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Degree-d polynomial threshold function (PTF): sign of a
degree-d polynomial

f:A{-1,1}" = {-1,1}
f =sign(p(x1,...,x,))
where deg(p) =

TN



Input : k degree-2 PTFs f1,..., [k

where fi,..., fr:{+1}" — {0,1}
and ¢:{0,1}* — {0,1}.

Task : Deterministically approximate (up to
error €) the quantity :

Pr lg(fi(@),..., fr(z)) =1

xe{—1,1}m



Deterministically approximate the quantity

Pr lg(fi(z), ..., fu(x)) = 1]

xe{—1,1}m

in time poly(n) - h(k,€) .



* Previous talk ©

* Counting versions of all self-respecting
decision problems are #P-hard.

* This motivates study of approximate counting.



* |f the problem is really self-respecting:
Deciding if the number of satisfying
assignments is non-zero is itself NP-hard.

* This rules out efficient multiplicative
algorithms.

e Of course, there is a trivial random sampling
algorithm for additive approximation.



* Asin the previous talk, we would like to get
efficient deterministic algorithms for additive
approximation.

* Circuit lower bounds => every efficient
randomized algorithm can be derandomized.

* While proving lower bounds isn’t in reach, we
should at least try to prove its consequences.



* ForLTFs: [SVV, GKM] - poly(n,1/e)  time
deterministic counting with multiplicative error.

* For PTFs of degree 2: Last talk —
poly(n) - 2vev(1/<) for degree 2 for additive error ¢

e What about richer classes of functions ?



* Gopalan, O’'Donnell, Wu, Zuckerman :

Deterministic approximate counting for k-
juntas of halfspaces - n© (¥ tloe(k/€))

—o(1)

 For e =log n , the running time is

267 poly(n).

 What about functions of PTFs?



 Diakonikolas, Kane, Nelson — Deterministic
approximate counting k-juntas of degree-2
PTFs in time 5O (k-poly(1/e)) over N(0,1).

* Slightly worse dependence on k for the
Boolean hypercube.

* Thus, forany k = w(1) or e = o(1), the
running time of the algorithm is super-
polynomial inn .






Main technical result




* Prove the result over the distribution N (0, 1),

* Following the previous talk : Multi-dimensional
Invariance principle (Mossel) shows that the
same result holds over {—1,1}" for k regular
degree-2 polynomials.



 We next prove a new regularity lemma: Given
k degree-2 PTFs, we show that we can
construct a decision tree of depth c(k, €) such
that w.h.p. over the leaves of the decision
tree : If all the variables appearing on the path
from the root to the leaf are restricted, then
the resulting k degree-2 PTFs are all regular.



 For k=1, results due to DSTW, MZ, HKM
implied this.

* For LTFs (with k>1), GOWZ provided such a
regularity lemma.

 The new regularity lemma follows arguments
similar to DSTW.



Thus, it boils down to ...




 State a new CLT.

 Show how the CLT is useful for approximate

counting when some nice conditions are met.

 Show how the general case can be decomposed
to a combination of CLT + brute force.



 We prove a new CLT for the joint distribution

of k degree-2 polynomials which have ~small
eigenvalues”.

* Recall that for any degree-2 polynomial
p(z) =zt Az + (B, z) + C
we define Ajax(P) = Omax(A4).



New Central Limit Theorem




* The k-dimensional Kolmogorov distance
betweenZ andZ’ is defined to be:

sup |Pr[Vi e [k], Z; <0;] —Pr[Vie[k], Z <6
01,...,0,.€ER

* The case k=1 follows by Berry-Esseen
theorem.

 Why is this CLT useful?



Let f1,...,fr : R™ — {0,1} be k degree-2 PTFs
where f; = sign(p;) satisfying the following:

* Var(p;) =1 and Apax(pi) < €.
If g = AND), then we need to compute

Pr  [fi(z) Ao A fi(2)]

reN™(0,1)



* However,

Pripi(x) > 0A ... Apr(x) >0 = Pr|Zy >0A ... A Zp > ()

where (Z1, ..., Zk)are jointly normal with
with the same mean and covariance as the
distribution of (p1, . 7pk).



However, Pr|Zy > 0A ... A Zx > 0] can be
computed to good accuracy in time KO

Thus, if the eigenvalues of all the polynomials
are small enough ( < € /k*), then we’re done ...



* So, what happens if some of the polynomials
have large eigenvalues ...

 To understand the idea behind the strategy,
consider a toy case where the polynomials

P1, P2, ..., Pk are diagonalizable in the
same basis.



* |n other words,
mn

= Z&u +2513 z) + C
j=1

P =Y ouiLj( +Zﬁkg z) + C
j=1



Here Li(x),..., L,(x) formsan orthonormal
basis. Since, Gaussians are invariant under
orthogonal transformations, we can rewrite

pr=) ayy;+ > Py +C
=1 j=1

P =Y oy + > Brivs + Cr
= j=1



* If max A\pax(pi) < €, thenit translates to
1

saying that max max |a;;| < e.
i€ k] j€[n]

* |f this condition is not satisfied, then following
the analysis of GOW?Z, it can be shown that there
is a small set L (|L| < k/€?) such that for any p:

at least one of the following is true :



* With high probability, over the restriction of
the variables in L, sign(p; ) is close to being
constant.

e After the restriction of the variables in L,
)\max(pi)/var(pi) S € .



* Win-win analysis : First, restrict all the
variables in L. For each i € [k|, we end up
with one of the following:

(i) Either Sign(pi) is close to a constant.
(i) Amax(p;) is small compared to its variance
implying that we can apply the CLT.

All this can clearly be done in time poly(n) - h(k, ¢€)



* However, we're in a more complicated
situationi.e. all of P1,...,Pr may not be
diagonalizable in the same basis ...

e What’s the way out ??



* The key concept used is that of renaming
linear forms. In other words, consider a
function F'(z1,...,2y) . Given any linear
form L1(z) such that ||L1(z)]]2 = 1, consider
an orthonormal completion{L1,...,Ln} .

Then, F(x1,...,x,) can be re-expressed as
G(L1i(z),...,Ly(x)) where the distribution of
Li(x),...,Ly(x) is N™(0,1).



e Either the conditions of the CLT is met or
without loss of generality, we can assume

)\max(pl) > €.

* This means that there is a linear form L1 ()
such that if p1 = a1 L1 (2)* + B1 - Li(z) - 71 + ¢
where ¢; and 71 are independent of L1()
and Var(q;) <1—¢€.



* Using the concept of renaming a linear form,

we can consider on all possible values
of Ll(x)

* We continue recursively until all the q; satisfy:
(i) Either Amax(q:)/ Var(q;) <e,

(i) Or Var(q;) < €.

» This can go on for at most O(k/e?) steps.



Our Central Limit Theorem




e Key word (i): Stein’s method

e Key word (ii) : Malliavin calculus



e Easy to show that for every absolutely
continuous f with bounded f’,if Z
denotes the standard normal, then

E[Z-f(Z2)] =E[f(Z)]



Converse : If for a random variable Z it holds
that for every absolutely continuous f with
bounded f', E[Z - f(Z)] = E[f'(Z)], then

/ is the standard normal.



Stein’s method

e |s this characterization robust?




Stein’s method

e |s this characterization robust?




 Similar characterization available for
closeness to multivariate normal.

* To explain the gist of the idea, we will just
focus on the univariate case.



» Assume W = p(zq,...,x,) where

T1,...,x, ~N(0,1).

* Suppose, we want to show that
drv (W, N(0,1)) issmall.

 All we need to dois to bound

sup |[E[f'(W) —W - f(W)]|.
feF



* In a nutshell, it allows us to take derivatives of
functions of stochastic processes.

* Informally, if the chance parameter is W, we
are taking a derivative w.r.t. w .



Let F': R™ — R where the domain is equipped
with the N(0, 1) measure. The Malliavin
derivative operator D maps F' to a R" valued

- OF
random variable where DF, — o
L

To see why it is the derivative, we need to
consider functions of Brownian motion



Malliavin derivatives satisfy some nice
properties:

Forevery h € R", let W (h) = Z h;z; .
i=1

Then, E[F - W (h)| = E[(DF, h)]|.
(Integration by parts)



The fundamental relation
between Stein’s method and Malliavin derivatives:

E[f' (W) - W f(W)] =E[f'(W)(1 - (DW,-DL™W))]

Here L~ ! is an operator which attenuates the
¢"" level of the Hermite expansion by (—1/¢).



Recall
E[f'(W)-W - f(W)] =E[f(W)(1 - (DW,-DL™'W))]

It is easy to show that
Var(W)=1 = E[(DW,—-DL'W)] =1

Since the f appearing in Stein’s method always
satisfies || f’]| < 2, hence by Cauchy-Schwartz,

ELf'(W) =W f(W)]| £ V/Var((DW,-DL~'W))-




Thus, it all boils down to controlling the
variance of the quantity (DW, DL_1W>.



For closeness to multivariate normal, things are
slightly more complicated.

Let us define H = {h: R¥ = R : ||| < 1}.
Let (Z1,...,Zk) be a Gaussian distribution with

the same mean and covariance as (W1, ..., Wy).



Eh(Z1,...,2Z1)] — Eh(W1,...,W)]| = O(k%e)

where sup Var({DW;, —DL_le>) < e,

2,]



We show that if W; = F;(Xq,...,X,,) where
F; are degree-2 polynomials with Var(F;) = 1
and A\pax(F5) < €, then

sup Var((DW;,—DL™'W;)) < e.

2,]

Proof : calculation + Matrix analysis



This proves closeness of (Z1,...,Z;) and
(Wh,...,W;) w.r.t. class of test functions H .

To prove closeness in Kolmogorov distance, we
need closeness w.r.t. the class

HK:{(azl§91)/\.../\(azk§9k):61,...,9k€R}



To go from closeness in class H to closeness
in class H i, we do the following steps:

v'Show th/az/closenesilrl”;'-[ implies closeness
in class H i where H ¢ is a smoothened
version of H g (uses mollification machinery)

v’ Carbery-Wright shows that closeness in 7/-[\;(
implies closeness in H x .



Recap ...




 The CLT allows us to do approximate counting
as long as all the Amax(Pi) are small.

¢ If some of the Amax(P;) are large, then we
can apply the decomposition method to
reduce the counting to CLT + brute force.

* Apply the regularity lemma to move from
N™(0,1) to the Boolean hypercube.



THANKS



