One Eilenberg Theorem to Rule Them All?

Stefan Milius

joint work with Jiří Adámek, Liang-Ting Chen, Henning Urbat

November 8, 2016

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Overview

Algebraic language theory:

Automata/languages vs. algebraic structures

∃ →

• • • • • • • • • • • •

- 2

Overview

Algebraic language theory:

Automata/languages vs. algebraic structures

Categorical perspective:

 $\operatorname{Id} \xrightarrow{\eta} T \xleftarrow{\mu} T^2$

- Automata via algebras and coalgebras.
- Languages via initial algebras and final coalgebras.
- Algebra via Lawvere theories and monads.

Overview

Algebraic language theory:

Automata/languages vs. algebraic structures

Categorical perspective:

- Automata via algebras and coalgebras.
- Languages via initial algebras and final coalgebras.
- Algebra via Lawvere theories and monads.

Our goal: Categorical Algebraic Language Theory!

 $\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \quad \cong \quad \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{monoids} \end{array}\right)$

イロト 不得下 イヨト イヨト

 $\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array} \right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{monoids} \end{array} \right)$

Pseudovariety of monoids

A class of finite monoids closed under quotients, submonoids and finite products.

 $\left(egin{array}{c} {
m pseudovarieties of} \ {
m guages} \end{array}
ight) \hspace{0.2cm} \cong \hspace{0.2cm} \left(egin{array}{c} {
m pseudovarieties of} \ {
m monoids} \end{array}
ight)$

Variety of languages

For each alphabet Σ a set $V_{\Sigma} \subseteq \mathbf{Reg}(\Sigma)$ closed under

- ∪, ∩, (−)^C
- derivatives $x^{-1}Ly^{-1} = \{w : xwy \in L\}$
- preimages of free monoid morphisms $f : \Delta^* \to \Sigma^*$, i.e.

$$L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$$

Pseudovariety of monoids

A class of finite monoids closed under quotients, submonoids and finite products.

Image: A match a ma

- Only ∪, ∩ Pin 1995
- Only ∪ Polák 2001
- Only ⊕ Reutenauer 1980
- Fewer monoid morphisms Straubing 2002
- Fixed alphabet, no preimages Gehrke, Grigorieff, Pin 2008

Weaker closure properties:

- Only ∪, ∩ Pin 1995
- Only ∪ Polák 2001
- Only
 Reutenauer 1980
- Fewer monoid morphisms
 Straubing 2002
- Fixed alphabet, no preimages Gehrke, Grigorieff, Pin 2008

Other types of languages:

- Weighted languages Reutenauer 1980
- Infinite words
 Wilke 1991, Pin 1998
- Ordered words
 Bedon et. al. 1998, 2005
- Ranked trees Almeida 1990, Steinby 1992
- Binary trees
 Salehi, Steinby 2008
- Cost functions
 Daviaud, Kuperberg, Pin 2016

Weaker closure properties:

- Only ∪, ∩ Pin 1995
- Only ∪ Polák 2001
- Only \oplus Reutenauer 1980
- Fewer monoid morphisms
 Straubing 2002
- Fixed alphabet, no preimages Gehrke, Grigorieff, Pin 2008

Other types of languages:

- Weighted languages Reutenauer 1980
- Infinite words
 Wilke 1991, Pin 1998
- Ordered words
 Bedon et. al. 1998, 2005
- Ranked trees
 Almeida 1990, Steinby 1992
- Binary trees
 Salehi, Steinby 2008
- Cost functions
 Daviaud, Kuperberg, Pin 2016

This talk

A General Variety Theorem that covers them all!

General Variety Theorem = Monads + Duality

3

イロト イポト イヨト イヨト

General Variety Theorem = Monads + Duality

Use **monads** to model the type of languages and the algebras recognizing them.

Bojańczyk, DLT 2015

3. 3

A (10) F (10)

General Variety Theorem

Monads + Duality

Use **monads** to model the type of languages and the algebras recognizing them.

Bojańczyk, DLT 2015

Use **duality** to relate varieties of languages to pseudovarieties of finite algebras.

Gehrke, Grigorieff, Pin, ICALP 2008

Adámek, Milius, Myers, Urbat, FoSSaCS 2014, LICS 2015

< 回 ト < 三 ト < 三 ト

General Variety Theorem

Monads + Duality

Use **monads** to model the type of languages and the algebras recognizing them.

Use **duality** to relate varieties of languages to pseudovarieties of finite algebras.

Fix a monad **T** on a locally finite variety \mathcal{D} (with finitely many sorts).

- 2

イロト イポト イヨト イヨト

Fix a monad **T** on a locally finite variety \mathcal{D} (with finitely many sorts).

Definition

Language = morphism $L: T\Sigma \rightarrow O$ in \mathcal{D}

- Σ : free finite object of \mathcal{D} ("alphabet")
- *O*: finite object of \mathcal{D} ("object of outputs")

A D A D A D A

Fix a monad **T** on a locally finite variety \mathcal{D} (with finitely many sorts).

Definition

Language = morphism $L: T\Sigma \rightarrow O$ in \mathcal{D}

- Σ : free finite object of \mathcal{D} ("alphabet")
- *O*: finite object of \mathcal{D} ("object of outputs")

• Languages of finite words: free monoid monad

$$\mathbf{T}\Sigma = \Sigma^*$$
 on **Set** and $O = \{0, 1\}$.

くほと くほと くほと

Fix a monad **T** on a locally finite variety \mathcal{D} (with finitely many sorts).

Definition

Language = morphism $L: T\Sigma \rightarrow O$ in \mathcal{D}

- Σ : free finite object of \mathcal{D} ("alphabet")
- *O*: finite object of \mathcal{D} ("object of outputs")

• Languages of finite words: free monoid monad

$$\mathbf{T}\Sigma = \Sigma^*$$
 on **Set** and $O = \{0, 1\}$.

• Languages of finite and infinite words: free ω -semigroup monad

$$\mathsf{T}(\Sigma, \emptyset) = (\Sigma^+, \Sigma^\omega) \text{ on } \mathbf{Set}^2 \quad \text{and} \quad O = (\{0,1\}, \{0,1\}).$$

周 ト イ ヨ ト イ ヨ ト

Fix a monad **T** on a locally finite variety \mathcal{D} (with finitely many sorts).

Definition

Language = morphism $L: T\Sigma \rightarrow O$ in \mathcal{D}

- Σ : free finite object of \mathcal{D} ("alphabet")
- *O*: finite object of \mathcal{D} ("object of outputs")
 - Languages of finite words: free monoid monad

$$\mathbf{T}\Sigma = \Sigma^*$$
 on **Set** and $O = \{0, 1\}$.

• Languages of finite and infinite words: free ω -semigroup monad

$$\mathbf{T}(\Sigma, \emptyset) = (\Sigma^+, \Sigma^\omega) \text{ on } \mathbf{Set}^2 \quad \text{and} \quad O = (\{0, 1\}, \{0, 1\}).$$

Weighted languages (D = vector spaces), tree languages (D = Set³), cost functions (D = posets), ...

Algebraic recognition

Definition

A language $L : T\Sigma \to O$ is **recognizable** if it factors through some finite quotient algebra of the free **T**-algebra $\mathbf{T}\Sigma = (T\Sigma, \mu_{\Sigma})$.

• Languages of finite words: free monoid monad

$$\mathbf{T}\Sigma = \Sigma^*$$
 on **Set** and $O = \{0, 1\}$.

Recognizable languages = regular languages of finite words

イロト 不得下 イヨト イヨト

Algebraic recognition

Definition

A language $L : T\Sigma \to O$ is **recognizable** if it factors through some finite quotient algebra of the free **T**-algebra $\mathbf{T}\Sigma = (T\Sigma, \mu_{\Sigma})$.

$$\begin{array}{ccc}
T\sum & \stackrel{L}{\longrightarrow} & O \\
\stackrel{\exists e}{} & \stackrel{i}{\swarrow} & \stackrel{\checkmark}{\swarrow} & \stackrel{\checkmark}{\exists p} \\
A & & & & \\
\end{array}$$

• Languages of finite and infinite words: free ω -semigroup monad

$$\mathbf{T}(\Sigma, \emptyset) = (\Sigma^+, \Sigma^\omega) \text{ on } \mathbf{Set}^2 \quad \text{and} \quad O = (\{0, 1\}, \{0, 1\}).$$

Recognizable languages = regular ∞ -languages

General Variety Theorem

Monads + Duality

Use **monads** to model the type of languages and the algebras recognizing them.

Use **duality** to relate varieties of languages to pseudovarieties of finite algebras.

• Consider Stone duality between boolean algebras and Stone spaces:

$$\mathsf{BA}^{op} \xrightarrow{\simeq} \mathsf{Stone} = \mathsf{Pro}(\mathsf{Set}_f)$$

• • • • • • • • • • • •

• Consider Stone duality between boolean algebras and Stone spaces:

$$\mathsf{BA}^{op} \xrightarrow{\simeq} \mathsf{Stone} = \mathsf{Pro}(\mathsf{Set}_f)$$

• Stone space of profinite words:

 $\widehat{\Sigma^*} =$ inverse limit of all finite quotient monoids $e: \Sigma^* \twoheadrightarrow M$.

• Consider Stone duality between boolean algebras and Stone spaces:

$$\mathsf{BA}^{op} \xrightarrow{\simeq} \mathsf{Stone} = \mathsf{Pro}(\mathsf{Set}_f)$$

• Stone space of profinite words:

 $\widehat{\Sigma^*} = \text{inverse limit of all finite quotient monoids } e : \Sigma^* \twoheadrightarrow M.$

• Dual boolean algebra (Pippenger 1997):

 $\operatorname{Reg}(\Sigma) = \operatorname{regular} \operatorname{languages} \operatorname{over} \Sigma.$

• Consider Stone duality between boolean algebras and Stone spaces:

$$\mathsf{BA}^{op} \xrightarrow{\simeq} \mathsf{Stone} = \mathsf{Pro}(\mathsf{Set}_f)$$

• Stone space of profinite words:

 $\widehat{\Sigma^*} = \text{inverse limit of all finite quotient monoids } e : \Sigma^* \twoheadrightarrow M.$

• Dual boolean algebra (Pippenger 1997):

 $\operatorname{Reg}(\Sigma) = \operatorname{regular} \operatorname{languages} \operatorname{over} \Sigma.$

• This generalizes from $\mathbf{T}\Sigma = \Sigma^*$ to arbitrary monads \mathbf{T} !

Monad **T** on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

Monad **T** on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	$\widehat{\mathcal{D}}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

Monad **T** on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	\mathcal{D}	$\widehat{\mathcal{D}}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

• $\hat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\hat{T} : \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**

Monad **T** on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	\mathcal{D}	$\widehat{\mathcal{D}}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

• $\widehat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\widehat{T} : \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**

• Now O := (dual of 1), with 1 the free one-generated object in C.

Monad **T** on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	$\widehat{\mathcal{D}}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

• $\hat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient T-algebras $T\Sigma \twoheadrightarrow A$. $\hat{\mathcal{T}}: \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of T

• Now O := (dual of 1), with 1 the free one-generated object in C. $\text{Rec}(\Sigma) \cong \widehat{D}(\widehat{T}\Sigma, O)$

Monad **T** on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	$\widehat{\mathcal{D}}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

- $\hat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\hat{\mathcal{T}} : \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**
- Now $O := (\text{dual of } \mathbf{1})$, with $\mathbf{1}$ the free one-generated object in C. $\operatorname{Rec}(\Sigma) \cong \widehat{D}(\widehat{T}\Sigma, O) \cong C(\mathbf{1}, (\text{dual of } \widehat{T}\Sigma)) \cong$

Monad **T** on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	$\widehat{\mathcal{D}}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

- $\widehat{T}\Sigma \in \widehat{\mathcal{D}}$: inverse limit of all finite quotient **T**-algebras **T** $\Sigma \twoheadrightarrow A$. $\widehat{T} : \widehat{\mathcal{D}} \to \widehat{\mathcal{D}}$ is the *profinite monad* of **T**
- Now $O := (\text{dual of } \mathbf{1})$, with $\mathbf{1}$ the free one-generated object in C. $\operatorname{Rec}(\Sigma) \cong \widehat{D}(\widehat{T}\Sigma, O) \cong C(\mathbf{1}, (\text{dual of } \widehat{T}\Sigma)) \cong | \text{dual of } \widehat{T}\Sigma |$

12 / 28

Monad **T** on \mathcal{D} as before. Additionally, let \mathcal{C} be a locally finite variety with:

$$\mathcal{C}^{op} \xrightarrow{\simeq} \widehat{\mathcal{D}} = \operatorname{Pro}(\mathcal{D}_f)$$

\mathcal{C}	${\cal D}$	$\widehat{\mathcal{D}}$
boolean algebras	sets	Stone spaces
distributive lattices	posets	Priestley spaces
vector spaces	vector spaces	Stone vector spaces

- *Î*Σ ∈ *D*: inverse limit of all finite quotient T-algebras TΣ → A. *Î* : *D* → *D* is the profinite monad of T
- Now $O := (\text{dual of } \mathbf{1})$, with $\mathbf{1}$ the free one-generated object in C. $\operatorname{Rec}(\Sigma) \cong \widehat{D}(\widehat{T}\Sigma, O) \cong C(\mathbf{1}, (\text{dual of } \widehat{T}\Sigma)) \cong | \text{dual of } \widehat{T}\Sigma |$
- Thus $\mathbf{Rec}(\Sigma)$ can be viewed as an object of \mathcal{C} !

$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong$	$\stackrel{\scriptstyle{\scriptstyle{\scriptstyle{\scriptstyle{i}}}}}{=} \left(\begin{array}{c} \mathbf{pseudovarieties} \ \mathbf{of} \\ \mathbf{monoids} \end{array}\right)$
Variety of languages	Pseudovariety of monoids
For each alphabet Σ a set $V_{\Sigma} \subseteq \mathbf{Reg}(\Sigma)$ closed under • \cup , \cap , $(-)^{\complement}$	A class of finite monoids closed under quotients, submonoids and finite products.
 derivatives x⁻¹Ly⁻¹ = {w : xwy ∈ L} preimages of free monoid 	
morphisms $f : \Delta^* \to \Sigma^*$, i.e. $L \in V_{\Sigma} \implies f^{-1}[L] \in V_{\Delta}$	

___ ▶

$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$		
Variety of languages	Pseudovariety of T -algebras	
For each alphabet Σ a set $V_{\Sigma} \subseteq \mathbf{Reg}(\Sigma)$ closed under • \cup , \cap , $(-)^{\complement}$ • derivatives $x^{-1}(x^{-1} - \{w : xwx \in I\})$	A class of finite T -algebras closed under quotients, subalgebras and finite products.	
• preimages of free monoid morphisms $f : \Delta^* \to \Sigma^*$, i.e. $L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$		

___ ▶

$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$		
Variety of languages	Pseudovariety of T -algebras	
For each alphabet Σ a set $V_{\Sigma} \subseteq \operatorname{Reg}(\Sigma)$ closed under • \cup , \cap , $(-)^{\complement}$ • derivatives	A class of finite T -algebras closed under quotients, subalgebras and finite products.	
$x^{-1}Ly^{-1} = \{w : xwy \in L\}$		
• preimages of free monoid morphisms $f: \Delta^* \to \Sigma^*$, i.e.		
$L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$		

< 67 ▶

$$\left(egin{array}{c} {\sf varieties of} \\ {\sf languages} \end{array}
ight) \cong \left(egin{array}{c} {\sf pseudovarieties of} \\ {\sf T}{\sf -algebras} \end{array}
ight)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under

- derivatives $x^{-1}Ly^{-1} = \{w : xwy \in L\}$
- preimages of free monoid morphisms f : Δ* → Σ*, i.e.

 $L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$

Pseudovariety of **T**-algebras

$$\left(egin{array}{c} {\sf varieties of} \\ {\sf languages} \end{array}
ight) \cong \left(egin{array}{c} {\sf pseudovarieties of} \\ {\sf T}{\sf -algebras} \end{array}
ight)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in C closed under

- derivatives $x^{-1}Ly^{-1} = \{w : xwy \in L\}$
- preimages of free monoid morphisms $f: \Delta^* \to \Sigma^*$, i.e.

 $L \in V_{\Sigma} \Rightarrow f^{-1}[L] \in V_{\Delta}$

Pseudovariety of **T**-algebras

$$\left(egin{array}{c} {\sf varieties of} \\ {\sf languages} \end{array}
ight) \cong \left(egin{array}{c} {\sf pseudovarieties of} \\ {\sf T}\mbox{-algebras} \end{array}
ight)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in C closed under

- derivatives $x^{-1}Ly^{-1} = \{w : xwy \in L\}$
- preimages of free **T**-algebra morphisms $f : \mathbf{T}\Delta \to \mathbf{T}\Sigma$, i.e. $(T\Sigma \xrightarrow{L} O) \in V_{\Sigma}$ $\Rightarrow (T\Delta \xrightarrow{f} T\Sigma \xrightarrow{L} O) \in V_{\Delta}$

Pseudovariety of **T**-algebras

$$\left(egin{array}{c} {\sf varieties of} \\ {\sf languages} \end{array}
ight) \cong \left(egin{array}{c} {\sf pseudovarieties of} \\ {\sf T}\mbox{-algebras} \end{array}
ight)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in C closed under

- derivatives (?) $x^{-1}Ly^{-1} = \{w : xwy \in L\}$
- preimages of free **T**-algebra morphisms $f : \mathbf{T}\Delta \to \mathbf{T}\Sigma$, i.e. $(T\Sigma \xrightarrow{L} O) \in V_{\Sigma}$ $\Rightarrow (T\Delta \xrightarrow{f} T\Sigma \xrightarrow{L} O) \in V_{\Delta}$

Pseudovariety of **T**-algebras

Derivatives: Monoid Case

• Consider the unary operations $\Sigma^* \xrightarrow{x(-)y} \Sigma^* \quad (x, y \in \Sigma^*).$

Derivatives: Monoid Case

Consider the unary operations
 For a language Σ^{*} ^L→ {0,1},

$$\Sigma^* \xrightarrow{x(-)y} \Sigma^* \quad (x, y \in \Sigma^*).$$

$$x^{-1}Ly^{-1} = \left(\Sigma^* \xrightarrow{x(-)y} \Sigma^* \xrightarrow{L} \{0,1\} \right).$$

Image: A matrix

Derivatives: Monoid Case

- Consider the unary operations $\Sigma^* \xrightarrow{x(-)y} \Sigma^* \quad (x, y \in \Sigma^*).$
- For a language $\Sigma^* \xrightarrow{L} \{0,1\}$,

$$x^{-1}Ly^{-1} = \left(\Sigma^* \xrightarrow{x(-)y} \Sigma^* \xrightarrow{L} \{0,1\} \right).$$

• For any surjective map $e: \Sigma^* \twoheadrightarrow A$,

e carries a quotient monoid of $\Sigma^* \iff \text{all } \Sigma^* \xrightarrow{x(-)y} \Sigma^*$ lift along e.

$$\begin{array}{c} \Sigma^* \xrightarrow{x(-)y} \Sigma^* \\
e \downarrow & \downarrow e \\
A - - - - - - A
\end{array}$$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

Derivatives: General Case

Definition

Unary presentation $\mathbb{U} = \{ T\Sigma \xrightarrow{u} T\Sigma \}$: for any quotient $e : T\Sigma \rightarrow A$,

e carries a quotient **T**-algebra of **T** $\Sigma \iff$ all $u \in \mathbb{U}$ lift along *e*.

$$\begin{array}{ccc} T\Sigma & \stackrel{u}{\longrightarrow} & T\Sigma \\ e \\ \downarrow & & \downarrow \\ A - - - - & A \\ \exists \end{array}$$

くほと くほと くほと

- 31

Derivatives: General Case

Definition

Unary presentation $\mathbb{U} = \{ T\Sigma \xrightarrow{u} T\Sigma \}$: for any quotient $e : T\Sigma \rightarrow A$,

e carries a quotient **T**-algebra of **T** $\Sigma \iff$ all $u \in \mathbb{U}$ lift along *e*.

Definition

For a language $T\Sigma \xrightarrow{L} O$ and $T\Sigma \xrightarrow{u} T\Sigma$ in \mathbb{U} , we have the **derivative**

$$u^{-1}L := (T\Sigma \xrightarrow{u} T\Sigma \xrightarrow{L} O).$$

$$\left(egin{array}{c} {\sf varieties of} \\ {\sf languages} \end{array}
ight) \cong \left(egin{array}{c} {\sf pseudovarieties of} \\ {\sf T}{\sf -algebras} \end{array}
ight)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in C closed under

derivatives

$$x^{-1}Ly^{-1} = \{w : xwy \in L\}$$

• preimages of free **T**-algebra
morphisms
$$f : \mathbf{T}\Delta \to \mathbf{T}\Sigma$$
, i.e.
 $(T\Sigma \xrightarrow{L} O) \in V_{\Sigma}$
 $\Rightarrow (T\Delta \xrightarrow{f} T\Sigma \xrightarrow{L} O) \in V_{\Delta}$

Pseudovariety of **T**-algebras

$$\left(egin{array}{c} {\sf varieties of} \\ {\sf languages} \end{array}
ight) \cong \left(egin{array}{c} {\sf pseudovarieties of} \\ {\sf T}{\sf -algebras} \end{array}
ight)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in C closed under

- derivatives: for all $u \in \mathbb{U}$, $L \in V_{\Sigma} \Rightarrow u^{-1}L \in V_{\Sigma}$.
- preimages of free **T**-algebra morphisms $f : \mathbf{T}\Delta \to \mathbf{T}\Sigma$, i.e. $(T\Sigma \xrightarrow{L} O) \in V_{\Sigma}$ $\Rightarrow (T\Delta \xrightarrow{f} T\Sigma \xrightarrow{L} O) \in V_{\Delta}$

Pseudovariety of **T**-algebras

$$\left(egin{array}{c} {\sf varieties of} \\ {\sf languages} \end{array}
ight) \cong \left(egin{array}{c} {\sf pseudovarieties of} \\ {\sf T}\mbox{-algebras} \end{array}
ight)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under derivatives and **T**-preimages.

Pseudovariety of **T**-algebras

$$\left(\begin{array}{c} \text{varieties of} \\ \text{languages} \end{array}\right) \cong \left(\begin{array}{c} \text{pseudovarieties of} \\ \text{T-algebras} \end{array}\right)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in C closed under derivatives and **T**-preimages.

Pseudovariety of **T**-algebras

A class of finite **T**-algebras closed under quotients, subalgebras and finite products.

How to prove the theorem?

$$\left(egin{array}{c} {\sf varieties of} \\ {\sf languages} \end{array}
ight) \cong \left(egin{array}{c} {\sf pseudovarieties of} \\ {\sf T}\mbox{-algebras} \end{array}
ight)$$

Variety of languages

For each alphabet Σ a subobject $V_{\Sigma} \subseteq \mathbf{Rec}(\Sigma)$ in \mathcal{C} closed under derivatives and **T**-preimages.

Pseudovariety of **T**-algebras

A class of finite **T**-algebras closed under quotients, subalgebras and finite products.

How to prove the theorem?

Dualize!

Applications

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Applications

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Some results covered by the General Variety Theorem

Languages of finite words:

- ∪, ∩, (−)^C Eilenberg 1976
- Only ∪, ∩ Pin 1995
- Only ∪ Polák 2001
- Only ⊕ Reutenauer 1980
- Fewer monoid morphisms Straubing 2002
- Fixed alphabet, no preimages Gehrke, Grigorieff, Pin 2008

Other types of languages:

- Weighted languages Reutenauer 1980
- Infinite words
 Wilke 1991, Pin 1998
- Ordered words Bedon et. al. 1998, 2005
- Ranked trees
 Almeida 1990, Steinby 1992
- Binary trees
 Salehi, Steinby 2008
- Cost functions
 Daviaud, Kuperberg, Pin 2016

イロト 不得下 イヨト イヨト

Applications

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Applications

イロト イポト イヨト イヨト 二日

27 / 28

Eilenberg = **Monads** + **Duality**

(日) (同) (三) (三)

Eilenberg = **Monads** + **Duality**

• Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015

Eilenberg = **Monads** + **Duality**

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences Nontrivial work lies in finding the right monad and unary presentation

Eilenberg = Monads + Duality

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences Nontrivial work lies in finding the right monad and unary presentation

Further work:

• General Reiterman Theorem: pseudovarieties vs. profinite equations Chen, Adámek, Milius, Urbat, FoSSaCS 2016

Eilenberg = Monads + Duality

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences Nontrivial work lies in finding the right monad and unary presentation

Further work:

- General Reiterman Theorem: pseudovarieties vs. profinite equations Chen, Adámek, Milius, Urbat, FoSSaCS 2016
- Non-regular languages ?

Ballester-Bolinches, Cosme-Llopez, Rutten 2015, Behle, Krebs, Reifferscheid 2011

Eilenberg = Monads + Duality

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences Nontrivial work lies in finding the right monad and unary presentation

Further work:

- General Reiterman Theorem: pseudovarieties vs. profinite equations Chen, Adámek, Milius, Urbat, FoSSaCS 2016
- Non-regular languages ?
 Ballester-Bolinches, Cosme-Llopez, Rutten 2015, Behle, Krebs, Reifferscheid 2011
- Nominal Stone duality and data languages??
 Gabbay, Litak, Petrişan 2009

Eilenberg = Monads + Duality

- Categorical approach to algebraic language theory using monads joining Bojańczyk, DLT 2015 and Adámek, M, Myers, Urbat, FoSSaCS 2014/LICS 2015
- A General Eilenberg Theorem with many applications
- Isolates the algebraic part of the proof of Eilenberg-type correspondences Nontrivial work lies in finding the right monad and unary presentation

Further work:

- General Reiterman Theorem: pseudovarieties vs. profinite equations Chen, Adámek, Milius, Urbat, FoSSaCS 2016
- Non-regular languages ?
 Ballester-Bolinches, Cosme-Llopez, Rutten 2015, Behle, Krebs, Reifferscheid 2011
- Nominal Stone duality and data languages??
 Gabbay, Litak, Petrişan 2009
- Monadic second order logic for a monad?

E Sac

イロト 不得下 イヨト イヨト