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What is this about?

I Finding general conditions for tractability of infinite-domain
CSPs, akin to the finite case

I If possible find decidable conditions.

I Proving complete complexity classifications:

Theorem

Assume that the finite-domain tractability conjecture holds. If the
relations of A are definable in a unary language, then CSP(A) is in
P or NP-complete.
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Outline

Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation
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Computation Constraint Satisfaction Problems

I Relational structure: A = (A,RA
1 , . . . ,R

A
k ) with RA

i ⊆ Ari

I A homomorphism f : A→ B is a function such that

∀Ri ,∀(a1, . . . , ari ) ∈ RA
i , (f (a1), . . . , f (ari )) ∈ RB

i

Let A be a relational structure, in a fixed finite signature τ .

Definition (CSP(A))

Input: a finite τ -structure B
Question: ∃ homomorphism h : B→ A?
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Computation Examples

Example (CSP(K3))

Input: a finite graph B
Question:

Is B 3-colourable?
Complexity: NP-complete

Example (CSP(Z, <))

Input: a finite directed graph B
Question: Is B acyclic?
Complexity: linear time
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Computation Examples

Example (CSP(Z,+,×))

Input: a hypergraph with vertices V and hyperedges E+(x , y , z)
and E×(x , y , z)
Question:

∃ assignment s : V → Z such that{
s(x) + s(y) = s(z) (x , y , z) ∈ E+

s(x)× s(y) = s(z) (x , y , z) ∈ E×

Complexity: undecidable.

Theorem (Matiyasevich-Davis-Robinson-Putnam)

Every recursively enumerable set S ⊆ Z is the projection on one
variable of the set of solutions of some instance of CSP(Z,+,×).
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Computation The Finite-Domain Conjecture

Conjecture (Feder-Vardi, ’93)

Let A be a structure with a finite domain. Then CSP(A) is in P or
NP-complete.

I Confirmed in many cases (graphs, smooth digraphs, small†

structures, conservative structures, . . . )

I Tractability conjecture: if A has a cyclic polymorphism then
CSP(A) is in P.

Transition to infinite domains:

I Find a reasonable class A of infinite structures,

I Classify the complexity of CSP(A) for all A ∈ A, assuming
the tractability conjecture.
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Computation Finitely Bounded Homogeneous Structures

Definition

B is finitely bounded if there exists a finite family F of finite
structures such that for all finite C,

C substructure of B⇔ ∀F ∈ F ,F not a substructure of C

So the question “C substructure of B?” is decidable.

Example

I (Q, <): F = all 3-element structures that are not linear orders

I Universal triangle-free graph: F = { }.

Definition

B is homogeneous if every partial isomorphism with finite domain
can be extended to an automorphism.
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Computation The Bodirsky-Pinsker Conjecture

Definition

A is a reduct of B if the relations of A have a fo-definition in B.

Conjecture (Bodirsky-Pinsker)

Let A be a reduct of a finitely bounded homogeneous structure.
Then CSP(A) is in P or NP-complete.

Why “reduct of finitely bounded homogeneous structure”:

I ω-categorical structures

I CSP is guaranteed to be in NP

I false if we drop “finitely bounded”
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Why “reduct of finitely bounded homogeneous structure”:

I ω-categorical structures

I CSP is guaranteed to be in NP
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Computation Existing Classifications

BP conjecture is confirmed for:

I Reducts of (N,=) (Bodirsky, Kára, ’06)

I Reducts of the Rado graph (Bodirsky, Pinsker, JACM’15)

I Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker,
Pongrácz, ICALP’16)

I Reducts of (Q, <) (Bodirsky, Kára, JACM’08)

I . . .

In the first 3 cases, the classification is of the form:

Theorem (xxx)

A has a canonical polymorphism and CSP(A) is in P, or CSP(A) is
NP-complete.

Not true for (Q, <).
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I Reducts of the Rado graph (Bodirsky, Pinsker, JACM’15)

I Reducts of a homogeneous graph (Bodirsky, Martin, Pinsker,
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Symmetry Outline

Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation
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Symmetry Oligomorphic groups, clones

I G ≤ Sym(X ), orbit of a ∈ Xm is {(α · a1, . . . , α · am) : α ∈ G}

I G is oligomorphic if for all m ≥ 1, there are finitely many
orbits of m-tuples of X under G .

I A function clone C is a subset of
⋃

n≥1 X
X n

closed under
composition and containing projections.

I Natural topology: (fi )→ f iff for arbitrarily large finite sets
X ′ ⊂ X , there is i0 such that fj |X ′ = f |X ′ for j ≥ i0.

I φ : C →P is continuous iff for every g ∈ C , there is a finite
set X ′ ⊂ X such that g |X ′ = h|X ′ ⇒ φ(g) = φ(h).
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Symmetry Canonical functions

Fix:

I G ≤ Sym(X ),

I f : X n → X

Definition

f is G-canonical if

∀α1, . . . , αn ∈ G , f ◦ (α1, . . . , αn) ∈ G · f

Equivalently: f induces an action on G -orbits of m-tuples, for all
m ≥ 1. If G is oligomorphic then f acts naturally on finite sets.

Theorem (Bodirsky-Pinsker-Tsankov)

Suppose G is nice. For all f : X n → X, there exists g ∈ GfG which
is G-canonical.

Remark: G -canonical functions form a clone.
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Symmetry Example: (Q, <)

I unary functions: canonical ↔ monotone

orbit O f (O)

<

<

>

>

=

=

orbit O f (O)

<

>

>

<

=

=

orbit O f (O)

<

=

>

=

=

=

I example of binary function: the lexicographic order

= < >

= = < >
< < < <
> > > >

I non-example: the maximum function
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I non-example: the maximum function
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Symmetry Mash-ups

Definition (Mash-up)

G -canonical functions g , h, O,O′ G -orbits of m-tuples.
ω is a mash-up of g , h if it is G -canonical and

ω(O,O′) = g(O,O′)
ω(O′,O) = h(O′,O).

ω . . . O O′ . . .
...
O

g(O,O′)

O′

h(O′,O)

...
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Symmetry Clone homomorphisms - Equations

Definition

C ,D clones. φ : C → D is a clone homomorphism if φ(prni ) = prni
and φ(f ◦ (g1, . . . , gn)) = φ(f ) ◦ (φ(g1), . . . , φ(gn)).

Clone homomorphisms preserve equations:

∀x , y , f (x , f (y , z)) = f (f (x , y), z)

⇒ ∀x , y , φ(f )(x , φ(f )(y , z)) = φ(f )(φ(f )(x , y), z)

Definition (Barto, Opřsal, Pinsker)

C ,D clones. φ : C → D is an h1 homomorphism if

φ(f ◦ (prnj1 , . . . , pr
n
jk

)) = φ(f ) ◦ (prnj1 , . . . , pr
n
jk

).

h1 homomorphisms preserve equations of height 1.
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C ,D clones. φ : C → D is an h1 homomorphism if

φ(f ◦ (prnj1 , . . . , pr
n
jk

)) = φ(f ) ◦ (prnj1 , . . . , pr
n
jk

).

h1 homomorphisms preserve equations of height 1.

Antoine Mottet Canonical Functions, and Constraint Satisfaction 17/22



Symmetry Clone homomorphisms - Equations

Definition

C ,D clones. φ : C → D is a clone homomorphism if φ(prni ) = prni
and φ(f ◦ (g1, . . . , gn)) = φ(f ) ◦ (φ(g1), . . . , φ(gn)).

Clone homomorphisms preserve equations:

∀x , y , f (x , f (y , z)) = f (f (x , y), z)

⇒ ∀x , y , φ(f )(x , φ(f )(y , z)) = φ(f )(φ(f )(x , y), z)

Definition (Barto, Opřsal, Pinsker)
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Symmetry Algebraic Dichotomy

Theorem

C an oligomorphic closed core clone with mash-ups. TFAE:

1. there is a continuous h1 homomorphism C →P that
preserves left-composition with unary operations;

2. there is a h1 homomorphism C →P that preserves
left-composition with unary operations;

3. there is a continuous clone homomorphism C can →P;

4. there is no pseudo-cyclic operation in C ;

5. there is no pseudo-cyclic operation in C can.

f pseudo-cyclic iff there are e1, e2 such that

e1f (x1, . . . , xn) = e2f (x2, . . . , xn, x1)

Any of these properties is decidable!
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Computation Outline

Computation: Constraint Satisfaction

Symmetry: Canonical Functions

Logic Computation
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Computation Finite to Infinite

Theorem (Bodirsky-M, LICS’16)

Assume the tractability conjecture, and let A be a reduct of a
finitely bounded homogeneous structure B. If A has a pseudo-cyclic
polymorphism that is Aut(B)-canonical, then CSP(A) is in P.

In fact, any tractability condition from finite-domain CSPs can be
lifted to the BP class.

Theorem

Assume the tractability conjecture. If Pol(A) has mash-ups, then:

I Pol(A)→P, and CSP(A) is NP-complete, or

I Pol(A) contains a canonical pseudo-cyclic operation, and
CSP(A) is in P.

Consequence: membership in P is decidable!
if P=NP or the tractability conjecture is true
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Computation Where are canonical functions enough?

Reducts of fin. bounded. homogeneous

MMSNP

reducts
(Q, <)

definable structures
over (N, =)

reducts unary structures

reducts (N, 0, 1, . . . )

finite-domain CSPs

reducts of (N, =)

reducts of homogeneous graphs

reducts homog. graphs
+ constants
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Computation MMSNP

I Fix relational signature τ

I MMSNP τ -sentences are of the form

∃M1 · · · ∃Mk∀x
∧
¬(

∧
...)

Example (No monochromatic triangle)

∃Red ∃Blue ∀x , y , z (¬( ) ∧ ¬( ))

Theorem (Feder-Vardi-Kun)

MMSNP has a P/NP-complete dichotomy iff finite-domain CSPs
have a dichotomy.

Theorem

If all obstructions are monochromatic, then tractability is witnessed
by canonical functions.
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