Then any L-definable property Φ has finite �-rank.

Proposition.
Let L be a nice Lindström logic. If L has the FV-property for
�, then � is L-smooth.

Thus we have:

If L has the FV-property for all sum-like
(product-like, connection-like) operations,
then L is of finite S-rank (P-rank, C-rank).
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What implies the FV-property?

We saw that the FV-property implies finite rank.

Does the converse relationship hold?
When a nice logic L has the FV-property for �, we can reason
about a structure A = B1�B2 and a sentence φ ∈ L by
reasoning about a finite number of L-formulas ψi and the
structures B1 and B2.

Finite rank alone does not guarantee that:
- There are only finitely many of these formulas.
- That they are in L at all.

We take a closer look at possible conditions and try to
reformulate the role they play.
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Closed logics
The following statement proves key to a logic having the
FV-property:

Proposition.
If L is nice and has the FV-property for �, then for every
Lq-definable property Φ, the equivalence classes of ≡Φ,� are
also Lq-definable.

A logic L is -closed if for every Lq-definable property Φ,
the equivalence classes of ≡Φ,� are also Lq-definable.
L is S-closed (P-closed, C-closed) if L is �-closed for all
sum-like (product-like,connection-like) operations �.

Theorem.
If L is nice and has the FV-property for all sum-like
(product-like, connection-like) operations, it is S-closed
(P-closed, C-closed).
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Exact relationship between the FV-property and
finite rank

Main Theorem.
(correct version of Theorem 16 in the birthday paper)
Let L be a nice S-closed logic. Then the following are
equivalent:

- L has the FV-property for every sum-like operation �.
- All sum-like operations are L-smooth.
- For all φ ∈ L(τ) and every sum-like operation �, the
�-rank of φ is finite.

- For all φ ∈ L(τ) and every sum-like operation �, the
index of ≡φ,� is finite.

The same holds if we replace S-closed and sum-like by
P-closed and product-like (C-closed and connection-like).
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Open problems
(and some ideas)



Maximal logics

We have seen that there are logics for which
any definable property is of finite S-rank
(such as MSOL,CMSOL), P-rank or C-rank (such as
FOL,CFOL).

Is there a logic L whose definable
properties are exactly the ones of

finite S-rank or P-rank?
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Maximal logics of finite S-rank (P-rank, C-rank).

First approach:
Forget syntax and think of a logic as a collection of properties
closed under certain set operations corresponding to the usual
Boolean connectors and quantifiers for formulas.
Denote by S(τ) and P(τ) the collections of all τ-properties of
finite S-rank and finite P-rank, respectively, and let
S =

⋃
τ S(τ) and P =

⋃
τP(τ).

Is it true that
S and P and are (abstract) Lindström (or even nice Gurevich)
logics which have finite S-rank and finite P-rank, respectively?
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To show that S(τ) is a Lindström logic one would have to
show several closure properties:

Closure under boolean operation (true).
Closure under existential and universal quantification.
Closure under appropriate transductions.

———
To show that S(τ) is a nice Gurevich logic one would have to
provide additionally:

a rank function playing the rôle of quantifier rank which
makes S(τ) nice.
a recursive presentation of S(τ).

None of this is done in an obvious way.
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Some remaining obstacles
If we consider CMSOL to be the collection of
CMSOL-definable properties, we have CMSOL ⊆ S.
Do we have CMSOL = S?
The following theorems show the diverse obstacles we came
across when we tried to answer this question.

Theorem.
There is a sum-like operation � for which there are continuum
many properties of finite �-rank.

Since there are only countably many CMSOL-definable
properties, this suggests there might be properties in S which
are not in CMSOL. However...

Such a class can still have infinite rank for other sum-like
operations.

24 / 27



Some remaining obstacles
If we consider CMSOL to be the collection of
CMSOL-definable properties, we have CMSOL ⊆ S.
Do we have CMSOL = S?
The following theorems show the diverse obstacles we came
across when we tried to answer this question.

Theorem.
There is a sum-like operation � for which there are continuum
many properties of finite �-rank.

Since there are only countably many CMSOL-definable
properties, this suggests there might be properties in S which
are not in CMSOL. However...

Such a class can still have infinite rank for other sum-like
operations.

24 / 27



Some remaining obstacles
If we consider CMSOL to be the collection of
CMSOL-definable properties, we have CMSOL ⊆ S.
Do we have CMSOL = S?
The following theorems show the diverse obstacles we came
across when we tried to answer this question.

Theorem.
There is a sum-like operation � for which there are continuum
many properties of finite �-rank.

Since there are only countably many CMSOL-definable
properties, this suggests there might be properties in S which
are not in CMSOL. However...

Such a class can still have infinite rank for other sum-like
operations.

24 / 27



Many classes with finite rank for the disjoint union

Proof:
Let A ⊆ N.
Let Cycle(A) be the family of graphs {Cn : n ∈ A}.
For each A ⊆ N the H(t,Cycle(A)) has rank 1.
This is so, because for each G1,G2 is connected iff G1 is
connected and G2 = ∅ or vice versa.

———-
This does not imply that Cycle(A) has finite rank for all
sum-like operations.
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What is left open:

Problem:
Assume that a τ-property Φ has finite S-rank and C-rank.
Does it follow that Φ is definable in CMSOL?
If additionally Φ is P-closed, does it follow that Φ is
definable in CFOL?

We do not dare to conjecture that the answer is positive,
but it might well be.
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Summary

We asked whether one can characterize the logics which have
a Feferman-Vaught theorem sum-like and product-like
operations.

We related the Feferman-Vaught theorem to Hankel
matrices and described their exact relationship.
We investigated under which conditions one can construct
logics satisfying the Feferman-Vaught theorem.
We could not (yet) show the existence of maximal logics
of finite S-rank and P-rank.
(as we claimed in Theorem 17 in the birthday paper that
we could).
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Questions?



Thank you.


