Lower Bounds for Subgraph Isomorphism and Consequences in First-Order Logic

Benjamin Rossman
University of Toronto
Outline

• The Subgraph Isomorphism Problem
• AC^0 and First-Order Logic
• Upper and Lower Bounds for $\text{SUB}(G)$:

 AC^0 circuit size \approx FO variable width \approx tree-width(G)

 AC^0 formula size \approx FO quantifier rank \approx tree-depth(G)

• “Poly-rank” Homomorphism Preservation Theorem
Subgraph Isomorphism Problem
• **k-CLIQUE**

Given a graph X, does it contain a k-clique (complete subgraph of size k)?
• **k-CLIQUE**

Given a graph X, does it contain a k-clique (complete subgraph of size k)?
• **k-CLIQUE**
 Given a graph X, does it contain a k-clique (complete subgraph of size k)?

• **Time complexity of k-CLIQUE**
 • “Brute-force” upper bound: $O(n^k)$
 • Best known upper bound: $O(n^{0.79k})$
 • Conjectured lower bound: $n^{\Omega(k)}$ (⇒ $P \neq NP$)
• **k-STCONN** ("Distance-k Connectivity")
 Given a directed graph \(X \) with distinguished vertices \(s \) and \(t \), does \(X \) contain a \(st \)-path of length \(k \)?
• **k-STCONN** (“Distance-k Connectivity”)
 Given a directed graph X with distinguished vertices s and t, does X contain a st-path of length k?
• **k-STCONN** ("Distance-k Connectivity")
 Given a directed graph X with distinguished vertices s and t, does X contain a st-path of length k?

• **Space complexity of k-STCONN**
 • Best known upper bound: $O(\log k \cdot \log n)$
 • Conjectured lower bound: $\Omega(\log k \cdot \log n)$ ($\implies L \neq NL$)
• $\text{SUB}_{\text{uncolored}}(G)$

Given a graph X, does it contain a subgraph isomorphic to G?
• **SUB(G)**

Given a graph X and a coloring $\pi : V(X) \rightarrow V(G)$, does X contain a subgraph G' such that $G' \equiv G$ and $\pi(G') = G$?
• SUB(G)
 Given a graph X and a coloring \(\pi : V(X) \rightarrow V(G) \), does X contain a subgraph \(G' \) such that \(G' \cong G \) and \(\pi(G') = G \)?

• Special cases:
 \[
 \text{SUB}(K_k) = k\text{-CLIQUE} \\
 \text{SUB}(P_k) = k\text{-STCONN}
 \]
Reductions

- $\text{SUB}_{\text{uncolored}}(G) \leq \text{SUB}(G)$
 (by the “color-coding technique” of Alon, Yuster, Zwick)
Reducions

- \(\text{SUB}_{\text{uncolored}}(G) \leq \text{SUB}(G) \)
 (by the “color-coding technique” of Alon, Yuster, Zwick)

- \(\text{SUB}_{\text{uncolored}}(G) = \text{SUB}(G) \) when \(G \) is a core
 (i.e. every homomorphism \(G \to G \) is one-to-one)
Reductions

• \(\text{SUB}_{\text{uncolored}}(G) \leq \text{SUB}(G) \)
 (by the “color-coding technique” of Alon, Yuster, Zwick)

• \(\text{SUB}_{\text{uncolored}}(G) = \text{SUB}(G) \) when \(G \) is a core
 (i.e. every homomorphism \(G \to G \) is one-to-one)

• \(\text{SUB}(F) \leq \text{SUB}(G) \) when \(F \) is a minor of \(G \)

Credit: Wikipedia (NikelsonH)
Summary

• SUB(G) are an important and well-structured family of problems.

• (As we will see,) complexity of SUB(G) tied to natural structural parameters of G.

• Determining the complexity of SUB(G) w.r.t. to different computational resources (time, space, ...) would separate various classes (P ≠ NP, L ≠ NL, ...)
Summary

• SUB(G) are an important and well-structured family of problems.

• (As we will see,) complexity of SUB(G) depends on natural structural parameters.

• Determining the complexity of SUB(G) w.r.t. to different computational resources (time, space, ...) would separate various classes (P \neq NP, L \neq NL, ...)

We will focus on circuit size and formula size.
Boolean Circuits and Formulas
Boolean Circuits
P vs. NP

Boolean circuit size =* Turing machine time
 (* up to a polynomial factor, ignoring uniformity)

\(P = \{ \text{problems solvable by polynomial-size circuits} \} \)

\(NP = \{ \text{problems whose solutions are verifiable by polynomial-size circuits} \} \)
P vs. NP

• Holy Grail (P ≠ NP)
 Show that any NP problem (e.g. MAXIMUM CLIQUE) requires super-polynomial circuit size
P vs. NP

• **Holy Grail (P ≠ NP)**
 Show that any NP problem (e.g. MAXIMUM CLIQUE) requires **super-polynomial** circuit size

• **The “parameterized” approach**
 It suffices to show that k-CLIQUE requires circuits of size \(n^{\Omega(k)} \) for any \(k(n) \rightarrow \infty \)
P vs. NP

- **Holy Grail (P ≠ NP)**
 Show that any NP problem (e.g. MAXIMUM CLIQUE) requires *super-polynomial* circuit size

- **The “parameterized” approach**
 It suffices to show that k-CLIQUE requires circuits of size $n^{\Omega(k)}$ for any $k(n) \rightarrow \infty$

- **Circuit lower bounds are hard!**
 Best circuit lower bound for a function in NP:

P vs. NP

- Holy Grail (P ≠ NP)
 - Show that any NP problem (e.g., MAXIMUM CLIQUE)
 requires super-polynomial circuit size

- The "parameterized" approach
 - It suffices to show that k-CLIQUE requires circuits of size $n^{\Omega(k)}$ for any $k(n) \rightarrow \infty$

- Circuit lower bounds are hard!
 - Best circuit lower bound for a function in NP:

To prove super-linear lower bounds, need to focus on weaker models of computation (restricted classes of circuits)
Boolean Formulas

- **Formulas** = tree-like circuits
- “Memoryless”: each sub-computation is used once
Boolean Formulas

• Another Holy Grail ($\text{NC}^1 \neq \text{P}$)
 Show that any problem in \text{P} (e.g. STCONN) requires super-polynomial formula size
Boolean Formulas

- **Another Holy Grail** ($\text{NC}^1 \neq \text{P}$)
 Show that any problem in P (e.g. STCONN) requires **super-polynomial** formula size

- **The “parameterized” approach**
 It suffices to show that k-STCONN has formula complexity $n^{\Omega(\log k)}$ for any $k(n) \rightarrow \infty$
Boolean Formulas

• Another Holy Grail ($NC^1 \neq P$)
 Show that any problem in P (e.g. STCONN) requires \textbf{super-polynomial} formula size

• The “parameterized” approach
 It suffices to show that k-STCONN has formula complexity $n^{\Omega(\log k)}$ for any $k(n) \rightarrow \infty$

• \textit{Formula lower bounds are hard!}
 Best formula-size lower bound for a function in P:

 $n^{1.5}$ (1961), n^2 (1966), $n^{2.5}$ (1987), n^3 (1998)
Boolean Formulas

- Another Holy Grail (NC \(1 \neq P\))

Show that any problem in P (e.g. STCONN) requires super-polynomial formula size.

- The "parameterized" approach

It suffices to show that k-STCONN has formula complexity \(\Omega(\log k)\) for any \(k(n) \to \infty\).

- Formula lower bounds are hard!

To prove super-polynomial lower bounds, again must focus on restricted classes.

- Formula lower bounds are hard!

Best formula-size lower bound for a function in P:

\[n^{1.5} \text{ (1961)}, \quad n^2 \text{ (1966)}, \quad n^{2.5} \text{ (1987)}, \quad n^3 \text{ (1998)} \]
AC⁰ Circuit and Formulas

• We restrict attention to circuits and formulas of constant depth (a.k.a. AC⁰ circuits and formulas)
AC^0 & First-Order Logic
Hierarchies Within FO

• **Variable-width** (max # of free vars in a subformula)
 \[FO^1 \subseteq FO^2 \subseteq FO^3 \subseteq \ldots \]

• **Quantifier-rank** (nesting depth of quantifiers)
 \[FO_1 \subseteq FO_2 \subseteq FO_3 \subseteq \ldots \]
• **Theorem**

The **model-checking problem** for a FO sentence φ

Given a structure A with universe $\{1, \ldots, n\}$, is A a model φ?

is solvable by:

- AC^0 circuits of size $O(n^{\text{variable-width}(\varphi)})$
Theorem

The **model-checking problem** for a FO sentence φ

Given a structure A with universe $\{1, \ldots, n\}$, is A a model φ?

is solvable by:

- AC^0 circuits of size $O(n^{\text{variable-width}(\varphi)})$

 but only $\text{quantifier-rank}(\varphi)$ layers of fan-in n gates
• **Theorem**

The **model-checking problem** for a FO sentence φ

> Given a structure A with universe $\{1,\ldots,n\}$, is A a model φ?

is solvable by:

- AC^0 circuits of size $O(n^{\text{variable-width}(\varphi)})$
 - but only $\text{quantifier-rank}(\varphi)$ layers of fan-in n gates

 (formula size \leq depth \times fan-in)
• **Theorem**

The **model-checking problem** for a FO sentence φ

Given a structure A with universe $\{1,\ldots,n\}$, is A a model φ?

is solvable by:

- AC^0 circuits of size $O(n^{\text{variable-width}(\varphi)})$

- AC^0 formulas of size $O(n^{\text{quantifier-rank}(\varphi)})$
Hierarchies Within FO

- Variable-width
 \[\text{FO}^1 \subseteq \text{FO}^2 \subseteq \text{FO}^3 \subseteq \ldots \]

- Quantifier-rank
 \[\text{FO}_1 \subseteq \text{FO}_2 \subseteq \text{FO}_3 \subseteq \ldots \]

- Background relations
 \[\text{FO} \subseteq \text{FO}[<] \subseteq \text{FO}[\text{BIT}] \subseteq \text{FO}[\text{Arb}] \]
Hierarchies Within FO

- Variable-width
 \[\text{FO}^1 \subseteq \text{FO}^2 \subseteq \text{FO}^3 \subseteq \ldots \]

- Background relations
 \[\text{FO} \subseteq \text{FO}[<] \subseteq \text{FO}[\text{BIT}] \subseteq \text{FO}[\text{Arb}] \]

[Barrington-Immerman-Straubing 1990]

uniform-\(\text{AC}^0\)

\(\text{AC}^0\)
Implications

lower bounds for AC^0 circuit size

lower bounds for $\text{FO}[\text{Arb}]$ variable-width

lower bounds for AC^0 formula size

lower bounds for $\text{FO}[\text{Arb}]$ quantifier-rank
Complexity of SUB(G): Upper Bounds
Upper Bounds

• **Theorem (folklore)**

 $\text{SUB}(G)$ is definable in:

 o $\text{FO}[\text{tree-width}(G) + 1 \text{ variables }]$

 o $\text{FO}[\text{tree-depth}(G) \text{ quantifier rank }]$
Upper Bounds

• Theorem (folklore)
 SUB(G) is definable in:

 o FO[tree-width(G) + 1 variables]
 o FO[tree-depth(G) quantifier rank]

moreover, existential & positive
Upper Bounds

• Theorem (folklore)
SUB(G) is definable in:
 o FO[$\text{tree-width}(G) + 1$ variables]
 o FO[$\text{tree-depth}(G)$ quantifier rank]
SUB(G) is solvable by:
 o AC^0 circuits of size $n^{O(\text{tree-width}(G))}$
 o AC^0 formulas of size $n^{O(\text{tree-depth}(G))}$
Tree-width: $\text{tw}(G)$
Tree-width: $\text{tw}(G)$

- $\text{tw}(\text{any tree}) = 1$, $\text{tw}(K_k) = k - 1$

Credit: Wikipedia (David Eppstein)
Tree-width: \(\text{tw}(G) \)

- **Width-\(k \) tree decomposition** of \(G \): blueprint for a \((k+1)\)-variable first-order sentence defining \(\text{SUB}(G) \)
Tree-depth: $td(G)$
Tree-depth: $td(G)$

- **Def.** The **closure** of a tree T is a graph formed by adding edges between all ancestor-descendant pairs.
Tree-depth: $\text{td}(G)$

- **Def.** The **tree-depth** of a graph G is the minimum height of a tree T such that $G \subseteq \text{closure}(T)$
Tree-depth: \(td(G) \)

- **Def.** The **tree-depth** of a graph \(G \) is the minimum height of a tree \(T \) such that \(G \subseteq \text{closure}(T) \)
Tree-depth: \(\text{td}(G) \)

- \(\text{tw}(G) \leq \text{td}(G) \leq \text{tw}(G) \cdot \log |V(G)| \)
- \(\log(\text{longest-path}(G)) \leq \text{td}(G) \leq \text{longest-path}(G) \)

Credit: Wikipedia (David Eppstein)
Tree-depth: \(td(G) \)

- **Height-\(k \) tree** \(T \) with \(G \subseteq \text{closure}(T) \): blueprint for a quantifier rank-\(k \) first-order sentence defining \(\text{SUB}(G) \)
AC⁰ Complexity of SUB(G): Lower Bounds
Lower Bounds

• Theorem [Li-Razborov-R. 2014]
The AC⁰ circuit size of SUB(G) is $n^{\Omega(\text{tw}(G))}$

• Theorem [Kawarabayashi-R. 2016, R. 2016]
The AC⁰ formula size of SUB(G) is $n^{\Omega(\text{td}(G)^{\epsilon})}$
Lower Bounds

• Theorem [Li-Razborov-R. 2014]
The AC\(^0\) circuit size of SUB(G) is \(n^{\Omega(\text{tw}(G))}\)

[R. 2008]
k-CLIQUE has AC\(^0\) circuit size \(n^{\Omega(k)}\)

• Theorem [Kawarabayashi-R. 2016, R. 2016]
The AC\(^0\) formula size of SUB(G) is \(n^{\Omega(\text{td}(G)^{\epsilon})}\)

[R. 2014]
k-STCONN has AC\(^0\) formula size \(n^{\Omega(\log k)}\)
Lower Bounds

• Theorem [Li-Razborov-R. 2014]
The AC\(^0\) circuit size of SUB(G) is \(n^{\Omega(\text{tw}(G))}\)
The FO[Arb] variable-width of SUB(G) is \(\Omega(\text{tw}(G))\)

• Theorem [Kawarabayashi-R. 2016, R. 2016]
The AC\(^0\) formula size of SUB(G) is \(n^{\Omega(\text{td}(G)^\epsilon)}\)
The FO[Arb] quantifier-rank of SUB(G) is \(\Omega(\text{td}(G)^\epsilon)\)
Lower Bounds

• **Theorem [Li-Razborov-R. 2014]**
The \(AC^0 \) circuit size of \(SUB(G) \) is \(n^{\Omega(\text{tw}(G))} \)
The FO[Arb] variable-width of \(SUB(G) \) is \(\Omega(\text{tw}(G)) \)
“The variable hierarchy is strict over ordered graphs”

• **Theorem [Kawarabayashi-R. 2016, R. 2016]**
The \(AC^0 \) formula size of \(SUB(G) \) is \(n^{\Omega(\text{td}(G)\epsilon)} \)
The FO[Arb] quantifier-rank of \(SUB(G) \) is \(\Omega(\text{td}(G)\epsilon) \)
“Poly-rank homomorphism preservation theorem”
Lower Bounds

• Theorem [Li-Razborov-R. 2014]
The AC^0 circuit size of $\text{SUB}(G)$ is $n^{\Omega(\text{tw}(G))}$
The $FO[\text{Arb}]$ variable-width of $\text{SUB}(G)$ is $\Omega(\text{tw}(G))$
“The variable hierarchy is strict over ordered graphs”

• The

k-CLIQUE is definable in FO^k
but not in $FO^{k/4}[\leq]$
“Poly-rank homomorphism preservation theorem”
Lower Bounds

• **Theorem [Li-Razborov-R. 2014]**

 The AC^0 circuit size of $\text{SUB}(G)$ is $n^{\Omega(\text{tw}(G))}$

 The $\text{FO}[\text{Arb}]$ variable-rank of $\text{SUB}(G)$ is $\Omega(\text{td}(G)^\varepsilon)$

 “The variable hierarchy is strict over ordered graphs”

 Proof uses probabilistic method: **average-case** lower bounds w.r.t. particular random input graphs (generalizations of $G(n,p)$)

 “Poly-rank homomorphism preservation theorem”
Hard-On-Average Input Distributions for SUB(G)
Average-Case for $\text{SUB}_{\text{uncolored}}(G)$

- Natural input distribution: $\text{ErdosRenyi}(n,p)$ where $p = p(n)$ is the “threshold” for G-subgraphs
Average-Case for $\text{SUB}_{\text{uncolored}}(G)$

- Natural input distribution: $\text{ErdosRenyi}(n,p)$ where $p = p(n)$ is the “threshold” for G-subgraphs

$$\Pr[\text{ErdosRenyi}(n,p) \text{ contains a subgraph isomorphic to } G]$$

edge probability p
Average-Case for $\text{SUB}_{\text{uncolored}}(G)$

- Natural input distribution: $\text{ErdosRenyi}(n,p)$ where $p = p(n)$ is the “threshold” for G-subgraphs

$\Pr[\text{ErdosRenyi}(n,p) \text{ contains a subgraph isomorphic to } G]$

Diagram:
- $p_{\text{threshold}}$
- $\frac{1}{2}$
- p (edge probability)
Average-Case for $\text{SUB}_{\text{uncolored}}(G)$

- Natural input distribution: $\text{ErdosRenyi}(n,p)$ where $p = p(n)$ is the “threshold” for G-subgraphs

Conjectured to be source of hard-on-average instances for many graphs G, including K_k [Karp 1976]
Average-Case for SUB(G)

- Natural *family* of input distributions:
 “G-colored Erdos-Renyi random graphs”

\[
\frac{n^{-1}}{n^{-1}}, \frac{n^{-1}}{n^{-1}}, \frac{n^{-1/2}}{n^{-1/2}}, \frac{n^{-3/2}}{n^{-3/2}}
\]
Average-Case for SUB(G)

• Natural *family* of input distributions:
 “G-colored Erdos-Renyi random graphs”

• Different edge density p_e for each $e \in E(G)$ (i.e. each pair of color classes)

• What is a “threshold” family of densities $\{p_e\}_{e \in E(G)}$?
Average-Case for SUB(G)

- **Def:** $\beta : E(G) \to [0, 2]$ is a **threshold weighting** for G if
 1. $\beta(F) := \sum_{e \in E(F)} \beta(e) \leq |V(F)|$ for every $F \subseteq G$
 2. $\beta(G) = |V(G)|$
Average-Case for SUB(G)

• **Def:** \(\beta : E(G) \rightarrow [0,2] \) is a **threshold weighting** for \(G \) if
 1. \(\beta(F) := \sum_{e \in E(F)} \beta(e) \leq |V(F)| \) for every \(F \subseteq G \)
 2. \(\beta(G) = |V(G)| \)

• **Obs:** Every **Markov chain** on \(G \)

 \(M : V(G) \times V(G) \rightarrow [0,1] \)

 induces a threshold weighting

 \(\beta_M(\{v,w\}) := M(v,w) + M(w,v) \)
If G has tree-width k, then there exists a set of $S \subseteq V(G)$ of size $\Omega(k)$ and a Markov chain M on G that concurrently routes $1 / k \log k$ flow between all pairs of vertices in S [Arora-Rao-Vazirani 2004, Marx 2007]

- **Obs:** Every **Markov chain** on G

 $$M : V(G) \times V(G) \rightarrow [0,1]$$

 induces a threshold weighting

 $$\beta_M(\{v,w\}) := M(v,w) + M(w,v)$$
G-colored random graph X_β
G-colored random graph X_β
G-colored random graph X_β
G-colored random graph X_β

- $\Pr[X_\beta \text{ contains a G-subgraph }]$ bounded away from 0 and 1
- # of G-subgraphs asymptotically Poisson (when G connected...)
For every $F \subseteq G$,
\[
\text{Ex}[\ # \ F\text{-subgraphs of } X_\beta \] \leq n^{\vert V(F) \vert - \beta(F)}
\]
Proof Sketch

• **Theorem** [Li, Razborov, R. 2014]

 AC^0 circuits for $\text{SUB}(G)$ require size $n^{\Omega(\text{tw}(G)/\log \text{tw}(G))}$
Proof Sketch

• **Theorem** [Li, Razborov, R. 2014]
 AC⁰ circuits for SUB(G) require size $n^{\Omega(tw(G)/\log tw(G))}$

1. We define a constant $c(\beta) \geq 0$ associated with each threshold weighting β
Proof Sketch

• **Theorem** [Li, Razborov, R. 2014]
 AC^0 circuits for $\text{SUB}(G)$ require size $n^{\Omega(\text{tw}(G)/\log \text{tw}(G))}$

1. We define a constant $c(\beta) \geq 0$ associated with each threshold weighting β

2. The average-case AC^0 circuit complexity of $\text{SUB}(G)$ on X_{β} is $n^{\Theta(c(\beta))}$
Proof Sketch

• **Theorem** [Li, Razborov, R. 2014]

AC⁰ circuits for SUB(G) require size $n^{\Omega(tw(G)/\log tw(G))}$

1. We define a constant $c(\beta) \geq 0$ associated with each threshold weighting β

2. The average-case AC⁰ circuit complexity of SUB(G) on X_β is $n^{\Theta(c(\beta))}$

between $n^{c(\beta)}$ and $n^{2c(\beta)}$
Proof Sketch

• **Theorem** [Li, Razborov, R. 2014]
 AC^0 circuits for SUB(G) require size $n^{\Omega(\text{tw}(G) / \log \text{tw}(G))}$

 1. We define a constant $c(\beta) \geq 0$ associated with each threshold weighting β

 2. The average-case AC^0 circuit complexity of SUB(G) on X_β is $n^{\Theta(c(\beta))}$

 3. For every graph G, there exists β such that $c(\beta) \geq \Omega(\text{tw}(G) / \log \text{tw}(G))$
Theorem [Li, Razborov, R. 2014] \(\text{AC}^0 \) circuits for \(\text{SUB}(G) \) require size \(n^{\Omega(\text{tw}(G)/\log \text{tw}(G))} \).

1. We define a constant \(c(\beta) \geq 0 \) associated with each threshold weight \(\beta \).
2. The average-case \(\text{AC}^0 \) circuit complexity of \(\text{SUB}(G) \) on \(X_\beta \) is \(n^{\Theta(c(\beta))} \).
3. For every graph \(G \), there exists \(\beta \) such that \(c(\beta) \geq \Omega(\text{tw}(G)/\log \text{tw}(G)) \).

Proof Sketch

This \(\beta \) from the Markov chain of [Arora-Rao-Vazirani 2004], [Marx 2007]
Excluded-Minor Approximation of Tree-Width & Tree-Depth
Recall

- **Def.** The **tree-depth** of a graph G is the minimum height of a tree T such that $G \subseteq \text{closure}(T)$
Recall

• If F is a minor of G, then $\text{SUB}(F) \leq \text{SUB}(G)$
 (there is a linear AC^0 reduction from $\text{SUB}(F)$ to $\text{SUB}(G)$)

Credit: Wikipedia (NikelsonH)
Minor-Monotonicity

• $\text{tw}(\cdot)$ and $\text{td}(\cdot)$ are minor-monotone:

$$\text{F is a minor of G } \implies \text{tw}(F) \leq \text{tw}(G) \land \text{td}(F) \leq \text{td}(G)$$
Minor-Monotonicity

• \(\text{tw}(\cdot) \) and \(\text{td}(\cdot) \) are \textit{minor-monotone}:

\[
\text{F is a minor of G} \implies \text{tw}(F) \leq \text{tw}(G) \ \& \ \text{td}(F) \leq \text{td}(G)
\]

• The class \(\{G : \text{td}(G) \leq k\} \) is characterized by a \textit{finite} set of “excluded minors”, but \textit{doubly exponential} in \(k \).
Minor-Monotonicity

• \(\text{tw}(\cdot) \) and \(\text{td}(\cdot) \) are minor-monotone:

\[
F \text{ is a minor of } G \implies \text{tw}(F) \leq \text{tw}(G) \text{ \& } \text{td}(F) \leq \text{td}(G)
\]

• The class \(\{G : \text{td}(G) \leq k\} \) is characterized by a finite set of “excluded minors”, but doubly exponential in \(k \)

• **Question**: Can \(O(1) \) many minors approximate \(\text{td}(\cdot) \)?
Minor-Monotonicity

- $\text{tw}(\cdot)$ and $\text{td}(\cdot)$ are minor-monotone:

 $$F \text{ is a minor of } G \implies \text{tw}(F) \leq \text{tw}(G) \ & \ \text{td}(F) \leq \text{td}(G)$$

- The class $\{G : \text{td}(G) \leq k\}$ is characterized by a finite set of “excluded minors”, but doubly exponential in k

- Question: Can $O(1)$ many minors approximate $\text{td}(\cdot)$?

 longest-path(G) (i.e. $1 +$ largest excluded path minor) gives an exponential approximation of $\text{td}(G)$
Minor-Monotonicity

• \(\text{tw}(\cdot) \) and \(\text{td}(\cdot) \) are minor-monotone:

\[F \text{ is a minor of } G \implies \text{tw}(F) \leq \text{tw}(G) \land \text{td}(F) \leq \text{td}(G) \]

• The class \(\{G : \text{td}(G) \leq k\} \) is characterized by a finite set of “excluded minors”, but doubly exponential in \(k \)

• Question: Can \(O(1) \) many minors approximate \(\text{td}(\cdot) \)?

We seek a polynomial approximation of \(\text{td}(G) \)
• **Grid Minor Theorem** [Chekuri, Chuzhoy 2014]
 Every graph of \textit{tree-width} \(\geq k^c \) has a \(k \times k \) grid minor.
• **Grid Minor Theorem** [Chekuri, Chuzhoy 2014]
 Every graph of **tree-width** $\geq k^c$ has a $k \times k$ grid minor.

That is, grid minors give a *polynomial* approximation of $\text{tw}(G)$
• **Grid Minor Theorem** [Chekuri, Chuzhoy 2014]
 Every graph of *tree-width* $\geq k^c$ has a $k \times k$ grid minor.

• **COROLLARY**
 If $\text{SUB}(\text{Grid}_{k \times k})$ has circuit size $n^{\Omega(k)}$ for all k, then $\text{SUB}(G)$ has circuit size $n^{\Omega(\text{tw}(G)^\epsilon)}$ for all graphs G.
• “Grid/Tree/Path Minor Thm” [Kawarabayashi, R. 2016] Every graph of \textbf{tree-depth} $\geq k^c$ has one of the following minors:
 - $k \times k$ grid
 - complete binary tree of height k
 - path of length 2^k
• “Grid/Tree/Path Minor Thm” [Kawarabayashi, R. 2016]
 Every graph of tree-depth $\geq k^c$ has one of the following minors:

 o $k \times k$ grid
 o complete binary tree of height k
 o path of length 2^k

 These three obstructions give a polynomial approximation of $\text{td}(G)$
• “Grid/Tree/Path Minor Thm” [Kawarabayashi, R. 2016]
 Every graph of \textbf{tree-depth} \geq k^c has one of the following minors:
 \begin{itemize}
 \item k \times k grid
 \item complete binary tree of height k
 \item path of length \(2^k\)
 \end{itemize}

• \textbf{COROLLARY}
 If \text{SUB(Grid}_{k \times k}) and \text{SUB(Tree}_k) and \text{SUB(Path}_{2^k}) have \text{AC}^0 formula size \(n^{\Omega(k)}\) for all \(k\), then \text{SUB(G)} has \text{AC}^0 formula size \(n^{\Omega(td(G)^{\epsilon})}\) for all graphs \(G\).
• **[LRR 2014]** \(\text{SUB}(\text{Grid}_{k \times k}) \) has \(AC^0 \) formula size \(n^{\Omega(k)} \)

• **[R 2014]** \(\text{SUB}(\text{Path}_{2^k}) \) has \(AC^0 \) formula size \(n^{\Omega(k)} \)

• **[R 2016]** \(\text{SUB}(\text{Tree}_k) \) has \(AC^0 \) formula size \(n^{\Omega(k)} \)

COROLLARY

If \(\text{SUB}(\text{Grid}_{k \times k}) \) and \(\text{SUB}(\text{Tree}_k) \) and \(\text{SUB}(\text{Path}_{2^k}) \) have \(AC^0 \) formula size \(n^{\Omega(k)} \) for all \(k \), then \(\text{SUB}(G) \) has \(AC^0 \) formula size \(n^{\Omega(td(G) \wedge \varepsilon)} \) for all graphs \(G \).
• [LRR 2014] SUB(Grid\(_{k \times k}\)) has AC\(^0\) formula size \(n^{\Omega(k)}\)
• [R 2014] SUB(Path\(_{2^k}\)) has AC\(^0\) formula size \(n^{\Omega(k)}\)
• [R 2016] SUB(Tree\(_{k}\)) has AC\(^0\) formula size \(n^{\Omega(k)}\)

The AC\(^0\) formula size of SUB(G) is \(n^{\Omega(td(G)^{\varepsilon})}\)

• COROLLARY
If SUB(Grid\(_{k \times k}\)) and SUB(Tree\(_{k}\)) and SUB(Path\(_{2^k}\)) have AC\(^0\) formula size \(n^{\Omega(k)}\) for all \(k\), then SUB(G) has AC\(^0\) formula size \(n^{\Omega(td(G)^{\varepsilon})}\) for all graphs G.
“Poly-rank” homomorphism preservation theorem
Classical Preservation Theorems

- Los-Tarski / Lyndon / Hom. Preservation Theorem
 A first-order formula φ is preserved under injective / surjective / all homomorphisms if, and only if, it is equivalent to a first-order formula ψ that is existential / positive / existential-positive.
Failure on Finite Structures

- Los-Tarski / Lyndon False on Finite Structures

 [Tait 1959], [Ajtai-Gurevich 1997]

There exists a first-order formula that is preserved under injective (resp. surjective) homomorphisms on finite structures, yet is not equivalent on finite structures to any existential (resp. positive) formula.
Failure on Finite Structures

• Los-Tarski / Lyndon False on Finite Structures
 [Tait 1959], [Ajtai-Gurevich 1997]
 There exists a first-order formula that is preserved under injective (resp. surjective) homomorphisms on finite structures, yet is not equivalent on finite structures to any existential (resp. positive) formula.

• Non-uniform circuit version:

 \[
 \text{Monotone-AC}^0 \neq \text{Monotone} \cap \text{AC}^0
 \]
Survival on Finite Structures

• Hom. Preservation Theorem on Finite Structures

[R. 2005]

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive formula ψ of quantifier-rank $f(k)$, where $f : \mathbb{N} \rightarrow \mathbb{N}$ is a computable function.
Survival on Finite Structures

• Hom. Preservation Theorem on Finite Structures

[R. 2005]

If a first-order formula \(\varphi \) of quantifier-rank \(k \) is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive formula \(\psi \) of quantifier-rank \(f(k) \), where \(f : \mathbb{N} \to \mathbb{N} \) is a computable function.

• Proof gives a non-elementary upper bound on \(f(k) \).
f(k) = k on *Infinite* Structures

- “Equi-rank” Hom. Preservation Theorem

[R. 2005]

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms *on infinite structures*, then it is equivalent *on infinite structures* to an existential-positive formula ψ of quantifier-rank k.
f(k) \leq \text{poly}(k)

• “Poly-rank” Hom. Pres. Theorem on Finite Structures [R. 2016]

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive formula ψ of quantifier-rank $f(k)$, where $f(k) \leq \text{poly}(k)$.
f(k) \leq \text{poly}(k)

- "Poly-rank" Hom. Pres. Theorem on Finite Structures

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive formula ψ of quantifier-rank $f(k)$, where $f(k) \leq \text{poly}(k)$.

Proof gives reduction to $n^{\Omega(\text{td}(G)^{\epsilon})}$ AC0 formula size lower bound for $\text{SUB}(G)$
If a first-order formula φ of quantifier-rank k is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive formula ψ of quantifier-rank $f(k)$, where $f(k) \leq \text{poly}(k)$.

$f(k) \leq 2^{O(k)}$ follows from lower bound for k-STCONN of [R. 2014]
f(k) ≤ poly(k)

• “Poly-rank” Hom. Pres. Theorem on Finite Structures

If a first-order formula \(\varphi \) of quantifier-rank \(k \) is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive formula \(\psi \) of quantifier-rank \(f(k) \), where \(f(k) \leq \text{poly}(k) \).

f(k) ≤ non-elementary(k)

follows from lower bound for k-STCONN of [Ajtai 1989]
f(k) ≤ poly(k)

• “Poly-rank” Hom. Pres. Theorem on Finite Structures [R. 2016]

If a first-order formula φ of quantifier-rank k is preserved under homomorphisms on finite structures, then it is equivalent on finite structures to an existential-positive formula ψ of quantifier-rank $f(k)$, where $f(k) \leq \text{poly}(k)$.

• Non-uniform circuit version:

\[
\text{HomPres} \cap \text{AC}^0 = \exists^+\text{FO} \subseteq \{\text{poly-size monotone DNFs}\}
\]
Summary (Last Slide!)

• Complexity of SUB(G) is tied to natural structural parameters of G and to fundamental questions in complexity (P vs. NP, L vs. NL, NC1 vs. P)

• Connection between AC0 & FO & tw(G)/td(G):

 \[\text{AC}^0 \text{ circuit size} \approx \text{FO variable width} \approx \text{tree-width}(G) \]
 \[\text{AC}^0 \text{ formula size} \approx \text{FO quantifier rank} \approx \text{tree-depth}(G) \]

• Natural family of input distributions X_β: hard-on-average for optimal choice of β
Thank you!