Topic: Constraint Satisfaction Problem (CSP) over a fixed finite template
- a class of computational problems

In this context
- A problem is hard ⇔ it lacks symmetry
 - lacks symmetry ⇒ can simulate many problems ⇒ hard
 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases
- The most popular symmetries (eg. automorphisms) are useless

In general
- Goes beyond this particular class
- How far? **Still a big hole in the market**
Topic: CSP over a fixed finite template

In this context

- A problem is hard \iff it lacks symmetry
 - lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard
 - 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 - 1 (?) algorithm scheme for all easy cases
- The most popular symmetries (eg. automorphisms) are useless

In general

- Goes beyond this particular class
- How far? **Still a big hole in the market**
CSP over fixed finite template

Fix $\mathbb{A} = (A; R_1, R_2, \ldots, R_n)$: finite relational structure
each $R_i \subset A^k$ or $R_i : A^k \rightarrow \{\text{true, false}\}$

Definition

Instance of CSP(\mathbb{A}): primitive positive sentence, eg.
$(\exists x)(\exists y)(\exists z)(\exists t) \ R_1(x, y, z) \land R_2(t, z) \land R_1(y, y, z)$
where each R_i is in \mathbb{A}.
Question: Is it true?

- **Other variants**: infinite A; nothing is fixed; something else is fixed; different connectives
- **Other questions**
 - Count the number of solutions
 - Optimize the number of satisfied constraints
 - Approximately optimize the number of satisfied constraints
Examples and a conjecture

- 2-SAT: $\mathbb{A} = (\{0, 1\}; x \lor y, x \lor \neg y, \neg x \lor \neg y)$
- 3-SAT: $\mathbb{A} = (\{0, 1\}; x \lor y \lor z, x \lor y \lor \neg z, \ldots)$
- HORN-3-SAT: $\mathbb{A} = (\{0, 1\}; x = 0, x = 1, x \land y \rightarrow z)$
- Directed st–connectivity: $\mathbb{A} = (\{0, 1\}; x = 0, x = 1, x \leq y)$
- Undirected st–connectivity: $\mathbb{A} = (\{0, 1\}; x = 0, x = 1, x = y)$
- 3-COLOR: $\mathbb{A} = (\{0, 1, 2\}; x \neq y)$
- p-3-LIN: $\mathbb{A} = (GF(p); x + y + z = 0, x + 2y + 3z = 10, \ldots)$

Conjecture (The dichotomy conjecture [Feder and Vardi’93])

For every \mathbb{A}, $\text{CSP}(\mathbb{A})$ is either in P or NP-complete.
Selected results

- **The dichotomy conjecture is true:**
 - if $|A| = 2$ [Schaefer’78]
 - if $\mathbb{A} = (A; R)$, R is binary and symmetric [Hell and Nešetřil’90]
 - if $|A| = 3$ [Bulatov’06]
 - if \mathbb{A} contains all unary relations [Bulatov’03 ’16] [Barto’11]
 - if $\mathbb{A} = (A; R)$ where R is binary, without sources or sinks [Barto, Kozik, Niven’09]
 - in general? [Zhuk?]

- **Applicability of known algorithmic principles understood:**
 - Describing all solutions [Idziak, Markovic, McKenzie, Valeriote, Willard’07]
 - Local consistency (constraint propagation) [Barto, Kozik’09], [Bulatov]
 - All known tractable cases solvable by a combination of these two

- **Work on finer complexity classification**
Topic: CSP over a fixed finite template

In this context
- A problem is hard \iff it lacks symmetry
 - lacks symmetry \implies can simulate many problems \implies hard
 - 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 - 1 (?) algorithm scheme for all easy cases
- The most popular symmetries (eg. automorphisms) are useless

In general
- Goes beyond this particular class
- How far? **Still a big hole in the market**
Example of simulation (gadget reduction, pp-definition)

- **A** = \((A; R)\), where \(R\) is ternary
- **B** = \((A; S, T)\), where \(S\) is binary and \(T\) is unary
 - \(S(x, y)\) iff \((\exists z) R(x, y, z) \land R(y, y, x)\)
 - \(T(x)\) iff \(R(x, x, x)\)

- Each instance of \(\text{CSP}(B)\), eg.

\[(\exists x)(\exists y)(\exists z) T(z) \land S(x, y)\]

- can be rewritten to an equivalent instance of \(\text{CSP}(A)\)

\[(\exists x)(\exists y)(\exists z)(\exists z') R(z, z, z) \land R(x, y, z') \land R(y, y, x)\]

- Thus \(\text{CSP}(B)\) is easier than \(\text{CSP}(B)\)
1 reason for hardness

- **Fact:** If
 - A pp-defines B
 - definition like in the previous slide
 - or more generally, A pp-interprets B
 - powers allowed ↔ variables encoded by tuples of variables
 - or more generally, A pp-constructs B
 - homomorphic equivalence allowed

 then CSP(B) is easier than CSP(A)

- **Corollary:** If A pp-constructs some structure with NP-hard CSP (like 3–SAT), then CSP(A) is NP-hard

- **Remark:** A pp-constructs 3–SAT ⇒ A pp-constructs every finite structure

- **Tractability conjecture:** If A does not pp-construct 3–SAT then CSP(A) is in P

 [Feder, Vardi’93] [Bulatov, Jeavons, Krokhin’00] [Bodirsky] [Willard]
Digression: Group theory vs. Universal algebra
Group theory, Semigroup theory

- **group**: algebraic structure \(G = (G; \cdot, -1, 1) \) satisfying \ldots
- **permutation group**: when \(G \) happens to be a set of bijections, \(\cdot \) is composition, \ldots

- **monoid**: algebraic structure \(M = (M; \cdot, 1) \) satisfying \ldots
- **transformation monoid**: \ldots

Universal algebra

- **algebra**: any algebraic structure \(Z = (Z; \text{some operations}) \)

Rants

- Model theorist: models of purely algebraic signature, why do you avoid relations?
- Algebraist: groups are complicated enough, nothing interesting can be said about general algebras
- All: have you ever seen a 37-ary operation? You shouldn’t study such a nonsense
Alternative viewpoint

<table>
<thead>
<tr>
<th>unary invert. symmetries</th>
<th>concrete</th>
<th>abstract</th>
</tr>
</thead>
<tbody>
<tr>
<td>unary symmetries</td>
<td>permutation group</td>
<td>group</td>
</tr>
<tr>
<td>higher arity symmetries</td>
<td>transformation monoid</td>
<td>monoid</td>
</tr>
<tr>
<td></td>
<td>function clone</td>
<td>abstract clone</td>
</tr>
</tbody>
</table>

- **permutation group**: Subset of \(\{ f : A \to A \} \) closed under composition and \(\text{id}_A \) and inverses. . .

 can be given by a generating unary algebra

- **group**: Forget concrete mappings, remember composition

- **function clone**: Subset of \(\{ f : A^n \to A : n \in \mathbb{N} \} \) closed under composition and projections

 can be given by a generating algebra

- **abstract clone**: Forget concrete mappings, remember composition

 aka variety, finitary monad over SET, Lawvere theory
End of digression
Topic: CSP over a fixed finite template

In this context

- A problem is hard ⇔ it lacks symmetry
 - lacks symmetry ⇒ can simulate many problems ⇒ hard
 - 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 - 1 (?) algorithm scheme for all easy cases
- The most popular symmetries (e.g., automorphisms) are useless

In general

- Goes beyond this particular class
- How far? Still a big hole in the market
Polymorphisms

Objects capturing symmetry of $\text{CSP}(\mathbb{A})$

- $\text{Aut}(\mathbb{A}) = \{ f : \mathbb{A} \to \mathbb{A} \text{ automorphism} \}$ automorphism group
- $\text{End}(\mathbb{A}) = \{ f : \mathbb{A} \to \mathbb{A} \text{ homomorph.} \}$ endomorphism monoid
- $\text{Pol}(\mathbb{A}) = \{ f : \mathbb{A}^n \to \mathbb{A} \text{ homomorphism} \}$ polymorphism clone

Trivial clone \mathcal{T} – contains only projections

- aka 0,1,2

- Example: $\text{Pol}(3\text{-SAT})$
In this context

- A problem is hard ⇔ it lacks symmetry
 - lacks symmetry ⇒ can simulate many problems ⇒ hard
 - 1 reason for hardness
- symmetry can be exploited in algorithms (directly/indirectly)
 - 1 (?) algorithm scheme for all easy cases
- The most popular symmetries (eg. automorphisms) are useless

In general

- Goes beyond this particular class
- How far? Still a big hole in the market
Expressive power and polymorphisms

Theorem ([Birkhoff'35] [Geiger'68] [Bodnarčuk et al.'69] [Bodirsky] [Willard] [Barto, Opršal, Pinsker])

- **A pp-defines B** iff $\text{Pol}(A) \subseteq \text{Pol}(B)$
- **A pp-interprets B** iff $\text{Pol}(A) \rightarrow \text{Pol}(B)$ (homo)
- **A pp-constructs B** iff $\text{Pol}(A) \rightarrowrightarrow \text{Pol}(B)$ (h1 homo)

Example: 3–SAT pp-interprets every structure

Remarks

- Proofs constructive \Rightarrow generic reductions
- $f : \text{Pol}(A) \rightarrow \text{Pol}(B)$ is a homo iff it preserves equations
 (eg. associative operation \mapsto associative operation)
- $f : \text{Pol}(A) \rightarrowrightarrow \text{Pol}(B)$ is a h1 homo iff it preserves equations
 of height 1 (eg. commutative op. \mapsto commutative op.)
Tractability conjecture again

Tractability conjecture

\[\text{If } \not\exists \, \text{Pol}(\mathbb{A}) \rightarrow T, \text{ then } \text{CSP}(\mathbb{A}) \text{ in } P. \]

Recall: Otherwise \(\text{CSP}(\mathbb{A}) \) is NP-complete.

Theorem

TFAE

- A does not pp-construct all finite ie. \(\not\exists \) homo Pol(\(\mathbb{A} \) \(\rightarrow \) P ie. polymorphisms satisfy nontrivial equations
- Pol(\(\mathbb{A} \)) contains an operation \(s \) of arity 4 such that
 \[s(a, r, e, a) = s(r, a, r, e) \]
 \[[\text{Siggers'10}, [\text{Kearnes, Marković, McKenzie'14}] \]
- Pol(\(\mathbb{A} \)) contains an operation \(c \) of arity \(> 1 \) such that
 \[c(a_1, a_2, \ldots, a_n) = c(a_2, \ldots, a_n, a_1) \]
 \[[\text{Barto, Kozik'12}] \]

3rd and 4th items: concrete and positive alternatives
Tractability conjecture vs. reality

Conjecture

\[TFAE \ (if \ P \neq NP) \]

- CSP(\(A\)) is in P
- \(A\) has a polymorphism \(s\) such that \(s(a, r, e, a) = s(r, a, r, e)\)

Even if the conjecture is wrong, we know that CSP(\(A\)) depends only on height 1 equations
Topic: CSP over a fixed finite template

In this context

- A problem is hard ⇔ it lacks symmetry
 - lacks symmetry ⇒ can simulate many problems ⇒ hard
 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases
- The most popular symmetries (eg. automorphisms) are useless

In general

- Goes beyond this particular class
- How far? Still a big hole in the market
Endomorphism monoids are useless

- $\forall A \exists B$ such that
 - A pp-constructs B pp-constructs A (ie. the same complexity)
 - $\text{Aut}(B) = \text{End}(B) = \{\text{id}_B\}$

- $\forall A, B$ there is $\text{End}(A) \rightarrow \text{End}(B)$
In this context

- A problem is hard ⇔ it lacks symmetry
 - lacks symmetry ⇒ can simulate many problems ⇒ hard
 - 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 - 1 (?) algorithm scheme for all easy cases
- The most popular symmetries (eg. automorphisms) are useless

In general

- Goes beyond this particular class
- How far? Still a big hole in the market
How universal algebra helps in CSP
 ▶ tools
 ▶ identifying intermediate cases

How polymorphisms are used
 ▶ Direct: A way to combine solutions to get another solution
 ▶ Indirect: Proving correctness

Two algorithmic ideas:
 ▶ Describe all solutions (direct)
 ▶ Refute unsolvable instances by enforcing consistency (indirect)
Describing all solutions

- Consider an instance of $\text{CSP}(\mathbb{A})$ with n variables
- The set of solutions is $S \subseteq A^n$ invariant under $\text{Pol}(\mathbb{A})$
- Can happen $|S| = |A|^n \Rightarrow$ cannot list all solutions
- **Idea:** find a generating set of S, needs to be small
- Example: $\text{CSP}(\mathbb{A}) = p\text{-LIN}$
 - $\text{Pol}(\mathbb{A}) =$ affine combinations
 - S is affine subspace of $GF(p)^n$
 - S has generating set of size $\leq (n + 1)$
 - eg. A^2 generated by $(0, 0), (0, 1), (1, 0)$
- $\text{UA} \Rightarrow$ obvious more general polymorphisms to look at
 Malcev [Bulatov’02], [Bulatov, Dalmau’06]
- $\text{UA} \Rightarrow$ another class where small generating sets exist
 Near unanimity [Baker, Pixley’75]
- $\text{UA} \Rightarrow$ class covering these two
Theorem (Berman, Idziak, Markovic, McKenzie, Valeriote, Willard’10)

TFAE

- All invariant n-ary relations have small generating sets (\leq polynomial in n)
- The number of n-ary invariant relations is small (\leq exponential in n)

In this case, $\text{CSP}(A)$ is in P. Moreover, a generating set of all solutions can be found in P–time.
Local consistency

Roughly: \(\Delta \) has **bounded width** iff \(\text{CSP}(\Delta) \) can be solved by checking local consistency

More precisely:

- Fix \(k \leq l \) (integers)
- \((k, l)\)-algorithm: Derive the strongest constraints on \(k \) variables which can be deduced by “considering” \(l \) variables at a time.
- If a contradiction is found, answer “no” otherwise answer “yes”
- “no” answers are always correct
- if “yes” answers are correct for every instance of \(\text{CSP}(\Delta) \) we say that \(\Delta \) has **width** \((k, l)\).
- if \(\Delta \) has width \((k, l)\) for some \(k, l \) then \(\Delta \) has **bounded width**

Various equivalent formulations (bounded tree width duality, definability in Datalog, least fix point logic)
Local consistency 2

- A has a semilattice polymorphism \Rightarrow CSP(A) has width 1 [Feder, Vardi'93]
- A has a near unanimity polymorphism of arity $(n + 1)$ \Rightarrow CSP(A) has width n [Feder, Vardi'93]
- p-LIN does not have bounded width [Feder, Vardi'93]
- Conjecture: A has bounded width iff A does not pp-construct p–LIN [Larose, Zádori'07]
- UA suggests what to do next
 - 2-semilattices [Bulatov'06]
 - CD(3) [Kiss, Valeriote'07]
 - CD(4) [Carvalho, Dalmau, Marković, Maróti'09]
 - CD [Barto, Kozik'09]
Theorem

TFAE

1. \mathcal{A} does not pp-construct p-LIN
2. \mathcal{A} has bounded width [Barto, Kozik’09]
3. \mathcal{A} has width $(2, 3)$ [Barto’16] [Bulatov]
4. $\text{CSP}(\mathcal{A})$ is decided by singleton arc consistency [Kozik]
5. the canonical semidefinite programming relaxation correctly decides $\text{CSP}(\mathcal{A})$ [Barto, Kozik’16]
Topic: CSP over a fixed finite template

In this context

- A problem is hard ⇔ it lacks symmetry
 - lacks symmetry ⇒ can simulate many problems ⇒ hard
 1 reason for hardness
- symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases

- The most popular symmetries (eg. automorphisms) are useless

In general

- Goes beyond this particular class
- How far? Still a big hole in the market
Optimisation
- Complexity captured by weighted polymorphisms
 [Cohen, Cooper, Creed, Jeavons, Živný’13]
- Even for valued CSP
- Tractability conjecture \Rightarrow dichotomy for optimisation
 [Kolmogorov, Krokhin, Rolínek’15]

Exact counting $\#$ solutions
- Complexity captured by polymorphisms
 [Bulatov, Dalmau’03] [Bulatov, Grohe’05]
- Dichotomy [Bulatov’08] [Dyer, Richerby’10]

Robust satisfiability – almost solutions on almost satisfiable instances
- Complexity captured by polymorphisms [Dalmau, Krokhin’11]
- Dichotomy: in P if doesn’t pp-construct p-LIN, otherwise NP-c
 [Hastad’01] [Barto, Kozik’12]
Infinite domains

- All decision problems up to P–time reductions [Bodirsky, Grohe’08]
- Restrict to ω-categorical (aka oligomorphic)
 - Complexity captured by polymorphisms [Bodirsky, Nešetřil’06]
 - Actually abstract polymorphism clone + topology [Bodirsky, Pinsker’15]
 - Still “almost” covers all decision problems [Bodirsky, Grohe’08]
- Restrict even more
 - back to NP
 - P/NP-c dichotomy conjecture
 [Bodirsky, Pinsker’11], [Barto, Pinsker’16] [Barto, Opršíal, Pinsker]
 [Olšák]
Topic: CSP over a fixed finite template

In this context
- A problem is hard ⇔ it lacks symmetry
 - lacks symmetry ⇒ can simulate many problems ⇒ hard
 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases
- The most popular symmetries (eg. automorphisms) are useless

In general
- Goes beyond this particular class
- How far? Still a big hole in the market
How far?

Optimistic: everywhere

Realistic – ish

- Approximation
 - Complexity captured by approximate polymorphisms if UGC [Raghavendra’08]
 - Challenge: hardness part
- Hybrid CSPs (edge CSP, planar CSP, . . .)
 - eg. Perfect matching problem in graphs
 - What is the right notion of symmetry?
- Approximate hybrid, approximate counting, hybrid counting
 - eg. Holant problems
 - What is the right notion of symmetry?
- Infinite domain CSP
 - Explore the theory for larger classes (eg. to include linear programming)
 - Criterion for undecidability?
Big hole in the market

Do you see gadgets? Find symmetry!
Topic: CSP over a fixed finite template

In this context

- A problem is hard \iff it lacks symmetry
 - lacks symmetry \Rightarrow can simulate many problems \Rightarrow hard
 1 reason for hardness
 - symmetry can be exploited in algorithms (directly/indirectly)
 1 (?) algorithm scheme for all easy cases

- The most popular symmetries (e.g. automorphisms) are useless

In general

- Goes beyond this particular class
- How far? **Still a big hole in the market**

Thank you!