Canonical Functions and Constraint Satisfaction

Antoine Mottet Workshop {Symmetry, Logic, Computation} Finding general conditions for tractability of infinite-domain CSPs, akin to the finite case

- Finding general conditions for tractability of infinite-domain CSPs, akin to the finite case
- If possible find decidable conditions.

- Finding general conditions for tractability of infinite-domain CSPs, akin to the finite case
- If possible find decidable conditions.
- Proving complete complexity classifications:

- Finding general conditions for tractability of infinite-domain CSPs, akin to the finite case
- If possible find decidable conditions.
- Proving complete complexity classifications:

Theorem

Assume that the finite-domain tractability conjecture holds. If the relations of \mathbb{A} are definable in a unary language, then $CSP(\mathbb{A})$ is in P or NP-complete.

Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation

Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation

▶ Relational structure: $\mathbb{A} = (A, R_1^{\mathbb{A}}, \dots, R_k^{\mathbb{A}})$ with $R_i^{\mathbb{A}} \subseteq A^{r_i}$

- ▶ Relational structure: $\mathbb{A} = (A, R_1^{\mathbb{A}}, \dots, R_k^{\mathbb{A}})$ with $R_i^{\mathbb{A}} \subseteq A^{r_i}$
- A homomorphism $f : \mathbb{A} \to \mathbb{B}$ is a function such that

$$orall R_i, orall (a_1,\ldots,a_{r_i})\in R_i^{\mathbb{A}}, \ (f(a_1),\ldots,f(a_{r_i}))\in R_i^{\mathbb{B}}$$

- ▶ Relational structure: $\mathbb{A} = (A, R_1^{\mathbb{A}}, \dots, R_k^{\mathbb{A}})$ with $R_i^{\mathbb{A}} \subseteq A^{r_i}$
- A homomorphism $f : \mathbb{A} \to \mathbb{B}$ is a function such that

$$orall R_i, orall (a_1, \ldots, a_{r_i}) \in R_i^{\mathbb{A}}, \ (f(a_1), \ldots, f(a_{r_i})) \in R_i^{\mathbb{B}}$$

Let \mathbbm{A} be a relational structure, in a fixed finite signature $\tau.$

Definition $(CSP(\mathbb{A}))$

Input: a finite τ -structure \mathbb{B} **Question:** \exists homomorphism $h: \mathbb{B} \to \mathbb{A}$?

Input: a finite graph \mathbb{B} **Question:**

Input: a finite graph **B Question:** Is **B** 3-colourable?

Input: a finite graph B Question: Is B 3-colourable? Complexity: NP-complete

Input: a finite graph B Question: Is B 3-colourable? Complexity: NP-complete

Example (CSP($\mathbb{Z}, <$))

Input: a finite directed graph \mathbb{B} **Question:**

Input: a finite graph B Question: Is B 3-colourable? Complexity: NP-complete

Example (CSP($\mathbb{Z}, <$))

Input: a finite directed graph \mathbb{B} **Question:** Is \mathbb{B} acyclic?

Example $(\overline{\text{CSP}(K_3)})$

Input: a finite graph B Question: Is B 3-colourable? Complexity: NP-complete

Example (CSP($\mathbb{Z}, <$))

Input: a finite directed graph B Question: Is B acyclic? Complexity: linear time

Example (CSP($\mathbb{Z}, +, \times$))

Input: a hypergraph with vertices V and hyperedges $E_+(x, y, z)$ and $E_{\times}(x, y, z)$ **Question:**

Example (CSP($\mathbb{Z}, +, \times$))

Input: a hypergraph with vertices V and hyperedges $E_+(x, y, z)$ and $E_{\times}(x, y, z)$ **Question:** \exists assignment $s: V \to \mathbb{Z}$ such that

$$\begin{cases} s(x) + s(y) = s(z) & (x, y, z) \in E_+ \\ s(x) \times s(y) = s(z) & (x, y, z) \in E_\times \end{cases}$$

Example (CSP($\mathbb{Z}, +, \times$))

Input: a hypergraph with vertices V and hyperedges $E_+(x, y, z)$ and $E_{\times}(x, y, z)$ **Question:** \exists assignment $s: V \to \mathbb{Z}$ such that

$$\begin{cases} s(x) + s(y) = s(z) & (x, y, z) \in E_+\\ s(x) \times s(y) = s(z) & (x, y, z) \in E_\times \end{cases}$$

Complexity: undecidable.

Theorem (Matiyasevich-Davis-Robinson-Putnam)

Every recursively enumerable set $S \subseteq \mathbb{Z}$ is the projection on one variable of the set of solutions of some instance of $CSP(\mathbb{Z}, +, \times)$.

Let \mathbb{A} be a structure with a finite domain. Then $CSP(\mathbb{A})$ is in P or NP-complete.

Let \mathbb{A} be a structure with a finite domain. Then $CSP(\mathbb{A})$ is in P or NP-complete.

 Confirmed in many cases (graphs, smooth digraphs, small[†] structures, conservative structures, ...)

Let \mathbb{A} be a structure with a finite domain. Then $CSP(\mathbb{A})$ is in P or NP-complete.

- Confirmed in many cases (graphs, smooth digraphs, small[†] structures, conservative structures, ...)
- ► Tractability conjecture: if A has a cyclic polymorphism then CSP(A) is in P.

Let \mathbb{A} be a structure with a finite domain. Then $CSP(\mathbb{A})$ is in P or NP-complete.

- Confirmed in many cases (graphs, smooth digraphs, small[†] structures, conservative structures, ...)
- ► Tractability conjecture: if A has a cyclic polymorphism then CSP(A) is in P.
- Transition to infinite domains:
 - ► Find a reasonable class *A* of infinite structures,
 - ► Classify the complexity of CSP(A) for all A ∈ A, assuming the tractability conjecture.

 \mathbb{B} is finitely bounded if there exists a finite family \mathcal{F} of finite structures such that for all finite \mathbb{C} ,

 \mathbb{C} substructure of $\mathbb{B} \Leftrightarrow \forall F \in \mathcal{F}, F$ not a substructure of \mathbb{C}

 \mathbb{B} is finitely bounded if there exists a finite family \mathcal{F} of finite structures such that for all finite \mathbb{C} ,

 \mathbb{C} substructure of $\mathbb{B} \Leftrightarrow \forall F \in \mathcal{F}, F$ not a substructure of \mathbb{C}

So the question " \mathbb{C} substructure of \mathbb{B} ?" is decidable.

 \mathbb{B} is finitely bounded if there exists a finite family \mathcal{F} of finite structures such that for all finite \mathbb{C} ,

 \mathbb{C} substructure of $\mathbb{B} \Leftrightarrow \forall F \in \mathcal{F}, F$ not a substructure of \mathbb{C}

So the question " \mathbb{C} substructure of \mathbb{B} ?" is decidable.

Example

▶ (\mathbb{Q} , <): \mathcal{F} = all 3-element structures that are not linear orders

 \mathbb{B} is finitely bounded if there exists a finite family \mathcal{F} of finite structures such that for all finite \mathbb{C} ,

 \mathbb{C} substructure of $\mathbb{B} \Leftrightarrow \forall F \in \mathcal{F}, F$ not a substructure of \mathbb{C}

So the question " \mathbb{C} substructure of \mathbb{B} ?" is decidable.

Example

- (\mathbb{Q} , <): \mathcal{F} = all 3-element structures that are not linear orders
- Universal triangle-free graph: $\mathcal{F} = \{ \bullet \rightarrow \}$.

 \mathbb{B} is finitely bounded if there exists a finite family \mathcal{F} of finite structures such that for all finite \mathbb{C} ,

 $\mathbb C$ substructure of $\mathbb B \Leftrightarrow \forall F \in \mathcal F, F$ not a substructure of $\mathbb C$

So the question " \mathbb{C} substructure of \mathbb{B} ?" is decidable.

Example

- (\mathbb{Q} , <): \mathcal{F} = all 3-element structures that are not linear orders
- Universal triangle-free graph: $\mathcal{F} = \{ \bullet \rightarrow \}$.

Definition

 ${\mathbb B}$ is homogeneous if every partial isomorphism with finite domain can be extended to an automorphism.

Antoine Mottet

A is a reduct of \mathbb{B} if the relations of A have a fo-definition in \mathbb{B} .

A is a reduct of \mathbb{B} if the relations of A have a fo-definition in \mathbb{B} .

Conjecture (Bodirsky-Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then $CSP(\mathbb{A})$ is in P or NP-complete.

A is a reduct of \mathbb{B} if the relations of A have a fo-definition in \mathbb{B} .

Conjecture (Bodirsky-Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then $CSP(\mathbb{A})$ is in P or NP-complete.

Why "reduct of finitely bounded homogeneous structure":

- ω-categorical structures
- CSP is guaranteed to be in NP
- false if we drop "finitely bounded"

A is a reduct of $\mathbb B$ if the relations of A have a fo-definition in $\mathbb B.$

Conjecture (Bodirsky-Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then $CSP(\mathbb{A})$ is in P or NP-complete.

Why "reduct of finitely bounded homogeneous structure":

- ω-categorical structures
- CSP is guaranteed to be in NP
- false if we drop "finitely bounded"

Question: How to prove it?

A is a reduct of \mathbb{B} if the relations of A have a fo-definition in \mathbb{B} .

Conjecture (Bodirsky-Pinsker)

Let \mathbb{A} be a reduct of a finitely bounded homogeneous structure. Then $CSP(\mathbb{A})$ is in P or NP-complete.

Why "reduct of finitely bounded homogeneous structure":

- ω-categorical structures
- CSP is guaranteed to be in NP
- false if we drop "finitely bounded"

Question: How to prove it, assuming the finite-domain conjecture?

BP conjecture is confirmed for:

- ▶ Reducts of (ℕ,=) (Bodirsky, Kára, '06)
- ▶ Reducts of the Rado graph (Bodirsky, Pinsker, JACM'15)
- Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker, Pongrácz, ICALP'16)
- ▶ Reducts of (ℚ, <) (Bodirsky, Kára, JACM'08)

• . . .

BP conjecture is confirmed for:

- ▶ Reducts of (ℕ,=) (Bodirsky, Kára, '06)
- ▶ Reducts of the Rado graph (Bodirsky, Pinsker, JACM'15)
- Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker, Pongrácz, ICALP'16)
- ▶ Reducts of (ℚ, <) (Bodirsky, Kára, JACM'08)

```
► ...
```

In the first 3 cases, the classification is of the form:

Theorem (xxx)

A has a canonical polymorphism and CSP(A) is in P, or CSP(A) is NP-complete.

BP conjecture is confirmed for:

- ▶ Reducts of (ℕ,=) (Bodirsky, Kára, '06)
- ▶ Reducts of the Rado graph (Bodirsky, Pinsker, JACM'15)
- Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker, Pongrácz, ICALP'16)
- ▶ Reducts of (ℚ, <) (Bodirsky, Kára, JACM'08)

```
► ...
```

In the first 3 cases, the classification is of the form:

Theorem (xxx)

A has a canonical polymorphism and CSP(A) is in P, or CSP(A) is NP-complete.

Not true for $(\mathbb{Q}, <)$.
Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation

Antoine Mottet

Canonical Functions, and Constraint Satisfaction

• $G \leq Sym(X)$, orbit of $\mathbf{a} \in X^m$ is $\{(\alpha \cdot a_1, \ldots, \alpha \cdot a_m) : \alpha \in G\}$

- $G \leq Sym(X)$, orbit of $\mathbf{a} \in X^m$ is $\{(\alpha \cdot a_1, \ldots, \alpha \cdot a_m) : \alpha \in G\}$
- ► G is oligomorphic if for all m ≥ 1, there are finitely many orbits of m-tuples of X under G.

- $G \leq Sym(X)$, orbit of $\mathbf{a} \in X^m$ is $\{(\alpha \cdot a_1, \dots, \alpha \cdot a_m) : \alpha \in G\}$
- ► G is oligomorphic if for all m ≥ 1, there are finitely many orbits of m-tuples of X under G.
- ► A function clone *C* is a subset of U_{n≥1} X^{Xn} closed under composition and containing projections.

- $G \leq Sym(X)$, orbit of $\mathbf{a} \in X^m$ is $\{(\alpha \cdot a_1, \dots, \alpha \cdot a_m) : \alpha \in G\}$
- ► G is oligomorphic if for all m ≥ 1, there are finitely many orbits of m-tuples of X under G.
- ► A function clone *C* is a subset of U_{n≥1}X^{Xn} closed under composition and containing projections.
- ▶ Natural topology: $(f_i) \rightarrow f$ iff for arbitrarily large finite sets $X' \subset X$, there is i_0 such that $f_i|_{X'} = f|_{X'}$ for $j \ge i_0$.

- $G \leq Sym(X)$, orbit of $\mathbf{a} \in X^m$ is $\{(\alpha \cdot a_1, \dots, \alpha \cdot a_m) : \alpha \in G\}$
- ► G is oligomorphic if for all m ≥ 1, there are finitely many orbits of m-tuples of X under G.
- ► A function clone *C* is a subset of U_{n≥1}X^{Xn} closed under composition and containing projections.
- ▶ Natural topology: $(f_i) \rightarrow f$ iff for arbitrarily large finite sets $X' \subset X$, there is i_0 such that $f_j|_{X'} = f|_{X'}$ for $j \ge i_0$.
- φ: C → P is continuous iff for every g ∈ C, there is a finite set X' ⊂ X such that g|_{X'} = h|_{X'} ⇒ φ(g) = φ(h).

•
$$G \leq Sym(X)$$
,

• $f: X^n \to X$

•
$$G \leq Sym(X)$$
,

•
$$f: X^n \to X$$

Definition

f is G-canonical if

$$\forall \alpha_1, \ldots, \alpha_n \in G, f \circ (\alpha_1, \ldots, \alpha_n) \in \overline{G \cdot f}$$

•
$$G \leq Sym(X)$$
,

•
$$f: X^n \to X$$

Definition

f is G-canonical if

$$\forall \alpha_1, \ldots, \alpha_n \in G, f \circ (\alpha_1, \ldots, \alpha_n) \in \overline{G \cdot f}$$

Equivalently: f induces an action on G-orbits of m-tuples, for all $m \ge 1$.

•
$$G \leq Sym(X)$$
,

•
$$f: X^n \to X$$

Definition

f is G-canonical if

$$\forall \alpha_1, \ldots, \alpha_n \in G, f \circ (\alpha_1, \ldots, \alpha_n) \in \overline{G \cdot f}$$

Equivalently: f induces an action on G-orbits of m-tuples, for all $m \ge 1$. If G is oligomorphic then f acts naturally on finite sets.

Theorem (Bodirsky-Pinsker-Tsankov)

Suppose G is nice. For all $f: X^n \to X$, there exists $g \in \overline{GfG}$ which is G-canonical.

•
$$G \leq Sym(X)$$
,

•
$$f: X^n \to X$$

Definition

f is G-canonical if

$$\forall \alpha_1, \ldots, \alpha_n \in G, f \circ (\alpha_1, \ldots, \alpha_n) \in \overline{G \cdot f}$$

Equivalently: f induces an action on G-orbits of m-tuples, for all $m \ge 1$. If G is oligomorphic then f acts naturally on finite sets.

Theorem (Bodirsky-Pinsker-Tsankov)

Suppose G is nice. For all $f: X^n \to X$, there exists $g \in \overline{GfG}$ which is G-canonical.

Remark: G-canonical functions form a clone.

Antoine Mottet

Canonical Functions, and Constraint Satisfaction

• unary functions: canonical \leftrightarrow monotone

• unary functions: canonical \leftrightarrow monotone

orbit \mathcal{O}	$f(\mathcal{O})$	orbit ${\mathcal O}$	$f(\mathcal{O})$	orbit ${\mathcal O}$	$f(\mathcal{O})$
<		<		<	
>		>		>	
=		=		=	

▶ unary functions: canonical ↔ monotone

orbit \mathcal{O}	$f(\mathcal{O})$]	orbit \mathcal{O}	$f(\mathcal{O})$	orbit ${\mathcal O}$	$f(\mathcal{O})$
<	<		<		<	
>	>		>		>	
=	=		=		=	

• unary functions: canonical \leftrightarrow monotone

orbit \mathcal{O}	$f(\mathcal{O})$	orbit ${\cal O}$	$f(\mathcal{O})$	orbit ${\cal O}$	$f(\mathcal{O})$
<	$^{\prime}$	<	>	<	
>	>	>	<	>	
=	=	=	=	=	

• unary functions: canonical \leftrightarrow monotone

orbit \mathcal{O}	$f(\mathcal{O})$	orbit \mathcal{O}	$f(\mathcal{O})$	orbit ${\cal O}$	$f(\mathcal{O})$
<	<	<	>	<	=
>	>	>	<	>	=
=	=	=	=	=	=

▶ unary functions: canonical ↔ monotone

orbit \mathcal{O}	$f(\mathcal{O})$	orbit \mathcal{O}	$f(\mathcal{O})$	orbit ${\mathcal O}$	$f(\mathcal{O})$
<	$^{\prime}$	<	>	<	=
>	>	>	<	>	=
=	=	=	=	=	=

example of binary function: the lexicographic order

• unary functions: canonical \leftrightarrow monotone

orbit \mathcal{O}	$f(\mathcal{O})$	orbit \mathcal{O}	$f(\mathcal{O})$	orbit ${\mathcal O}$	$f(\mathcal{O})$
<	$^{\prime}$	<	>	<	=
>	>	>	<	>	=
=	=	=	=	=	=

example of binary function: the lexicographic order

non-example: the maximum function

Definition (Mash-up)

G-canonical functions g, h, O, O' G-orbits of *m*-tuples. ω is a mash-up of g, h if it is G-canonical and

$$\begin{aligned} \omega(\mathcal{O},\mathcal{O}') &= g(\mathcal{O},\mathcal{O}') \\ \omega(\mathcal{O}',\mathcal{O}) &= h(\mathcal{O}',\mathcal{O}). \end{aligned}$$

Definition (Mash-up)

G-canonical functions g, h, O, O' G-orbits of *m*-tuples. ω is a mash-up of g, h if it is G-canonical and

$$\begin{aligned} \omega(\mathcal{O},\mathcal{O}') &= g(\mathcal{O},\mathcal{O}') \\ \omega(\mathcal{O}',\mathcal{O}) &= h(\mathcal{O}',\mathcal{O}). \end{aligned}$$

ω	 \mathcal{O}	\mathcal{O}'	
:			
\mathcal{O}			
\mathcal{O}'			
:			

Definition (Mash-up)

G-canonical functions g, h, O, O' G-orbits of *m*-tuples. ω is a mash-up of g, h if it is G-canonical and

$$\omega(\mathcal{O}, \mathcal{O}') = g(\mathcal{O}, \mathcal{O}') \omega(\mathcal{O}', \mathcal{O}) = h(\mathcal{O}', \mathcal{O}).$$

ω	 \mathcal{O}	\mathcal{O}'	
: 0 0' :	$h(\mathcal{O}',\mathcal{O})$	$g(\mathcal{O},\mathcal{O}')$	

 \mathscr{C}, \mathscr{D} clones. $\phi: \mathscr{C} \to \mathscr{D}$ is a clone homomorphism if $\phi(pr_i^n) = pr_i^n$ and $\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n)).$

 \mathscr{C}, \mathscr{D} clones. $\phi: \mathscr{C} \to \mathscr{D}$ is a clone homomorphism if $\phi(pr_i^n) = pr_i^n$ and $\phi(f \circ (g_1, \dots, g_n)) = \phi(f) \circ (\phi(g_1), \dots, \phi(g_n)).$

Clone homomorphisms preserve equations:

$$\forall x, y, f(x, f(y, z)) = f(f(x, y), z)$$

 \mathscr{C}, \mathscr{D} clones. $\phi: \mathscr{C} \to \mathscr{D}$ is a clone homomorphism if $\phi(pr_i^n) = pr_i^n$ and $\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n))$.

Clone homomorphisms preserve equations:

$$\forall x, y, f(x, f(y, z)) = f(f(x, y), z)$$

$$\Rightarrow \forall x, y, \phi(f)(x, \phi(f)(y, z)) = \phi(f)(\phi(f)(x, y), z)$$

 \mathscr{C}, \mathscr{D} clones. $\phi: \mathscr{C} \to \mathscr{D}$ is a clone homomorphism if $\phi(pr_i^n) = pr_i^n$ and $\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n)).$

Clone homomorphisms preserve equations:

$$\forall x, y, \ f(x, f(y, z)) = f(f(x, y), z)$$

$$\Rightarrow \forall x, y, \ \phi(f)(x, \phi(f)(y, z)) = \phi(f)(\phi(f)(x, y), z)$$

Definition (Barto, Opršal, Pinsker)

 \mathscr{C},\mathscr{D} clones. $\phi\colon \mathscr{C}\to \mathscr{D}$ is an h1 homomorphism if

$$\phi(f \circ (pr_{j_1}^n, \ldots, pr_{j_k}^n)) = \phi(f) \circ (pr_{j_1}^n, \ldots, pr_{j_k}^n).$$

 \mathscr{C}, \mathscr{D} clones. $\phi: \mathscr{C} \to \mathscr{D}$ is a clone homomorphism if $\phi(pr_i^n) = pr_i^n$ and $\phi(f \circ (g_1, \ldots, g_n)) = \phi(f) \circ (\phi(g_1), \ldots, \phi(g_n))$.

Clone homomorphisms preserve equations:

$$\forall x, y, \ f(x, f(y, z)) = f(f(x, y), z)$$

$$\Rightarrow \forall x, y, \ \phi(f)(x, \phi(f)(y, z)) = \phi(f)(\phi(f)(x, y), z)$$

Definition (Barto, Opršal, Pinsker)

 \mathscr{C},\mathscr{D} clones. $\phi\colon \mathscr{C}\to \mathscr{D}$ is an h1 homomorphism if

$$\phi(f \circ (pr_{j_1}^n, \ldots, pr_{j_k}^n)) = \phi(f) \circ (pr_{j_1}^n, \ldots, pr_{j_k}^n).$$

h1 homomorphisms preserve equations of height 1.

Antoine Mottet

Canonical Functions, and Constraint Satisfaction

C an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous h1 homomorphism $\mathscr{C} \to \mathscr{P}$ that preserves left-composition with unary operations;

- 1. there is a continuous h1 homomorphism $\mathscr{C} \to \mathscr{P}$ that preserves left-composition with unary operations;
- there is a h1 homomorphism C → P that preserves left-composition with unary operations;

- 1. there is a continuous h1 homomorphism $\mathscr{C} \to \mathscr{P}$ that preserves left-composition with unary operations;
- there is a h1 homomorphism C → P that preserves left-composition with unary operations;
- 3. there is a continuous clone homomorphism $\mathscr{C}^{can} \to \mathscr{P}$;

- 1. there is a continuous h1 homomorphism $\mathscr{C} \to \mathscr{P}$ that preserves left-composition with unary operations;
- there is a h1 homomorphism C → P that preserves left-composition with unary operations;
- 3. there is a continuous clone homomorphism $\mathscr{C}^{can} \to \mathscr{P}$;
- 4. there is no pseudo-cyclic operation in \mathscr{C} ;

- 1. there is a continuous h1 homomorphism $\mathscr{C} \to \mathscr{P}$ that preserves left-composition with unary operations;
- there is a h1 homomorphism C → P that preserves left-composition with unary operations;
- 3. there is a continuous clone homomorphism $\mathscr{C}^{can} \to \mathscr{P}$;
- 4. there is no pseudo-cyclic operation in \mathscr{C} ;
- 5. there is no pseudo-cyclic operation in \mathscr{C}^{can} .

C an oligomorphic closed core clone with mash-ups. TFAE:

- 1. there is a continuous h1 homomorphism $\mathscr{C} \to \mathscr{P}$ that preserves left-composition with unary operations;
- there is a h1 homomorphism C → P that preserves left-composition with unary operations;
- 3. there is a continuous clone homomorphism $\mathscr{C}^{can} \to \mathscr{P}$;
- 4. there is no pseudo-cyclic operation in \mathscr{C} ;
- 5. there is no pseudo-cyclic operation in \mathscr{C}^{can} .

f pseudo-cyclic iff there are e_1 , e_2 such that

$$e_1 f(x_1, ..., x_n) = e_2 f(x_2, ..., x_n, x_1)$$

C an oligomorphic closed core clone with mash-ups. TFAE:

- 1. there is a continuous h1 homomorphism $\mathscr{C} \to \mathscr{P}$ that preserves left-composition with unary operations;
- there is a h1 homomorphism C → P that preserves left-composition with unary operations;
- 3. there is a continuous clone homomorphism $\mathscr{C}^{can} \to \mathscr{P}$;
- 4. there is no pseudo-cyclic operation in \mathscr{C} ;
- 5. there is no pseudo-cyclic operation in \mathscr{C}^{can} .

f pseudo-cyclic iff there are e_1, e_2 such that

$$e_1 f(x_1, ..., x_n) = e_2 f(x_2, ..., x_n, x_1)$$

Any of these properties is decidable!

Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation

Antoine Mottet

Canonical Functions, and Constraint Satisfaction

Theorem (Bodirsky-M, LICS'16)

Assume the tractability conjecture, and let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{B} . If \mathbb{A} has a pseudo-cyclic polymorphism that is Aut(\mathbb{B})-canonical, then CSP(\mathbb{A}) is in P.

Theorem (Bodirsky-M, LICS'16)

Assume the tractability conjecture, and let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{B} . If \mathbb{A} has a pseudo-cyclic polymorphism that is Aut(\mathbb{B})-canonical, then CSP(\mathbb{A}) is in P. In fact, any tractability condition from finite-domain CSPs can be lifted to the BP class.
Theorem (Bodirsky-M, LICS'16)

Assume the tractability conjecture, and let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{B} . If \mathbb{A} has a pseudo-cyclic polymorphism that is Aut(\mathbb{B})-canonical, then CSP(\mathbb{A}) is in P.

In fact, any tractability condition from finite-domain CSPs can be lifted to the BP class.

Theorem

Assume the tractability conjecture. If $Pol(\mathbb{A})$ has mash-ups, then:

- ▶ $\mathsf{Pol}(\mathbb{A}) \to \mathscr{P}$, and $\mathsf{CSP}(\mathbb{A})$ is NP-complete, or
- ▶ Pol(A) contains a canonical pseudo-cyclic operation, and CSP(A) is in P.

Theorem (Bodirsky-M, LICS'16)

Assume the tractability conjecture, and let \mathbb{A} be a reduct of a finitely bounded homogeneous structure \mathbb{B} . If \mathbb{A} has a pseudo-cyclic polymorphism that is Aut(\mathbb{B})-canonical, then CSP(\mathbb{A}) is in P.

In fact, any tractability condition from finite-domain CSPs can be lifted to the BP class.

Theorem

Assume the tractability conjecture. If $Pol(\mathbb{A})$ has mash-ups, then:

- ▶ $\mathsf{Pol}(\mathbb{A}) \to \mathscr{P}$, and $\mathsf{CSP}(\mathbb{A})$ is NP-complete, or
- ▶ Pol(A) contains a canonical pseudo-cyclic operation, and CSP(A) is in P.

Consequence: membership in P is decidable!

if $\mathsf{P}{=}\mathsf{N}\mathsf{P}$ or the tractability conjecture is true

Antoine Mottet

Where are canonical functions enough?

Antoine Mottet

- Fix relational signature τ
- MMSNP τ -sentences are of the form

$$\exists M_1 \cdots \exists M_k \forall \overline{x} \bigwedge \neg (\bigwedge \ldots)$$

- Fix relational signature τ
- MMSNP τ -sentences are of the form

$$\exists M_1 \cdots \exists M_k \forall \overline{x} \bigwedge \neg (\bigwedge \ldots)$$

Example (No monochromatic triangle)

$$\exists Red \exists Blue \forall x, y, z \ (\neg(\checkmark) \land \neg(\checkmark))$$

- Fix relational signature τ
- MMSNP τ -sentences are of the form

$$\exists M_1 \cdots \exists M_k \forall \overline{x} \bigwedge \neg (\bigwedge ...)$$

Example (No monochromatic triangle)

$$\exists \mathsf{Red} \; \exists \mathsf{Blue} \; \forall x, y, z \; (\neg(\checkmark) \land \neg(\checkmark))$$

Theorem (Feder-Vardi-Kun)

MMSNP has a P/NP-complete dichotomy iff finite-domain CSPs have a dichotomy.

- Fix relational signature τ
- MMSNP τ -sentences are of the form

$$\exists M_1 \cdots \exists M_k \forall \overline{x} \bigwedge \neg (\bigwedge ...)$$

Example (No monochromatic triangle)

$$\exists \mathsf{Red} \; \exists \mathsf{Blue} \; \forall x, y, z \; (\neg(\checkmark) \land \neg(\checkmark))$$

Theorem (Feder-Vardi-Kun)

MMSNP has a P/NP-complete dichotomy iff finite-domain CSPs have a dichotomy.

Theorem

If all obstructions are monochromatic, then tractability is witnessed by canonical functions.

Antoine Mottet