Deterministic Approximate Counting for juntas of degree-2 PTFs

Anindya De University of California, Berkeley

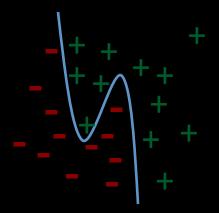
Ilias Diakonikolas U. Edinburgh

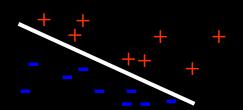
Rocco Servedio Columbia U.

PTFs and LTFs

Degree-d polynomial threshold function (PTF): sign of a degree-d polynomial

$$f: \{-1,1\}^n o \{-1,1\}$$
 $f=sign(p(x_1,\ldots,x_n))$ where $deg(p)=d$





Juntas of degree-2 PTFs

Input : k degree-2 PTFs
$$f_1,\ldots,f_k$$
 where $f_1,\ldots,f_k:\{\pm 1\}^n \to \{0,1\}$ and $g:\{0,1\}^k \to \{0,1\}.$

Task : Deterministically approximate (up to error ϵ) the quantity :

$$\Pr_{x \in \{-1,1\}^n} [g(f_1(x), \dots, f_k(x)) = 1]$$

The Challenge ...

Deterministically approximate the quantity

$$\Pr_{x \in \{-1,1\}^n} [g(f_1(x), \dots, f_k(x)) = 1]$$

in time $poly(n) \cdot h(k,\epsilon)$.

Motivation

• Previous talk ©

 Counting versions of all self-respecting decision problems are #P-hard.

This motivates study of approximate counting.

Motivation

• If the problem is really *self-respecting*: Deciding if the number of satisfying assignments is non-zero is itself NP-hard.

• This rules out efficient multiplicative algorithms.

 Of course, there is a trivial random sampling algorithm for additive approximation.

Motivation

 As in the previous talk, we would like to get efficient deterministic algorithms for additive approximation.

 Circuit lower bounds => every efficient randomized algorithm can be derandomized.

 While proving lower bounds isn't in reach, we should at least try to prove its consequences.

Approximate counting of PTFs

• For LTFs : [SVV, GKM] - $poly(n, 1/\epsilon)$ time deterministic counting with multiplicative error.

• For PTFs of degree 2: Last talk – $poly(n) \cdot 2^{poly(1/\epsilon)} \ \ \text{for degree 2 for additive error } \epsilon$

What about richer classes of functions?

Approximate counting of juntas of LTFs

• Gopalan, O'Donnell, Wu, Zuckerman : Deterministic approximate counting for k-juntas of halfspaces - $n^{O(k+\log(k/\epsilon))}$.

• For $\epsilon = \log^{-o(1)} n$, the running time is $2^{k^{O(1)}} \cdot poly(n)$.

What about functions of PTFs?

Approximate counting of functions of degree-2-PTFs

• Diakonikolas, Kane, Nelson – Deterministic approximate counting k-juntas of degree-2 PTFs in time $n^{O(k \cdot poly(1/\epsilon))}$ over $\mathcal{N}^n(0,1)$.

- Slightly worse dependence on k for the Boolean hypercube.
- Thus, for any $k=\omega(1) \ {\rm or} \ \epsilon=o(1)$, the running time of the algorithm is superpolynomial in n .

Main result

Theorem: There is an algorithm running in deterministic time $poly(n) \cdot h(k,\epsilon)$ which given a function $g:\{0,1\}^k \to \{0,1\}$ and k degree-2 PTFs $f_1,\ldots,f_k:\{-1,1\}^n \to \{0,1\}$, outputs a number ν such that

$$\left| \nu - \Pr_{x \in \{\pm 1\}^n} [g(f_1(x), \dots, f_k(x)) = 1] \right| \le \epsilon$$

Main technical result

Theorem: There is an algorithm running in deterministic time $poly(n)\cdot h(k,\epsilon)$ which given a function $g:\{0,1\}^k\to\{0,1\}$ and k degree-2 PTFs $f_1,\ldots,f_k:\mathbb{R}^n\to\{0,1\}$, outputs a number ν such that

$$\left| \nu - \Pr_{x \sim \mathcal{N}^n(0,1)} [g(f_1(x), \dots, f_k(x)) = 1] \right|$$

Technique for proving main result

• Prove the result over the distribution $\mathcal{N}^n(0,1)$.

• Following the previous talk : Multi-dimensional Invariance principle (Mossel) shows that the same result holds over $\{-1,1\}^n$ for k regular degree-2 polynomials.

Technique for proving main result

• We next prove a *new* regularity lemma: Given k degree-2 PTFs, we show that we can construct a decision tree of depth $c(k,\epsilon)$ such that w.h.p. over the leaves of the decision tree: If all the variables appearing on the path from the root to the leaf are restricted, then the resulting k degree-2 PTFs are all regular.

Regularity lemma

• For k=1, results due to DSTW, MZ, HKM implied this.

 For LTFs (with k>1), GOWZ provided such a regularity lemma.

 The new regularity lemma follows arguments similar to DSTW.

Thus, it boils down to ...

Theorem: There is an algorithm running in deterministic time $poly(n)\cdot h(k,\epsilon)$ which given a function $g:\{0,1\}^k\to\{0,1\}$ and k degree-2 PTFs $f_1,\ldots,f_k:\mathbb{R}^n\to\{0,1\}$, outputs a number ν such that

$$\left| \nu - \Pr_{x \in \mathcal{N}^n(0,1)} [g(f_1(x), \dots, f_k(x))] \right| \le \epsilon$$

Roadmap

State a new CLT.

 Show how the CLT is useful for approximate counting when some *nice* conditions are met.

 Show how the general case can be decomposed to a combination of CLT + brute force.

Proof of the main technical result

 We prove a new CLT for the joint distribution of k degree-2 polynomials which have ``small eigenvalues".

Recall that for any degree-2 polynomial

$$p(x) = x^T A x + \langle B, x \rangle + C$$
 we define $\lambda_{\max}(p) = \sigma_{\max}(A)$.

New Central Limit Theorem

Theorem : Let $p_1, \ldots, p_k : \mathcal{N}^n(0,1) \to \mathbb{R}$ be k degree 2 polynomials such that :

- $\forall i \in [k] \ \lambda_{\max}(p_i) \leq \epsilon$
- $\forall i \in [k] \ Var(p_i) \leq 1$,
- $\exists i \in [k] \ Var(p_i) \geq c$.

Let $Z \sim (p_1, \ldots, p_k)$ and $Z' \sim \mathcal{N}(\mu, \Sigma)$ where

$$\mu = \mathbf{E}[Z]$$
 ; $\Sigma = \mathbf{Cov}[Z]$.

Then, $d_K(Z,Z') \leq rac{k^{2/3} \cdot \epsilon^{1/6}}{c^{1/6}}.$

Remarks about the CLT

• The k-dimensional Kolmogorov distance between Z and Z' is defined to be:

$$\sup_{\theta_1, \dots, \theta_k \in \mathbb{R}} |\Pr[\forall i \in [k], \ Z_i \le \theta_i] - \Pr[\forall i \in [k], \ Z_i' \le \theta_i]|$$

 The case k=1 follows by Berry-Esseen theorem.

Why is this CLT useful?

Applying the CLT

Let $f_1, \ldots, f_k : \mathbb{R}^n \to \{0, 1\}$ be k degree-2 PTFs where $f_i = sign(p_i)$ satisfying the following:

• $Var(p_i) = 1$ and $\lambda_{\max}(p_i) \leq \epsilon$.

If $g = \overline{ ext{AND}}$, then we need to compute

$$\Pr_{x \in \mathcal{N}^n(0,1)} [f_1(x) \wedge \ldots \wedge f_k(x)]$$

$$= \Pr_{x \sim \mathcal{N}^n(0,1)}[p_1(x) \ge 0 \land \dots \land p_k(x) \ge 0]$$

Applying the CLT

However,

$$\Pr[p_1(x) \ge 0 \land \ldots \land p_k(x) \ge 0] \approx \Pr[Z_1 \ge 0 \land \ldots \land Z_k \ge 0]$$

where (Z_1, \ldots, Z_k) are jointly normal with with the same mean and covariance as the distribution of (p_1, \ldots, p_k) .

Applying the CLT

However, $\Pr[Z_1 \geq 0 \land \ldots \land Z_k \geq 0]$ can be computed to good accuracy in time $k^{O(k)}$.

Thus, if the eigenvalues of all the polynomials are small enough ($\leq \epsilon^6/k^4$), then we're done ...

Decomposition

 So, what happens if some of the polynomials have large eigenvalues ...

• To understand the idea behind the strategy, consider a *toy* case where the polynomials p_1, p_2, \ldots, p_k are diagonalizable in the same basis.

Toy case: Diagonalization

In other words,

$$p_1 = \sum_{j=1}^{n} \alpha_{1j} L_j(x)^2 + \sum_{j=1}^{n} \beta_{1j} L_j(x) + C_1$$

•

$$p_k = \sum_{j=1}^{n} \alpha_{kj} L_j(x)^2 + \sum_{j=1}^{n} \beta_{kj} L_j(x) + C_k$$

Renaming linear forms

Here $L_1(x), \ldots, L_n(x)$ forms an orthonormal basis. Since, Gaussians are invariant under orthogonal transformations, we can rewrite

$$p_{1} = \sum_{j=1}^{n} \alpha_{1j} y_{j}^{2} + \sum_{j=1}^{n} \beta_{1j} y_{j} + C_{1}$$

$$\vdots$$

$$p_k = \sum_{j=1}^{n} \alpha_{kj} y_j^2 + \sum_{j=1}^{n} \beta_{kj} y_j + C_k$$

Applying GOWZ

- If $\max_i \lambda_{\max}(p_i) \leq \epsilon$, then it translates to saying that $\max_{i \in [k]} \max_{j \in [n]} |\alpha_{ij}| \leq \epsilon$.
- If this condition is not satisfied, then following the analysis of GOWZ, it can be shown that there is a small set $L(|L| \le k/\epsilon^2)$ such that for any p_i at least one of the following is true :

The two cases

• With high probability, over the restriction of the variables in L, $sign(p_i)$ is close to being constant.

After the restriction of the variables in L,

$$\lambda_{\max}(p_i)/Var(p_i) \leq \epsilon$$
.

Win-win analysis

- Win-win analysis : First, restrict all the variables in L. For each $i \in [k]$, we end up with one of the following:
 - (i) Either $sign(p_i)$ is close to a constant.
 - (ii) $\lambda_{\max}(p_i)$ is small compared to its variance implying that we can apply the CLT.

All this can clearly be done in time $poly(n) \cdot h(k, \epsilon)$

Decomposition

• However, we're in a more complicated situation i.e. all of p_1, \ldots, p_k may not be diagonalizable in the same basis ...

What's the way out ??

Decomposition

• The key concept used is that of renaming linear forms. In other words, consider a function $F(x_1,\ldots,x_n)$. Given any linear form $L_1(x)$ such that $\|L_1(x)\|_2=1$, consider an orthonormal completion $\{L_1,\ldots,L_n\}$.

Then, $F(x_1,\ldots,x_n)$ can be re-expressed as $G(L_1(x),\ldots,L_n(x))$ where the distribution of $L_1(x),\ldots,L_n(x)$ is $\mathcal{N}^n(0,1)$.

Steps in the decomposition

• Either the conditions of the CLT is met or without loss of generality, we can assume $\lambda_{\max}(p_1) \geq \epsilon \ .$

• This means that there is a linear form $L_1(x)$ such that if $p_1=\alpha_1L_1(x)^2+\beta_1\cdot L_1(x)\cdot r_1+q_1$ where q_1 and r_1 are independent of $L_1(x)$ and $Var(q_1)\leq 1-\epsilon$.

Restricting a linear form

• Using the concept of renaming a linear form, we can consider *restricting* on all possible values of $L_1(x)$.

- We continue recursively until all the q_i satisfy:
- (i) Either $\lambda_{\max}(q_i)/Var(q_i) \leq \epsilon$,
- (ii) Or $Var(q_i) \leq \epsilon^2$.

• This can go on for at most $\tilde{O}(k/\epsilon^2)$ steps.

Our Central Limit Theorem

Theorem : Let $p_1, \ldots, p_k : \mathcal{N}^n(0,1) \to \mathbb{R}$ be k degree 2 polynomials such that :

- $\forall i \in [k] \ \lambda_{\max}(p_i) \leq \epsilon$
- $\forall i \in [k] \ Var(p_i) \leq 1$,
- $\exists i \in [k] \ Var(p_i) \geq c$.

Let $Z \sim (p_1, \ldots, p_k)$ and $Z' \sim \mathcal{N}(\mu, \Sigma)$ where

$$\mu = \mathbf{E}[Z]$$
 ; $\Sigma = \mathbf{Cov}[Z]$.

Then, $d_K(Z,Z') \leq rac{k^{2/3} \cdot \epsilon^{1/6}}{c^{1/6}}.$

Proof sketch

Key word (i): Stein's method

Key word (ii): Malliavin calculus

Stein's method

• Easy to show that for every absolutely continuous f with bounded f', if Z denotes the standard normal, then

$$\mathbf{E}[Z \cdot f(Z)] = \mathbf{E}[f'(Z)]$$

Proof: Integration by parts

Converse : If for a random variable Z it holds that for every absolutely continuous f with bounded f', $\mathbf{E}[Z\cdot f(Z)]=\mathbf{E}[f'(Z)]$, then Z is the standard normal.

Proof: Some basic ODE (not difficult).

Is this characterization robust?

Lemma : For any random variable W ,

$$d_{TV}(W, \mathcal{N}(0, 1)) \le \sup_{f \in \mathcal{F}} |\mathbf{E}[f'(W) - W \cdot f(W)]|$$

where $\mathcal{F} = \{f : ||f|| \le \sqrt{\pi/2}, ||f'|| \le 2\}.$

Is this characterization robust?

Lemma : For any random variable W, $d_W(W,\mathcal{N}(0,1)) \leq \sup_{f \in \mathcal{F}} |\mathbf{E}[f'(W) - W \cdot f(W)]|$ where $\mathcal{F} = \{f: \|f\|, \ \|f'\|, \ \|f''\| \leq 2\}$.

• Similar characterization available for closeness to multivariate normal.

• To explain the gist of the idea, we will just focus on the univariate case.

• Assume $W=p(x_1,\ldots,x_n)$ where $x_1,\ldots,x_n \sim \mathcal{N}(0,1).$

• Suppose, we want to show that $d_{TV}(W, \mathcal{N}(0, 1))$ is small.

• All we need to do is to bound $\sup_{f \in \mathcal{F}} |\mathbf{E}[f'(W) - W \cdot f(W)]|.$

Enter Malliavin Calculus ...

• In a nutshell, it allows us to take derivatives of functions of stochastic processes.

• Informally, if the *chance parameter* is ω , we are taking a derivative w.r.t. ω .

Malliavin calculus

Let $F:\mathbb{R}^n \to \mathbb{R}$ where the domain is equipped with the $\mathcal{N}^n(0,1)$ measure. The Malliavin derivative operator D maps F to a \mathbb{R}^n valued random variable where $DF_i = \frac{\partial F}{\partial x_i}$.

To see why it is the derivative, we need to consider functions of Brownian motion

Malliavin calculus

Malliavin derivatives satisfy some nice properties:

For every
$$h \in \mathbb{R}^n$$
, let $W(h) = \sum_{i=1}^n h_i x_i$.

Then, $\mathbf{E}[F\cdot W(h)] = \mathbf{E}[\langle DF, h\rangle].$ (Integration by parts)

(Nualart and Peccati): The fundamental relation between Stein's method and Malliavin derivatives:

$$\mathbf{E}[f'(W) - W \cdot f(W)] = \mathbf{E}[f'(W)(1 - \langle DW, -DL^{-1}W \rangle)]$$

Here L^{-1} is an operator which attenuates the q^{th} level of the Hermite expansion by (-1/q).

Recall

$$\mathbf{E}[f'(W) - W \cdot f(W)] = \mathbf{E}[f'(W)(1 - \langle DW, -DL^{-1}W \rangle)]$$

It is easy to show that

$$Var(W) = 1 \implies \mathbf{E}[\langle DW, -DL^{-1}W \rangle] = 1$$

Since the f appearing in Stein's method always satisfies $\|f'\| \leq 2$, hence by Cauchy-Schwartz,

$$|\mathbf{E}[f'(W) - W \cdot f(W)]| \le \sqrt{Var(\langle DW, -DL^{-1}W \rangle)}$$
.

Thus, it all boils down to controlling the variance of the quantity $\langle DW, DL^{-1}W \rangle$.

For closeness to multivariate normal, things are slightly more complicated.

Let us define $\mathcal{H}=\{h:\mathbb{R}^k\to\mathbb{R}:||h''||<1\}$. Let (Z_1,\ldots,Z_k) be a Gaussian distribution with the same mean and covariance as (W_1,\ldots,W_k) .

Key result (Nourdin and Peccati)

$$|\mathbf{E}[h(Z_1,\ldots,Z_k)] - \mathbf{E}[h(W_1,\ldots,W_k)]| = O(k^2\epsilon)$$

where
$$\sup_{i,j} Var(\langle DW_i, -DL^{-1}W_j \rangle) \leq \epsilon$$
.

Our result

We show that if $W_i=F_i(X_1,\ldots,X_n)$ where F_i are degree-2 polynomials with $Var(F_i)=1$ and $\lambda_{\max}(F_i)\leq \epsilon$, then $\sup_{i,j} Var(\langle DW_i,-DL^{-1}W_j\rangle)\leq \epsilon \ .$

Proof: calculation + Matrix analysis

Our result

This proves closeness of (Z_1,\ldots,Z_k) and (W_1,\ldots,W_k) w.r.t. class of test functions ${\mathcal H}$.

To prove closeness in Kolmogorov distance, we need closeness w.r.t. the class

$$\mathcal{H}_K = \{ (x_1 \le \theta_1) \land \ldots \land (x_k \le \theta_k) : \theta_1, \ldots, \theta_k \in \mathbb{R} \}$$

Mollification

To go from closeness in class \mathcal{H} to closeness in class \mathcal{H}_K , we do the following steps:

- \checkmark Show that closeness in $\mathcal H$ implies closeness in class $\widetilde{\mathcal H}_K$ where $\widetilde{\mathcal H}_K$ is a smoothened version of $\mathcal H_K$ (uses mollification machinery)
- \checkmark Carbery-Wright shows that closeness in \mathcal{H}_K implies closeness in \mathcal{H}_K .

Recap ...

Theorem: Let $p_1, \ldots, p_k : \mathcal{N}^n(0,1) \to \mathbb{R}$ be k degree 2 polynomials such that:

- $\forall i \in [k] \ \lambda_{\max}(p_i) \leq \epsilon$
- $\forall i \in [k] \ Var(p_i) \leq 1$,
- $\exists i \in [k] \ Var(p_i) \geq c$.

Let $Z \sim (p_1, \ldots, p_k)$ and $Z' \sim \mathcal{N}(\mu, \Sigma)$ where

$$\mu = \mathbf{E}[Z]$$
 ; $\Sigma = \mathbf{Cov}[Z]$.

Then, $d_K(Z,Z') \leq \frac{k^{2/3} \cdot \epsilon^{1/6}}{c^{1/6}}.$

Recap ...

• The CLT allows us to do approximate counting as long as all the $\lambda_{\max}(p_i)$ are small.

• If some of the $\lambda_{\max}(p_i)$ are large, then we can apply the decomposition method to reduce the counting to CLT + brute force.

• Apply the regularity lemma to move from $\mathcal{N}^n(0,1)$ to the Boolean hypercube.

THANKS