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What is this about?

» Finding general conditions for tractability of infinite-domain
CSPs, akin to the finite case
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» If possible find decidable conditions.

» Proving complete complexity classifications:
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What is this about?

» Finding general conditions for tractability of infinite-domain
CSPs, akin to the finite case

» If possible find decidable conditions.

» Proving complete complexity classifications:

Assume that the finite-domain tractability conjecture holds. If the
relations of A are definable in a unary language, then CSP(A) is in
P or NP-complete.
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Computation: Constraint Satisfaction

Symmetry: Canonical Functions

togie Computation
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Computation Outline

Computation: Constraint Satisfaction
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Computation Constraint Satisfaction Problems

» Relational structure: A = (A, R, ..., R,‘}) with RA C Afi
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Computation Constraint Satisfaction Problems

» Relational structure: A = (A, R, ..., R,‘}) with RA C Afi

» A homomorphism f: A — B is a function such that

VYR, ¥(a1,...,a;) € RE, (f(a1),...,f(as)) € R?
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Computation Constraint Satisfaction Problems

» Relational structure: A = (A, R, ..., R;f) with RA C Afi
» A homomorphism f: A — B is a function such that

VYR, ¥(a1,...,a;) € RE, (f(a1),...,f(as)) € R?

Let A be a relational structure, in a fixed finite signature 7.
Definition (CSP(A))

Input: a finite 7-structure B
Question: 3 homomorphism h: B — A?
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Computation Examples

Example (CSP(K3))

Input: a finite graph B
Question:
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Computation Examples

Example (CSP(K3))

Input: a finite graph B
Question: Is B 3-colourable?
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Computation Examples

Example (CSP(K3))

Input: a finite graph B
Question: Is B 3-colourable?
Complexity: NP-complete
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Computation Examples

Example (CSP(K3))

Input: a finite graph B
Question: Is B 3-colourable?
Complexity: NP-complete

Example (CSP(Z, <))

Input: a finite directed graph B
Question:
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Computation Examples

Example (CSP(K3))

Input: a finite graph B
Question: Is B 3-colourable?
Complexity: NP-complete

Example (CSP(Z, <))

Input: a finite directed graph B
Question: Is B acyclic?
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Computation Examples

Example (CSP(K3))

Input: a finite graph B
Question: Is B 3-colourable?
Complexity: NP-complete

Example (CSP(Z, <))

Input: a finite directed graph B
Question: Is B acyclic?
Complexity: linear time
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Computation Examples

Example (CSP(Z, +, x))

Input: a hypergraph with vertices V and hyperedges E| (x, y, z)
and Ex(x,y,z)
Question:
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Computation Examples

Example (CSP(Z, +, x))

Input: a hypergraph with vertices V and hyperedges E| (x, y, z)
and Ex(x,y,z)
Question: 3 assignment s: V — Z such that

{s(x) +s(y)=s(z) (xy.2)€Ey

s(x) xs(y) =s(z) (x,y,z) € Ex
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Computation Examples

Example (CSP(Z, +, x))

Input: a hypergraph with vertices V and hyperedges E| (x, y, z)
and Ex(x,y,z)
Question: 3 assignment s: V — Z such that

{s(x) +5(y) =s(z) (xy.2) € Ey
s(z) (x,y,z) € Ex

Complexity: undecidable.

Theorem (Matiyasevich-Davis-Robinson-Putnam)

Every recursively enumerable set S C 7. is the projection on one
variable of the set of solutions of some instance of CSP(Z, +, x).
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Computation The Finite-Domain Conjecture

Conjecture (Feder-Vardi, '93)

Let A be a structure with a finite domain. Then CSP(A) is in P or
NP-complete.
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Computation The Finite-Domain Conjecture

Conjecture (Feder-Vardi, '93)

Let A be a structure with a finite domain. Then CSP(A) is in P or
NP-complete.

» Confirmed in many cases (graphs, smooth digraphs, small
structures, conservative structures, ...)
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Computation The Finite-Domain Conjecture

Conjecture (Feder-Vardi, '93)

Let A be a structure with a finite domain. Then CSP(A) is in P or
NP-complete.

» Confirmed in many cases (graphs, smooth digraphs, small
structures, conservative structures, ...)

» Tractability conjecture: if A has a cyclic polymorphism then
CSP(A) is in P.
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Computation The Finite-Domain Conjecture

Conjecture (Feder-Vardi, '93)

Let A be a structure with a finite domain. Then CSP(A) is in P or
NP-complete.

» Confirmed in many cases (graphs, smooth digraphs, small
structures, conservative structures, ...)

» Tractability conjecture: if A has a cyclic polymorphism then
CSP(A) is in P.
Transition to infinite domains:
» Find a reasonable class A of infinite structures,

» Classify the complexity of CSP(A) for all A € A, assuming
the tractability conjecture.
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Computation Finitely Bounded Homogeneous Structures

B is finitely bounded if there exists a finite family F of finite
structures such that for all finite C,

C substructure of B < VF € F, F not a substructure of C
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Computation Finitely Bounded Homogeneous Structures

B is finitely bounded if there exists a finite family F of finite
structures such that for all finite C,

C substructure of B < VF € F, F not a substructure of C

So the question “C substructure of B?" is decidable.
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Computation Finitely Bounded Homogeneous Structures

B is finitely bounded if there exists a finite family F of finite
structures such that for all finite C,

C substructure of B < VF € F, F not a substructure of C

So the question “C substructure of B?" is decidable.

» (Q,<): F = all 3-element structures that are not linear orders
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Computation Finitely Bounded Homogeneous Structures

B is finitely bounded if there exists a finite family F of finite
structures such that for all finite C,

C substructure of B < VF € F, F not a substructure of C

So the question “C substructure of B?" is decidable.

» (Q,<): F = all 3-element structures that are not linear orders
» Universal triangle-free graph: F = {A}
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Computation Finitely Bounded Homogeneous Structures

B is finitely bounded if there exists a finite family F of finite
structures such that for all finite C,

C substructure of B < VF € F, F not a substructure of C

So the question “C substructure of B?" is decidable.

Example

» (Q,<): F = all 3-element structures that are not linear orders
» Universal triangle-free graph: F = {A}

Definition
B is homogeneous if every partial isomorphism with finite domain
can be extended to an automorphism.
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Computation The Bodirsky-Pinsker Conjecture

A is a reduct of B if the relations of A have a fo-definition in B.
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Computation The Bodirsky-Pinsker Conjecture

A is a reduct of B if the relations of A have a fo-definition in B.

Conjecture (Bodirsky-Pinsker)

Let A be a reduct of a finitely bounded homogeneous structure.
Then CSP(A) is in P or NP-complete.
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Computation The Bodirsky-Pinsker Conjecture

A is a reduct of B if the relations of A have a fo-definition in B.

Conjecture (Bodirsky-Pinsker)

Let A be a reduct of a finitely bounded homogeneous structure.
Then CSP(A) is in P or NP-complete.

Why “reduct of finitely bounded homogeneous structure”:
» w-categorical structures
» CSP is guaranteed to be in NP

» false if we drop “finitely bounded”
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Computation The Bodirsky-Pinsker Conjecture

A is a reduct of B if the relations of A have a fo-definition in B.

Conjecture (Bodirsky-Pinsker)

Let A be a reduct of a finitely bounded homogeneous structure.
Then CSP(A) is in P or NP-complete.

Why “reduct of finitely bounded homogeneous structure”:
» w-categorical structures
» CSP is guaranteed to be in NP
> false if we drop “finitely bounded”

Question: How to prove it?
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Computation The Bodirsky-Pinsker Conjecture

A is a reduct of B if the relations of A have a fo-definition in B.

Conjecture (Bodirsky-Pinsker)

Let A be a reduct of a finitely bounded homogeneous structure.
Then CSP(A) is in P or NP-complete.

Why “reduct of finitely bounded homogeneous structure”:
» w-categorical structures
» CSP is guaranteed to be in NP
> false if we drop “finitely bounded”

Question: How to prove it, assuming the finite-domain conjecture?

Antoine Mottet
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Computation Existing Classifications

BP conjecture is confirmed for:
» Reducts of (N, =) (Bodirsky, Kéra, '06)
» Reducts of the Rado graph (Bodirsky, Pinsker, JACM'15)

» Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker,
Pongracz, ICALP'16)

» Reducts of (Q, <) (Bodirsky, Kéra, JACM'08)

| S
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Computation Existing Classifications

BP conjecture is confirmed for:
» Reducts of (N, =) (Bodirsky, Kéra, '06)
» Reducts of the Rado graph (Bodirsky, Pinsker, JACM'15)

» Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker,
Pongracz, ICALP'16)

» Reducts of (Q, <) (Bodirsky, Kéra, JACM'08)
> .

In the first 3 cases, the classification is of the form:

Theorem (xxx)

A has a canonical polymorphism and CSP(A) is in P, or CSP(A) is
NP-complete.
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Computation Existing Classifications

BP conjecture is confirmed for:
» Reducts of (N, =) (Bodirsky, Kéra, '06)
» Reducts of the Rado graph (Bodirsky, Pinsker, JACM'15)

» Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker,
Pongracz, ICALP'16)

» Reducts of (Q, <) (Bodirsky, Kéra, JACM'08)

| S

In the first 3 cases, the classification is of the form:
Theorem (xxx)

A has a canonical polymorphism and CSP(A) is in P, or CSP(A) is
NP-complete.

Not true for (Q, <).
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Symmetry Qutline

Symmetry: Canonical Functions
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Symmetry Oligomorphic groups, clones

» G < Sym(X), orbitofae X™is {(«-a1,...,a-am) € G}

Antoine Mottet Canonical Functions, and Constraint Satisfaction



Symmetry Oligomorphic groups, clones

» G < Sym(X), orbitofae X™is {(«-a1,...,a-am) € G}

» G is oligomorphic if for all m > 1, there are finitely many
orbits of m-tuples of X under G.
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Symmetry Oligomorphic groups, clones

» G < Sym(X), orbitofae X™is {(«-a1,...,a-am) € G}

» G is oligomorphic if for all m > 1, there are finitely many
orbits of m-tuples of X under G.

» A function clone ¢ is a subset of (J,~; XX" closed under
composition and containing projections.

Canonical Functions, and Constraint Satisfaction
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Symmetry Oligomorphic groups, clones

G < Sym(X), orbitofa € X™is {(a-a1,...,a-am) i € G}
G is oligomorphic if for all m > 1, there are finitely many
orbits of m-tuples of X under G.

A function clone € is a subset of | J,~; XX" closed under
composition and containing projections.

v

v

v

v

Natural topology: (f;) — f iff for arbitrarily large finite sets
X' C X, there is iy such that fj|x, = f|x: for j > io.
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Symmetry Oligomorphic groups, clones

G < Sym(X), orbitofa € X™is {(a-a1,...,a-am) i € G}
G is oligomorphic if for all m > 1, there are finitely many
orbits of m-tuples of X under G.

A function clone € is a subset of | J,~; XX" closed under
composition and containing projections.

v

v

v

v

Natural topology: (f;) — f iff for arbitrarily large finite sets
X' C X, there is iy such that fj|x = f|x: for j > .

¢: € — & is continuous iff for every g € €, there is a finite
set X’ C X such that g|x = h|x: = ¢(g) = ¢(h).

v
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Symmetry Canonical functions

Fix:
» G < Sym(X),
» [ X" X
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Symmetry Canonical functions

Fix:
» G < Sym(X),
» [ X" X

f is G-canonical if

Vag,...,an € G, fo(aq,...,an) € G-f
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Symmetry Canonical functions

Fix:
» G < Sym(X),
> f: X" = X

Definition

f is G-canonical if

Vag,...,an € G, fo(aq,...,an) € G-f

Equivalently: f induces an action on G-orbits of m-tuples, for all
m>1.
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Symmetry Canonical functions

Fix:
» G < Sym(X),
> f: X" = X

Definition

f is G-canonical if

Vag,...,an € G, fo(aq,...,an) € G-f

Equivalently: f induces an action on G-orbits of m-tuples, for all
m > 1. If G is oligomorphic then f acts naturally on finite sets.

Theorem (Bodirsky-Pinsker-Tsankov)

Suppose G is nice. For all f: X" — X, there exists g € GfG which
is G-canonical.
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Symmetry Canonical functions

Fix:
» G < Sym(X),
> f: X" = X

Definition

f is G-canonical if

Vag,...,an € G, fo(aq,...,an) € G-f

Equivalently: f induces an action on G-orbits of m-tuples, for all
m > 1. If G is oligomorphic then f acts naturally on finite sets.

Theorem (Bodirsky-Pinsker-Tsankov)

Suppose G is nice. For all f: X" — X, there exists g € GfG which
is G-canonical.

Remark: G-canonical functions form a clone.
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Symmetry Example: (Q, <)

» unary functions: canonical <+ monotone

Antoine Mottet Canonical Functions, and Constraint Satisfaction



Symmetry Example: (Q, <)

» unary functions: canonical <> monotone
orbit O | f(O) orbit O | f(O) orbit O | f(O)
< < <
> > >
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Symmetry Example: (Q, <)

» unary functions: canonical <> monotone
orbit O | f(O) orbit O | f(O) orbit O | f(O)
< < < <
> > > >
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Symmetry Example: (Q, <)

» unary functions: canonical <> monotone
orbit O | f(O) orbit O | f(O) orbit O | f(O)
< < < > <
> > > < >
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Symmetry Example: (Q, <)

» unary functions: canonical <> monotone

orbit O | f(O) orbit O | f(O) orbit O | f(O)
< < < > < =
> > > < > =
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Symmetry Example: (Q, <)

» unary functions: canonical <> monotone

orbit O | f(O) orbit O | f(O) orbit O | f(O)
< < < > < =
> > > < > =

» example of binary function: the lexicographic order

VA
VoA
VA AIA
V A VIV
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Symmetry Example: (Q, <)

» unary functions: canonical <> monotone

orbit O | f(O) orbit O | f(O) orbit O | f(O)
< < < > < =
> > > < > =

» example of binary function: the lexicographic order

VA AIA
V A VIV

< | <
> | >

» non-example: the maximum function
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Symmetry Mash-ups

Definition (Mash-up)

G-canonical functions g, h, O, 0" G-orbits of m-tuples.
w is a mash-up of g, h if it is G-canonical and

w(0,0) = g(0,0)
w(O',0) = h(O',0).
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Symmetry Mash-ups

Definition (Mash-up)

G-canonical functions g, h, O, 0" G-orbits of m-tuples.
w is a mash-up of g, h if it is G-canonical and

w(0,0) = g(0,0)
w(O',0) = h(O',0).

w | ... O o’
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Symmetry Mash-ups

Definition (Mash-up)

G-canonical functions g, h, O, 0" G-orbits of m-tuples.
w is a mash-up of g, h if it is G-canonical and

w(0,0) = g(0,0)
w(O',0) = h(O',0).

w | ... O o’
@) g(0,0"
o' o', 0)
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Symmetry Clone homomorphisms - Equations

n

¢,2 clones. ¢: € — 2 is a clone homomorphism if ¢(pr{") = pr
and ¢(f o (g1,--,8&n)) = &(f) o (¢(81), - - -, d(gn))-
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Symmetry Clone homomorphisms - Equations

Definition
¢,2 clones. ¢: € — Z is a clone homomorphism if ¢(pri") = pr!
and ¢(f o (g1,--,8&n)) = &(f) o (¢(81), - - -, d(gn))-

Clone homomorphisms preserve equations:

Vx,y, f(x,fy,2)) = f(f(x,y), 2)
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Symmetry Clone homomorphisms - Equations

Definition
¢,2 clones. ¢: € — Z is a clone homomorphism if ¢(pri") = pr!
and ¢(f o (g1,--,8&n)) = &(f) o (¢(81), - - -, d(gn))-

Clone homomorphisms preserve equations:

Vx,y, f(x,f(y,z)) = f(f(x,y),z
= Vx,y, o(f)(x,0(F)(y,2)) = ¢(F)(d(f)(x,¥),2)
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Symmetry Clone homomorphisms - Equations

Definition

n

¢,2 clones. ¢: € — 2 is a clone homomorphism if ¢(pr{") = pr
and ¢(f o (g1,--,8&n)) = &(f) o (¢(81), - - -, d(gn))-

Clone homomorphisms preserve equations:

Vx,y, f(x, f(y,2)) = f(f(x.y),z
= x,y, o(f)(x, 6(F)(y, 2)) = ¢(f)(&(F)(x,y), 2)

Definition (Barto, Opr%al, Pinsker)
%,9 clones. ¢: € — 2 is an hl homomorphism if

¢(fo(prfl,- - prf)) = ¢(F) o (prfl, -, prf]
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Symmetry Clone homomorphisms - Equations

Definition

n

¢,2 clones. ¢: € — 2 is a clone homomorphism if ¢(pr{") = pr
and ¢(f o (g1,--,8&n)) = &(f) o (¢(81), - - -, d(gn))-

Clone homomorphisms preserve equations:

Vx,y, f(x, f(y,2)) = f(f(x.y),z
= x,y, o(f)(x, 6(F)(y, 2)) = ¢(f)(&(F)(x,y), 2)

Definition (Barto, Opr%al, Pinsker)
%,9 clones. ¢: € — 2 is an hl homomorphism if

¢(fo(prfl,- - prf)) = ¢(F) o (prfl, -, prf]

h1l homomorphisms preserve equations of height 1.
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Symmetry Algebraic Dichotomy

% an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous hl homomorphism € — & that
preserves left-composition with unary operations;
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Symmetry Algebraic Dichotomy

% an oligomorphic closed core clone with mash-ups. TFAE:
1. there is a continuous hl homomorphism € — & that
preserves left-composition with unary operations;

2. there is a h1 homomorphism € — & that preserves
left-composition with unary operations;
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Symmetry Algebraic Dichotomy

% an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous hl homomorphism € — & that
preserves left-composition with unary operations;

2. there is a h1 homomorphism € — & that preserves
left-composition with unary operations;

3. there is a continuous clone homomorphism € " — &,
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Symmetry Algebraic Dichotomy

% an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous hl homomorphism € — & that
preserves left-composition with unary operations;

2. there is a h1 homomorphism € — & that preserves
left-composition with unary operations;

3. there is a continuous clone homomorphism € " — &,

4. there is no pseudo-cyclic operation in €;
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Symmetry Algebraic Dichotomy

% an oligomorphic closed core clone with mash-ups. TFAE:

1.

there is a continuous hl homomorphism € — & that
preserves left-composition with unary operations;

there is a h1 homomorphism € — & that preserves
left-composition with unary operations;

there is a continuous clone homomorphism €<°" — &;
there is no pseudo-cyclic operation in € ;

there is no pseudo-cyclic operation in €.
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Symmetry Algebraic Dichotomy

% an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous hl homomorphism € — & that
preserves left-composition with unary operations;

2. there is a h1 homomorphism € — & that preserves
left-composition with unary operations;

3. there is a continuous clone homomorphism € " — &,
4. there is no pseudo-cyclic operation in €;
5. there is no pseudo-cyclic operation in €<".

f pseudo-cyclic iff there are e, ey such that

e1f(x1, ..., xn) = exf(x2, ..., xn, x1)
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Symmetry Algebraic Dichotomy

% an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous hl homomorphism € — & that
preserves left-composition with unary operations;

2. there is a h1 homomorphism € — & that preserves
left-composition with unary operations;

3. there is a continuous clone homomorphism € " — &,
4. there is no pseudo-cyclic operation in €;
5. there is no pseudo-cyclic operation in €<".

f pseudo-cyclic iff there are e, ey such that

e1f(x1, ..., xn) = exf(x2, ..., xn, x1)

Any of these properties is decidable!
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Computation utline

togie Computation
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Computation Finite to Infinite

Theorem (Bodirsky-M, LICS'16)

Assume the tractability conjecture, and let A be a reduct of a
finitely bounded homogeneous structure B. If A has a pseudo-cyclic
polymorphism that is Aut(B)-canonical, then CSP(A) is in P.
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Computation Finite to Infinite

Theorem (Bodirsky-M, LICS'16)

Assume the tractability conjecture, and let A be a reduct of a
finitely bounded homogeneous structure B. If A has a pseudo-cyclic
polymorphism that is Aut(B)-canonical, then CSP(A) is in P.

In fact, any tractability condition from finite-domain CSPs can be
lifted to the BP class.
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Computation Finite to Infinite

Theorem (Bodirsky-M, LICS'16)

Assume the tractability conjecture, and let A be a reduct of a
finitely bounded homogeneous structure B. If A has a pseudo-cyclic
polymorphism that is Aut(B)-canonical, then CSP(A) is in P.

In fact, any tractability condition from finite-domain CSPs can be
lifted to the BP class.

Assume the tractability conjecture. If Pol(A) has mash-ups, then:
» Pol(A) — &2, and CSP(A) is NP-complete, or

» Pol(A) contains a canonical pseudo-cyclic operation, and
CSP(A) isin P.
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Computation Finite to Infinite

Theorem (Bodirsky-M, LICS'16)

Assume the tractability conjecture, and let A be a reduct of a
finitely bounded homogeneous structure B. If A has a pseudo-cyclic
polymorphism that is Aut(B)-canonical, then CSP(A) is in P.

In fact, any tractability condition from finite-domain CSPs can be
lifted to the BP class.

Assume the tractability conjecture. If Pol(A) has mash-ups, then:
» Pol(A) — &2, and CSP(A) is NP-complete, or

» Pol(A) contains a canonical pseudo-cyclic operation, and
CSP(A) isin P.

Consequence: membership in P is decidable!

if P=NP or the tractability conjecture is true
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Computation

are canonical functions eno

Reducts of fin. bounded. homogeneous)

definable structures
over (N, =)

reducts

(@, <)

reducts unary structures
reducts homog. graphs
& constants

reducts (N,0,1,...)

reducts of homogeneous graphs

finite-domain CSPs

reducts of (N, =)
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Computation MMSNP

» Fix relational signature 7

» MMSNP 7-sentences are of the form

My - 3IMEER A (N )
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Computation MMSNP

» Fix relational signature 7

» MMSNP 7-sentences are of the form

My - 3IMEER A (N )

Example (No monochromatic triangle)

IRed IBlue Vx, y, z (—(e) A —(62))
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Computation MMSNP

» Fix relational signature 7

» MMSNP 7-sentences are of the form

My - 3IMEER A (N )

Example (No monochromatic triangle)

IRed IBlue Vx, y, z (—(e) A —(62))
Theorem (Feder-Vardi-Kun)

MMSNP has a P/NP-complete dichotomy iff finite-domain CSPs
have a dichotomy.
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Computation MMSNP

» Fix relational signature 7

» MMSNP 7-sentences are of the form

My - 3IMEER A (N )

Example (No monochromatic triangle)
IRed IBlue Vx, y, z (—(¢) A ()

Theorem (Feder-Vardi-Kun)

MMSNP has a P/NP-complete dichotomy iff finite-domain CSPs
have a dichotomy.

If all obstructions are monochromatic, then tractability is witnessed
by canonical functions.
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