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Overview

Algebraic language theory:
Automata/languages vs. algebraic structures

Categorical perspective:

Id
η−→ T

µ←− T 2

Automata via algebras and coalgebras.

Languages via initial algebras and final
coalgebras.

Algebra via Lawvere theories and monads.

Our goal: Categorical Algebraic Language Theory!
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Eilenberg’s Variety Theorem (1976)

(
varieties of
languages

)
∼=

(
pseudovarieties of

monoids

)

Variety of languages

For each alphabet Σ a set
VΣ ⊆ Reg(Σ) closed under

∪, ∩, (−){

derivatives
x−1Ly−1 = {w : xwy ∈ L}
preimages of free monoid
morphisms f : ∆∗ → Σ∗, i.e.

L ∈ VΣ ⇒ f −1[L] ∈ V∆

Pseudovariety of monoids

A class of finite monoids closed
under quotients, submonoids and
finite products.
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Other Eilenberg-Type Theorems

qq --

Weaker closure properties:

Only ∪, ∩
Pin 1995

Only ∪
Polák 2001

Only ⊕
Reutenauer 1980

Fewer monoid morphisms
Straubing 2002

Fixed alphabet, no preimages
Gehrke, Grigorieff, Pin 2008

Other types of languages:

Weighted languages
Reutenauer 1980

Infinite words
Wilke 1991, Pin 1998

Ordered words
Bedon et. al. 1998, 2005

Ranked trees
Almeida 1990, Steinby 1992

Binary trees
Salehi, Steinby 2008

Cost functions
Daviaud, Kuperberg, Pin 2016

-- qq

This talk

A General Variety Theorem that covers them all!
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Big Picture

General Variety Theorem
=

Monads + Duality

Use monads to model the type of
languages and the algebras
recognizing them.

Bojańczyk, DLT 2015

Use duality to relate varieties of
languages to pseudovarieties of
finite algebras.

Gehrke, Grigorieff, Pin, ICALP 2008

Adámek, Milius, Myers, Urbat,

FoSSaCS 2014, LICS 2015
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Languages

Fix a monad T on a locally finite variety D (with finitely many sorts).

Definition

Language = morphism L : TΣ→ O in D
Σ: free finite object of D (“alphabet”)
O: finite object of D (“object of outputs”)

Languages of finite words: free monoid monad

TΣ = Σ∗ on Set and O = {0, 1}.

Languages of finite and infinite words: free ω-semigroup monad

T(Σ, ∅) = (Σ+,Σω) on Set2 and O = ({0, 1}, {0, 1}).

Weighted languages (D = vector spaces), tree languages (D = Set3),
cost functions (D = posets), . . .
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Algebraic recognition

Definition

A language L : TΣ→ O is recognizable if it factors through some finite
quotient algebra of the free T-algebra TΣ = (TΣ, µΣ).

TΣ
L //

∃e
����

O

A
∃p

==

Languages of finite words: free monoid monad

TΣ = Σ∗ on Set and O = {0, 1}.

Recognizable languages = regular languages of finite words
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Big Picture

General Variety Theorem
=

Monads + Duality

Use monads to model the type of
languages and the algebras
recognizing them.

Use duality to relate varieties of
languages to pseudovarieties of
finite algebras.
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Profinite Words

Consider Stone duality between boolean algebras and Stone spaces:

BAop ' // Stone Pro(Setf )

Stone space of profinite words:

Σ̂∗ = inverse limit of all finite quotient monoids e : Σ∗ � M.

Dual boolean algebra (Pippenger 1997):

Reg(Σ) = regular languages over Σ.

This generalizes from TΣ = Σ∗ to arbitrary monads T!
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General Duality

Monad T on D as before. Additionally, let C be a locally finite variety with:

Cop ' // D̂ Pro(Df )

C D D̂
boolean algebras sets Stone spaces
distributive lattices posets Priestley spaces
vector spaces vector spaces Stone vector spaces

T̂Σ ∈ D̂: inverse limit of all finite quotient T-algebras TΣ� A.
T̂ : D̂ → D̂ is the profinite monad of T

Now O := (dual of 1), with 1 the free one-generated object in C.

Rec(Σ) ∼= D̂(T̂Σ,O) ∼= C(1, (dual of T̂Σ)) ∼=
∣∣∣dual of T̂Σ

∣∣∣
Thus Rec(Σ) can be viewed as an object of C!
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Eilenberg’s Variety Theorem (1976)

(
varieties of
languages

)
∼=
(

pseudovarieties of
monoids

)
Variety of languages

For each alphabet Σ a set
VΣ ⊆ Reg(Σ) closed under

∪, ∩, (−){

derivatives
x−1Ly−1 = {w : xwy ∈ L}
preimages of free monoid
morphisms f : ∆∗ → Σ∗, i.e.

L ∈ VΣ ⇒ f −1[L] ∈ V∆

Pseudovariety of monoids

A class of finite monoids closed
under quotients, submonoids and
finite products.
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General Variety Theorem (2016)

(
varieties of
languages

)
∼=
(

pseudovarieties of
T-algebras

)
Variety of languages

For each alphabet Σ a set
VΣ ⊆ Reg(Σ) closed under

∪, ∩, (−){

derivatives
x−1Ly−1 = {w : xwy ∈ L}
preimages of free monoid
morphisms f : ∆∗ → Σ∗, i.e.

L ∈ VΣ ⇒ f −1[L] ∈ V∆

Pseudovariety of T-algebras
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under quotients, subalgebras and
finite products.
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General Variety Theorem (2016)
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varieties of
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)
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For each alphabet Σ a subobject
VΣ ⊆ Rec(Σ) in C closed under
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varieties of
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)
∼=
(

pseudovarieties of
T-algebras

)
Variety of languages

For each alphabet Σ a subobject
VΣ ⊆ Rec(Σ) in C closed under

derivatives (?)
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Derivatives: Monoid Case

Consider the unary operations Σ∗
x(−)y−−−−→ Σ∗ (x , y ∈ Σ∗).

For a language Σ∗
L−→ {0, 1},

x−1Ly−1 = ( Σ∗
x(−)y

//Σ∗
L //{0, 1} ).

For any surjective map e : Σ∗ � A,

e carries a quotient monoid of Σ∗ ⇐⇒ all Σ∗
x(−)y−−−−→ Σ∗ lift along e.

Σ∗

e
����

x(−)y
// Σ∗

e
����

A
∃

// A
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Derivatives: General Case

Definition

Unary presentation U = {TΣ
u−→ TΣ }: for any quotient e : TΣ� A,

e carries a quotient T-algebra of TΣ ⇐⇒ all u ∈ U lift along e.

TΣ

e
����

u // TΣ

e
����

A
∃
// A

Definition

For a language TΣ
L−→ O and TΣ

u−→ TΣ in U, we have the derivative

u−1L := ( TΣ
u //TΣ

L //O ).
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General Variety Theorem

(
varieties of
languages

)
∼=
(

pseudovarieties of
T-algebras

)
Variety of languages

For each alphabet Σ a subobject
VΣ ⊆ Rec(Σ) in C closed under

derivatives
x−1Ly−1 = {w : xwy ∈ L}
preimages of free T-algebra
morphisms f : T∆→ TΣ, i.e.

(TΣ
L−→ O) ∈ VΣ

⇒(T∆
f−→ TΣ

L−→ O) ∈ V∆

Pseudovariety of T-algebras

A class of finite T-algebras closed
under quotients, subalgebras and
finite products.
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General Variety Theorem

(
varieties of
languages

)
∼=
(

pseudovarieties of
T-algebras

)
Variety of languages

For each alphabet Σ a subobject
VΣ ⊆ Rec(Σ) in C closed under
derivatives and T-preimages.

Pseudovariety of T-algebras

A class of finite T-algebras closed
under quotients, subalgebras and
finite products.

How to prove the theorem?

Dualize!
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Applications

Cop ∼= D̂

��

T

��

U

��

· · ·

��

General Variety Theorem(
varieties of
languages

)
∼=
(

pseudovarieties of
T-algebras

)

qq --

More than a dozen variety
theorems known in the literature.
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Some results covered by the General Variety Theorem

Languages of finite words:

∪, ∩, (−){

Eilenberg 1976

Only ∪, ∩
Pin 1995

Only ∪
Polák 2001

Only ⊕
Reutenauer 1980

Fewer monoid morphisms
Straubing 2002

Fixed alphabet, no preimages
Gehrke, Grigorieff, Pin 2008

Other types of languages:

Weighted languages
Reutenauer 1980

Infinite words
Wilke 1991, Pin 1998

Ordered words
Bedon et. al. 1998, 2005

Ranked trees
Almeida 1990, Steinby 1992

Binary trees
Salehi, Steinby 2008

Cost functions
Daviaud, Kuperberg, Pin 2016
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General Variety Theorem(
varieties of
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T-algebras

)

qq --

More than a dozen variety
theorems known in the literature.

New results, e.g. extending work
of Gehrke, Grigorieff, Pin (2008)
from finite words to infinite words,
trees, cost functions, . . . .
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Conclusions and Further Work

Eilenberg = Monads + Duality

Categorical approach to algebraic language theory using monads
joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015

A General Eilenberg Theorem with many applications

Isolates the algebraic part of the proof of Eilenberg-type correspondences
Nontrivial work lies in finding the right monad and unary presentation

Further work:

General Reiterman Theorem: pseudovarieties vs. profinite equations
Chen, Adámek, Milius, Urbat, FoSSaCS 2016

Non-regular languages ?

Ballester-Bolinches, Cosme-Llopez, Rutten 2015, Behle, Krebs, Reifferscheid 2011

Nominal Stone duality and data languages??
Gabbay, Litak, Petrişan 2009

Monadic second order logic for a monad?
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Chen, Adámek, Milius, Urbat, FoSSaCS 2016

Non-regular languages ?

Ballester-Bolinches, Cosme-Llopez, Rutten 2015, Behle, Krebs, Reifferscheid 2011

Nominal Stone duality and data languages??
Gabbay, Litak, Petrişan 2009
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